PhysicsWorld.cpp 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091
  1. //
  2. // Copyright (c) 2008-2017 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Mutex.h"
  25. #include "../Core/Profiler.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Graphics/Model.h"
  28. #include "../IO/Log.h"
  29. #include "../Math/Ray.h"
  30. #include "../Physics/CollisionShape.h"
  31. #include "../Physics/Constraint.h"
  32. #include "../Physics/PhysicsEvents.h"
  33. #include "../Physics/PhysicsUtils.h"
  34. #include "../Physics/PhysicsWorld.h"
  35. #include "../Physics/RaycastVehicle.h"
  36. #include "../Physics/RigidBody.h"
  37. #include "../Scene/Scene.h"
  38. #include "../Scene/SceneEvents.h"
  39. #include <Bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <Bullet/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <Bullet/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  42. #include <Bullet/BulletCollision/CollisionShapes/btBoxShape.h>
  43. #include <Bullet/BulletCollision/CollisionShapes/btSphereShape.h>
  44. #include <Bullet/BulletCollision/Gimpact/btGImpactCollisionAlgorithm.h>
  45. #include <Bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  46. #include <Bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  47. extern ContactAddedCallback gContactAddedCallback;
  48. namespace Urho3D
  49. {
  50. const char* PHYSICS_CATEGORY = "Physics";
  51. extern const char* SUBSYSTEM_CATEGORY;
  52. static const int MAX_SOLVER_ITERATIONS = 256;
  53. static const int DEFAULT_FPS = 60;
  54. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  55. PhysicsWorldConfig PhysicsWorld::config;
  56. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  57. {
  58. return lhs.distance_ < rhs.distance_;
  59. }
  60. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  61. {
  62. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  63. }
  64. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  65. {
  66. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  67. }
  68. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  69. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  70. {
  71. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  72. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  73. cp.m_combinedRestitution =
  74. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  75. return true;
  76. }
  77. void RemoveCachedGeometryImpl(CollisionGeometryDataCache& cache, Model* model)
  78. {
  79. for (auto i = cache.Begin(); i != cache.End();)
  80. {
  81. auto current = i++;
  82. if (current->first_.first_ == model)
  83. cache.Erase(current);
  84. }
  85. }
  86. void CleanupGeometryCacheImpl(CollisionGeometryDataCache& cache)
  87. {
  88. for (auto i = cache.Begin(); i != cache.End();)
  89. {
  90. auto current = i++;
  91. if (current->second_.Refs() == 1)
  92. cache.Erase(current);
  93. }
  94. }
  95. /// Callback for physics world queries.
  96. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  97. {
  98. /// Construct.
  99. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) :
  100. result_(result),
  101. collisionMask_(collisionMask)
  102. {
  103. }
  104. /// Add a contact result.
  105. virtual btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  106. const btCollisionObjectWrapper* colObj1Wrap, int, int) override
  107. {
  108. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  109. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  110. result_.Push(body);
  111. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  112. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  113. result_.Push(body);
  114. return 0.0f;
  115. }
  116. /// Found rigid bodies.
  117. PODVector<RigidBody*>& result_;
  118. /// Collision mask for the query.
  119. unsigned collisionMask_;
  120. };
  121. PhysicsWorld::PhysicsWorld(Context* context) :
  122. Component(context),
  123. collisionConfiguration_(nullptr),
  124. fps_(DEFAULT_FPS),
  125. maxSubSteps_(0),
  126. timeAcc_(0.0f),
  127. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  128. updateEnabled_(true),
  129. interpolation_(true),
  130. internalEdge_(true),
  131. applyingTransforms_(false),
  132. simulating_(false),
  133. debugRenderer_(nullptr),
  134. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  135. {
  136. gContactAddedCallback = CustomMaterialCombinerCallback;
  137. if (PhysicsWorld::config.collisionConfig_)
  138. collisionConfiguration_ = PhysicsWorld::config.collisionConfig_;
  139. else
  140. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  141. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  142. btGImpactCollisionAlgorithm::registerAlgorithm(static_cast<btCollisionDispatcher*>(collisionDispatcher_.Get()));
  143. broadphase_ = new btDbvtBroadphase();
  144. solver_ = new btSequentialImpulseConstraintSolver();
  145. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_.Get(), broadphase_.Get(), solver_.Get(), collisionConfiguration_);
  146. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  147. world_->getDispatchInfo().m_useContinuous = true;
  148. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  149. world_->setDebugDrawer(this);
  150. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  151. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  152. world_->setSynchronizeAllMotionStates(true);
  153. }
  154. PhysicsWorld::~PhysicsWorld()
  155. {
  156. if (scene_)
  157. {
  158. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  159. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  160. (*i)->ReleaseConstraint();
  161. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  162. (*i)->ReleaseBody();
  163. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  164. (*i)->ReleaseShape();
  165. }
  166. world_.Reset();
  167. solver_.Reset();
  168. broadphase_.Reset();
  169. collisionDispatcher_.Reset();
  170. // Delete configuration only if it was the default created by PhysicsWorld
  171. if (!PhysicsWorld::config.collisionConfig_)
  172. delete collisionConfiguration_;
  173. collisionConfiguration_ = nullptr;
  174. }
  175. void PhysicsWorld::RegisterObject(Context* context)
  176. {
  177. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  178. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  179. URHO3D_ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  180. URHO3D_ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  181. URHO3D_ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  182. URHO3D_ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  183. URHO3D_ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  184. URHO3D_ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  185. URHO3D_ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  186. }
  187. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  188. {
  189. if (debugRenderer_)
  190. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  191. else
  192. return false;
  193. }
  194. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  195. {
  196. if (debugRenderer_)
  197. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  198. }
  199. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  200. {
  201. if (debug)
  202. {
  203. URHO3D_PROFILE(PhysicsDrawDebug);
  204. debugRenderer_ = debug;
  205. debugDepthTest_ = depthTest;
  206. world_->debugDrawWorld();
  207. debugRenderer_ = nullptr;
  208. }
  209. }
  210. void PhysicsWorld::reportErrorWarning(const char* warningString)
  211. {
  212. URHO3D_LOGWARNING("Physics: " + String(warningString));
  213. }
  214. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  215. const btVector3& color)
  216. {
  217. }
  218. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  219. {
  220. }
  221. void PhysicsWorld::Update(float timeStep)
  222. {
  223. URHO3D_PROFILE(UpdatePhysics);
  224. float internalTimeStep = 1.0f / fps_;
  225. int maxSubSteps = (int)(timeStep * fps_) + 1;
  226. if (maxSubSteps_ < 0)
  227. {
  228. internalTimeStep = timeStep;
  229. maxSubSteps = 1;
  230. }
  231. else if (maxSubSteps_ > 0)
  232. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  233. delayedWorldTransforms_.Clear();
  234. simulating_ = true;
  235. if (interpolation_)
  236. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  237. else
  238. {
  239. timeAcc_ += timeStep;
  240. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  241. {
  242. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  243. timeAcc_ -= internalTimeStep;
  244. --maxSubSteps;
  245. }
  246. }
  247. simulating_ = false;
  248. // Apply delayed (parented) world transforms now
  249. while (!delayedWorldTransforms_.Empty())
  250. {
  251. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  252. i != delayedWorldTransforms_.End();)
  253. {
  254. const DelayedWorldTransform& transform = i->second_;
  255. // If parent's transform has already been assigned, can proceed
  256. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  257. {
  258. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  259. i = delayedWorldTransforms_.Erase(i);
  260. }
  261. else
  262. ++i;
  263. }
  264. }
  265. }
  266. void PhysicsWorld::UpdateCollisions()
  267. {
  268. world_->performDiscreteCollisionDetection();
  269. }
  270. void PhysicsWorld::SetFps(int fps)
  271. {
  272. fps_ = (unsigned)Clamp(fps, 1, 1000);
  273. MarkNetworkUpdate();
  274. }
  275. void PhysicsWorld::SetGravity(const Vector3& gravity)
  276. {
  277. world_->setGravity(ToBtVector3(gravity));
  278. MarkNetworkUpdate();
  279. }
  280. void PhysicsWorld::SetMaxSubSteps(int num)
  281. {
  282. maxSubSteps_ = num;
  283. MarkNetworkUpdate();
  284. }
  285. void PhysicsWorld::SetNumIterations(int num)
  286. {
  287. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  288. world_->getSolverInfo().m_numIterations = num;
  289. MarkNetworkUpdate();
  290. }
  291. void PhysicsWorld::SetUpdateEnabled(bool enable)
  292. {
  293. updateEnabled_ = enable;
  294. }
  295. void PhysicsWorld::SetInterpolation(bool enable)
  296. {
  297. interpolation_ = enable;
  298. }
  299. void PhysicsWorld::SetInternalEdge(bool enable)
  300. {
  301. internalEdge_ = enable;
  302. MarkNetworkUpdate();
  303. }
  304. void PhysicsWorld::SetSplitImpulse(bool enable)
  305. {
  306. world_->getSolverInfo().m_splitImpulse = enable;
  307. MarkNetworkUpdate();
  308. }
  309. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  310. {
  311. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  312. MarkNetworkUpdate();
  313. }
  314. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  315. {
  316. URHO3D_PROFILE(PhysicsRaycast);
  317. if (maxDistance >= M_INFINITY)
  318. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  319. btCollisionWorld::AllHitsRayResultCallback
  320. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  321. rayCallback.m_collisionFilterGroup = (short)0xffff;
  322. rayCallback.m_collisionFilterMask = (short)collisionMask;
  323. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  324. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  325. {
  326. PhysicsRaycastResult newResult;
  327. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  328. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  329. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  330. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  331. newResult.hitFraction_ = rayCallback.m_closestHitFraction;
  332. result.Push(newResult);
  333. }
  334. Sort(result.Begin(), result.End(), CompareRaycastResults);
  335. }
  336. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  337. {
  338. URHO3D_PROFILE(PhysicsRaycastSingle);
  339. if (maxDistance >= M_INFINITY)
  340. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  341. btCollisionWorld::ClosestRayResultCallback
  342. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  343. rayCallback.m_collisionFilterGroup = (short)0xffff;
  344. rayCallback.m_collisionFilterMask = (short)collisionMask;
  345. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  346. if (rayCallback.hasHit())
  347. {
  348. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  349. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  350. result.distance_ = (result.position_ - ray.origin_).Length();
  351. result.hitFraction_ = rayCallback.m_closestHitFraction;
  352. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  353. }
  354. else
  355. {
  356. result.position_ = Vector3::ZERO;
  357. result.normal_ = Vector3::ZERO;
  358. result.distance_ = M_INFINITY;
  359. result.hitFraction_ = 0.0f;
  360. result.body_ = nullptr;
  361. }
  362. }
  363. void PhysicsWorld::RaycastSingleSegmented(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, float segmentDistance, unsigned collisionMask)
  364. {
  365. URHO3D_PROFILE(PhysicsRaycastSingleSegmented);
  366. if (maxDistance >= M_INFINITY)
  367. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  368. btVector3 start = ToBtVector3(ray.origin_);
  369. btVector3 end;
  370. btVector3 direction = ToBtVector3(ray.direction_);
  371. float distance;
  372. for (float remainingDistance = maxDistance; remainingDistance > 0; remainingDistance -= segmentDistance)
  373. {
  374. distance = Min(remainingDistance, segmentDistance);
  375. end = start + distance * direction;
  376. btCollisionWorld::ClosestRayResultCallback rayCallback(start, end);
  377. rayCallback.m_collisionFilterGroup = (short)0xffff;
  378. rayCallback.m_collisionFilterMask = (short)collisionMask;
  379. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  380. if (rayCallback.hasHit())
  381. {
  382. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  383. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  384. result.distance_ = (result.position_ - ray.origin_).Length();
  385. result.hitFraction_ = rayCallback.m_closestHitFraction;
  386. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  387. // No need to cast the rest of the segments
  388. return;
  389. }
  390. // Use the end position as the new start position
  391. start = end;
  392. }
  393. // Didn't hit anything
  394. result.position_ = Vector3::ZERO;
  395. result.normal_ = Vector3::ZERO;
  396. result.distance_ = M_INFINITY;
  397. result.hitFraction_ = 0.0f;
  398. result.body_ = nullptr;
  399. }
  400. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  401. {
  402. URHO3D_PROFILE(PhysicsSphereCast);
  403. if (maxDistance >= M_INFINITY)
  404. URHO3D_LOGWARNING("Infinite maxDistance in physics sphere cast is not supported");
  405. btSphereShape shape(radius);
  406. Vector3 endPos = ray.origin_ + maxDistance * ray.direction_;
  407. btCollisionWorld::ClosestConvexResultCallback
  408. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(endPos));
  409. convexCallback.m_collisionFilterGroup = (short)0xffff;
  410. convexCallback.m_collisionFilterMask = (short)collisionMask;
  411. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  412. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  413. if (convexCallback.hasHit())
  414. {
  415. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  416. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  417. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  418. result.distance_ = convexCallback.m_closestHitFraction * (endPos - ray.origin_).Length();
  419. result.hitFraction_ = convexCallback.m_closestHitFraction;
  420. }
  421. else
  422. {
  423. result.body_ = nullptr;
  424. result.position_ = Vector3::ZERO;
  425. result.normal_ = Vector3::ZERO;
  426. result.distance_ = M_INFINITY;
  427. result.hitFraction_ = 0.0f;
  428. }
  429. }
  430. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  431. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  432. {
  433. if (!shape || !shape->GetCollisionShape())
  434. {
  435. URHO3D_LOGERROR("Null collision shape for convex cast");
  436. result.body_ = nullptr;
  437. result.position_ = Vector3::ZERO;
  438. result.normal_ = Vector3::ZERO;
  439. result.distance_ = M_INFINITY;
  440. result.hitFraction_ = 0.0f;
  441. return;
  442. }
  443. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  444. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  445. btRigidBody* body = bodyComp ? bodyComp->GetBody() : nullptr;
  446. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : nullptr;
  447. short group = 0;
  448. if (proxy)
  449. {
  450. group = proxy->m_collisionFilterGroup;
  451. proxy->m_collisionFilterGroup = 0;
  452. }
  453. // Take the shape's offset position & rotation into account
  454. Node* shapeNode = shape->GetNode();
  455. Matrix3x4 startTransform(startPos, startRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  456. Matrix3x4 endTransform(endPos, endRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  457. Vector3 effectiveStartPos = startTransform * shape->GetPosition();
  458. Vector3 effectiveEndPos = endTransform * shape->GetPosition();
  459. Quaternion effectiveStartRot = startRot * shape->GetRotation();
  460. Quaternion effectiveEndRot = endRot * shape->GetRotation();
  461. ConvexCast(result, shape->GetCollisionShape(), effectiveStartPos, effectiveStartRot, effectiveEndPos, effectiveEndRot, collisionMask);
  462. // Restore the collision group
  463. if (proxy)
  464. proxy->m_collisionFilterGroup = group;
  465. }
  466. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  467. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  468. {
  469. if (!shape)
  470. {
  471. URHO3D_LOGERROR("Null collision shape for convex cast");
  472. result.body_ = nullptr;
  473. result.position_ = Vector3::ZERO;
  474. result.normal_ = Vector3::ZERO;
  475. result.distance_ = M_INFINITY;
  476. result.hitFraction_ = 0.0f;
  477. return;
  478. }
  479. if (!shape->isConvex())
  480. {
  481. URHO3D_LOGERROR("Can not use non-convex collision shape for convex cast");
  482. result.body_ = nullptr;
  483. result.position_ = Vector3::ZERO;
  484. result.normal_ = Vector3::ZERO;
  485. result.distance_ = M_INFINITY;
  486. result.hitFraction_ = 0.0f;
  487. return;
  488. }
  489. URHO3D_PROFILE(PhysicsConvexCast);
  490. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  491. convexCallback.m_collisionFilterGroup = (short)0xffff;
  492. convexCallback.m_collisionFilterMask = (short)collisionMask;
  493. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  494. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  495. convexCallback);
  496. if (convexCallback.hasHit())
  497. {
  498. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  499. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  500. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  501. result.distance_ = convexCallback.m_closestHitFraction * (endPos - startPos).Length();
  502. result.hitFraction_ = convexCallback.m_closestHitFraction;
  503. }
  504. else
  505. {
  506. result.body_ = nullptr;
  507. result.position_ = Vector3::ZERO;
  508. result.normal_ = Vector3::ZERO;
  509. result.distance_ = M_INFINITY;
  510. result.hitFraction_ = 0.0f;
  511. }
  512. }
  513. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  514. {
  515. RemoveCachedGeometryImpl(triMeshCache_, model);
  516. RemoveCachedGeometryImpl(convexCache_, model);
  517. RemoveCachedGeometryImpl(gimpactTrimeshCache_, model);
  518. }
  519. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  520. {
  521. URHO3D_PROFILE(PhysicsSphereQuery);
  522. result.Clear();
  523. btSphereShape sphereShape(sphere.radius_);
  524. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, nullptr, &sphereShape));
  525. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  526. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  527. tempRigidBody->activate();
  528. world_->addRigidBody(tempRigidBody.Get());
  529. PhysicsQueryCallback callback(result, collisionMask);
  530. world_->contactTest(tempRigidBody.Get(), callback);
  531. world_->removeRigidBody(tempRigidBody.Get());
  532. }
  533. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  534. {
  535. URHO3D_PROFILE(PhysicsBoxQuery);
  536. result.Clear();
  537. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  538. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, nullptr, &boxShape));
  539. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  540. tempRigidBody->activate();
  541. world_->addRigidBody(tempRigidBody.Get());
  542. PhysicsQueryCallback callback(result, collisionMask);
  543. world_->contactTest(tempRigidBody.Get(), callback);
  544. world_->removeRigidBody(tempRigidBody.Get());
  545. }
  546. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  547. {
  548. URHO3D_PROFILE(PhysicsBodyQuery);
  549. result.Clear();
  550. if (!body || !body->GetBody())
  551. return;
  552. PhysicsQueryCallback callback(result, body->GetCollisionMask());
  553. world_->contactTest(body->GetBody(), callback);
  554. // Remove the body itself from the returned list
  555. for (unsigned i = 0; i < result.Size(); i++)
  556. {
  557. if (result[i] == body)
  558. {
  559. result.Erase(i);
  560. break;
  561. }
  562. }
  563. }
  564. void PhysicsWorld::GetCollidingBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  565. {
  566. URHO3D_PROFILE(GetCollidingBodies);
  567. result.Clear();
  568. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  569. i != currentCollisions_.End(); ++i)
  570. {
  571. if (i->first_.first_ == body)
  572. {
  573. if (i->first_.second_)
  574. result.Push(i->first_.second_);
  575. }
  576. else if (i->first_.second_ == body)
  577. {
  578. if (i->first_.first_)
  579. result.Push(i->first_.first_);
  580. }
  581. }
  582. }
  583. Vector3 PhysicsWorld::GetGravity() const
  584. {
  585. return ToVector3(world_->getGravity());
  586. }
  587. int PhysicsWorld::GetNumIterations() const
  588. {
  589. return world_->getSolverInfo().m_numIterations;
  590. }
  591. bool PhysicsWorld::GetSplitImpulse() const
  592. {
  593. return world_->getSolverInfo().m_splitImpulse != 0;
  594. }
  595. void PhysicsWorld::AddRigidBody(RigidBody* body)
  596. {
  597. rigidBodies_.Push(body);
  598. }
  599. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  600. {
  601. rigidBodies_.Remove(body);
  602. // Remove possible dangling pointer from the delayedWorldTransforms structure
  603. delayedWorldTransforms_.Erase(body);
  604. }
  605. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  606. {
  607. collisionShapes_.Push(shape);
  608. }
  609. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  610. {
  611. collisionShapes_.Remove(shape);
  612. }
  613. void PhysicsWorld::AddConstraint(Constraint* constraint)
  614. {
  615. constraints_.Push(constraint);
  616. }
  617. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  618. {
  619. constraints_.Remove(constraint);
  620. }
  621. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  622. {
  623. delayedWorldTransforms_[transform.rigidBody_] = transform;
  624. }
  625. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  626. {
  627. DebugRenderer* debug = GetComponent<DebugRenderer>();
  628. DrawDebugGeometry(debug, depthTest);
  629. }
  630. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  631. {
  632. debugRenderer_ = debug;
  633. }
  634. void PhysicsWorld::SetDebugDepthTest(bool enable)
  635. {
  636. debugDepthTest_ = enable;
  637. }
  638. void PhysicsWorld::CleanupGeometryCache()
  639. {
  640. // Remove cached shapes whose only reference is the cache itself
  641. CleanupGeometryCacheImpl(triMeshCache_);
  642. CleanupGeometryCacheImpl(convexCache_);
  643. CleanupGeometryCacheImpl(gimpactTrimeshCache_);
  644. }
  645. void PhysicsWorld::OnSceneSet(Scene* scene)
  646. {
  647. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  648. if (scene)
  649. {
  650. scene_ = GetScene();
  651. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, URHO3D_HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  652. }
  653. else
  654. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  655. }
  656. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  657. {
  658. if (!updateEnabled_)
  659. return;
  660. using namespace SceneSubsystemUpdate;
  661. Update(eventData[P_TIMESTEP].GetFloat());
  662. }
  663. void PhysicsWorld::PreStep(float timeStep)
  664. {
  665. // Send pre-step event
  666. using namespace PhysicsPreStep;
  667. VariantMap& eventData = GetEventDataMap();
  668. eventData[P_WORLD] = this;
  669. eventData[P_TIMESTEP] = timeStep;
  670. SendEvent(E_PHYSICSPRESTEP, eventData);
  671. // Start profiling block for the actual simulation step
  672. #ifdef URHO3D_PROFILING
  673. Profiler* profiler = GetSubsystem<Profiler>();
  674. if (profiler)
  675. profiler->BeginBlock("StepSimulation");
  676. #endif
  677. }
  678. void PhysicsWorld::PostStep(float timeStep)
  679. {
  680. #ifdef URHO3D_PROFILING
  681. Profiler* profiler = GetSubsystem<Profiler>();
  682. if (profiler)
  683. profiler->EndBlock();
  684. #endif
  685. SendCollisionEvents();
  686. // Send post-step event
  687. using namespace PhysicsPostStep;
  688. VariantMap& eventData = GetEventDataMap();
  689. eventData[P_WORLD] = this;
  690. eventData[P_TIMESTEP] = timeStep;
  691. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  692. }
  693. void PhysicsWorld::SendCollisionEvents()
  694. {
  695. URHO3D_PROFILE(SendCollisionEvents);
  696. currentCollisions_.Clear();
  697. physicsCollisionData_.Clear();
  698. nodeCollisionData_.Clear();
  699. int numManifolds = collisionDispatcher_->getNumManifolds();
  700. if (numManifolds)
  701. {
  702. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  703. for (int i = 0; i < numManifolds; ++i)
  704. {
  705. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  706. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  707. if (!contactManifold->getNumContacts())
  708. continue;
  709. const btCollisionObject* objectA = contactManifold->getBody0();
  710. const btCollisionObject* objectB = contactManifold->getBody1();
  711. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  712. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  713. // If it's not a rigidbody, maybe a ghost object
  714. if (!bodyA || !bodyB)
  715. continue;
  716. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  717. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  718. continue;
  719. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  720. continue;
  721. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  722. !bodyA->IsActive() && !bodyB->IsActive())
  723. continue;
  724. WeakPtr<RigidBody> bodyWeakA(bodyA);
  725. WeakPtr<RigidBody> bodyWeakB(bodyB);
  726. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  727. // objects during collision event handling
  728. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  729. if (bodyA < bodyB)
  730. {
  731. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  732. currentCollisions_[bodyPair].manifold_ = contactManifold;
  733. }
  734. else
  735. {
  736. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  737. currentCollisions_[bodyPair].flippedManifold_ = contactManifold;
  738. }
  739. }
  740. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  741. i != currentCollisions_.End(); ++i)
  742. {
  743. RigidBody* bodyA = i->first_.first_;
  744. RigidBody* bodyB = i->first_.second_;
  745. if (!bodyA || !bodyB)
  746. continue;
  747. Node* nodeA = bodyA->GetNode();
  748. Node* nodeB = bodyB->GetNode();
  749. WeakPtr<Node> nodeWeakA(nodeA);
  750. WeakPtr<Node> nodeWeakB(nodeB);
  751. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  752. bool newCollision = !previousCollisions_.Contains(i->first_);
  753. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  754. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  755. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  756. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  757. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  758. contacts_.Clear();
  759. // "Pointers not flipped"-manifold, send unmodified normals
  760. btPersistentManifold* contactManifold = i->second_.manifold_;
  761. if (contactManifold)
  762. {
  763. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  764. {
  765. btManifoldPoint& point = contactManifold->getContactPoint(j);
  766. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  767. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  768. contacts_.WriteFloat(point.m_distance1);
  769. contacts_.WriteFloat(point.m_appliedImpulse);
  770. }
  771. }
  772. // "Pointers flipped"-manifold, flip normals also
  773. contactManifold = i->second_.flippedManifold_;
  774. if (contactManifold)
  775. {
  776. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  777. {
  778. btManifoldPoint& point = contactManifold->getContactPoint(j);
  779. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  780. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  781. contacts_.WriteFloat(point.m_distance1);
  782. contacts_.WriteFloat(point.m_appliedImpulse);
  783. }
  784. }
  785. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  786. // Send separate collision start event if collision is new
  787. if (newCollision)
  788. {
  789. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  790. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  791. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  792. continue;
  793. }
  794. // Then send the ongoing collision event
  795. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  796. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  797. continue;
  798. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  799. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  800. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  801. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  802. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  803. if (newCollision)
  804. {
  805. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  806. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  807. continue;
  808. }
  809. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  810. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  811. continue;
  812. // Flip perspective to body B
  813. contacts_.Clear();
  814. contactManifold = i->second_.manifold_;
  815. if (contactManifold)
  816. {
  817. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  818. {
  819. btManifoldPoint& point = contactManifold->getContactPoint(j);
  820. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  821. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  822. contacts_.WriteFloat(point.m_distance1);
  823. contacts_.WriteFloat(point.m_appliedImpulse);
  824. }
  825. }
  826. contactManifold = i->second_.flippedManifold_;
  827. if (contactManifold)
  828. {
  829. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  830. {
  831. btManifoldPoint& point = contactManifold->getContactPoint(j);
  832. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  833. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  834. contacts_.WriteFloat(point.m_distance1);
  835. contacts_.WriteFloat(point.m_appliedImpulse);
  836. }
  837. }
  838. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  839. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  840. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  841. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  842. if (newCollision)
  843. {
  844. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  845. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  846. continue;
  847. }
  848. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  849. }
  850. }
  851. // Send collision end events as applicable
  852. {
  853. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  854. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator
  855. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  856. {
  857. if (!currentCollisions_.Contains(i->first_))
  858. {
  859. RigidBody* bodyA = i->first_.first_;
  860. RigidBody* bodyB = i->first_.second_;
  861. if (!bodyA || !bodyB)
  862. continue;
  863. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  864. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  865. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  866. continue;
  867. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  868. continue;
  869. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  870. !bodyA->IsActive() && !bodyB->IsActive())
  871. continue;
  872. Node* nodeA = bodyA->GetNode();
  873. Node* nodeB = bodyB->GetNode();
  874. WeakPtr<Node> nodeWeakA(nodeA);
  875. WeakPtr<Node> nodeWeakB(nodeB);
  876. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  877. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  878. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  879. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  880. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  881. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  882. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  883. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  884. continue;
  885. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  886. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  887. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  888. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  889. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  890. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  891. continue;
  892. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  893. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  894. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  895. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  896. }
  897. }
  898. }
  899. previousCollisions_ = currentCollisions_;
  900. }
  901. void RegisterPhysicsLibrary(Context* context)
  902. {
  903. CollisionShape::RegisterObject(context);
  904. RigidBody::RegisterObject(context);
  905. Constraint::RegisterObject(context);
  906. PhysicsWorld::RegisterObject(context);
  907. RaycastVehicle::RegisterObject(context);
  908. }
  909. }