Light.cpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638
  1. // Copyright (c) 2008-2023 the Urho3D project
  2. // License: MIT
  3. #include "../Precompiled.h"
  4. #include "../Core/Context.h"
  5. #include "../Core/Profiler.h"
  6. #include "../Graphics/Camera.h"
  7. #include "../Graphics/DebugRenderer.h"
  8. #include "../Graphics/Graphics.h"
  9. #include "../Graphics/Light.h"
  10. #include "../Graphics/OctreeQuery.h"
  11. #include "../GraphicsAPI/Texture2D.h"
  12. #include "../GraphicsAPI/TextureCube.h"
  13. #include "../IO/Log.h"
  14. #include "../Resource/ResourceCache.h"
  15. #include "../Scene/Node.h"
  16. #include "../DebugNew.h"
  17. namespace Urho3D
  18. {
  19. extern const char* SCENE_CATEGORY;
  20. static const LightType DEFAULT_LIGHTTYPE = LIGHT_POINT;
  21. static const float DEFAULT_RANGE = 10.0f;
  22. static const float DEFAULT_LIGHT_FOV = 30.0f;
  23. static const float DEFAULT_SPECULARINTENSITY = 1.0f;
  24. static const float DEFAULT_BRIGHTNESS = 1.0f;
  25. static const float DEFAULT_CONSTANTBIAS = 0.0002f;
  26. static const float DEFAULT_SLOPESCALEDBIAS = 0.5f;
  27. static const float DEFAULT_NORMALOFFSET = 0.0f;
  28. static const float DEFAULT_BIASAUTOADJUST = 1.0f;
  29. static const float DEFAULT_SHADOWFADESTART = 0.8f;
  30. static const float DEFAULT_SHADOWQUANTIZE = 0.5f;
  31. static const float DEFAULT_SHADOWMINVIEW = 3.0f;
  32. static const float DEFAULT_SHADOWNEARFARRATIO = 0.002f;
  33. static const float DEFAULT_SHADOWMAXEXTRUSION = 1000.0f;
  34. static const float DEFAULT_SHADOWSPLIT = 1000.0f;
  35. static const float DEFAULT_TEMPERATURE = 6590.0f;
  36. static const float DEFAULT_RADIUS = 0.0f;
  37. static const float DEFAULT_LENGTH = 0.0f;
  38. static const char* typeNames[] =
  39. {
  40. "Directional",
  41. "Spot",
  42. "Point",
  43. nullptr
  44. };
  45. void BiasParameters::Validate()
  46. {
  47. constantBias_ = Clamp(constantBias_, -1.0f, 1.0f);
  48. slopeScaledBias_ = Clamp(slopeScaledBias_, -16.0f, 16.0f);
  49. normalOffset_ = Max(normalOffset_, 0.0f);
  50. }
  51. void CascadeParameters::Validate()
  52. {
  53. for (unsigned i = 0; i < MAX_CASCADE_SPLITS; ++i)
  54. splits_[i] = Max(splits_[i], 0.0f);
  55. fadeStart_ = Clamp(fadeStart_, M_EPSILON, 1.0f);
  56. }
  57. void FocusParameters::Validate()
  58. {
  59. quantize_ = Max(quantize_, SHADOW_MIN_QUANTIZE);
  60. minView_ = Max(minView_, SHADOW_MIN_VIEW);
  61. }
  62. Light::Light(Context* context) :
  63. Drawable(context, DrawableTypes::Light),
  64. lightType_(DEFAULT_LIGHTTYPE),
  65. shadowBias_(BiasParameters(DEFAULT_CONSTANTBIAS, DEFAULT_SLOPESCALEDBIAS)),
  66. shadowCascade_(CascadeParameters(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f, DEFAULT_SHADOWFADESTART)),
  67. shadowFocus_(FocusParameters(true, true, true, DEFAULT_SHADOWQUANTIZE, DEFAULT_SHADOWMINVIEW)),
  68. lightQueue_(nullptr),
  69. temperature_(DEFAULT_TEMPERATURE),
  70. lightRad_(DEFAULT_RADIUS),
  71. lightLength_(DEFAULT_LENGTH),
  72. specularIntensity_(DEFAULT_SPECULARINTENSITY),
  73. brightness_(DEFAULT_BRIGHTNESS),
  74. range_(DEFAULT_RANGE),
  75. fov_(DEFAULT_LIGHT_FOV),
  76. aspectRatio_(1.0f),
  77. fadeDistance_(0.0f),
  78. shadowFadeDistance_(0.0f),
  79. shadowIntensity_(0.0f),
  80. shadowResolution_(1.0f),
  81. shadowNearFarRatio_(DEFAULT_SHADOWNEARFARRATIO),
  82. shadowMaxExtrusion_(DEFAULT_SHADOWMAXEXTRUSION),
  83. perVertex_(false),
  84. usePhysicalValues_(false)
  85. {
  86. }
  87. Light::~Light() = default;
  88. void Light::RegisterObject(Context* context)
  89. {
  90. context->RegisterFactory<Light>(SCENE_CATEGORY);
  91. URHO3D_ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, true, AM_DEFAULT);
  92. URHO3D_ENUM_ACCESSOR_ATTRIBUTE("Light Type", GetLightType, SetLightType, typeNames, DEFAULT_LIGHTTYPE, AM_DEFAULT);
  93. URHO3D_ACCESSOR_ATTRIBUTE("Color", GetColor, SetColor, Color::WHITE, AM_DEFAULT);
  94. URHO3D_ACCESSOR_ATTRIBUTE("Specular Intensity", GetSpecularIntensity, SetSpecularIntensity, DEFAULT_SPECULARINTENSITY,
  95. AM_DEFAULT);
  96. URHO3D_ACCESSOR_ATTRIBUTE("Brightness Multiplier", GetBrightness, SetBrightness, DEFAULT_BRIGHTNESS, AM_DEFAULT);
  97. URHO3D_ACCESSOR_ATTRIBUTE("Temperature", GetTemperature, SetTemperature, DEFAULT_TEMPERATURE, AM_DEFAULT);
  98. URHO3D_ATTRIBUTE("Use Physical Values", usePhysicalValues_, false, AM_DEFAULT);
  99. URHO3D_ACCESSOR_ATTRIBUTE("Radius", GetRadius, SetRadius, DEFAULT_RADIUS, AM_DEFAULT);
  100. URHO3D_ACCESSOR_ATTRIBUTE("Length", GetLength, SetLength, DEFAULT_LENGTH, AM_DEFAULT);
  101. URHO3D_ACCESSOR_ATTRIBUTE("Range", GetRange, SetRange, DEFAULT_RANGE, AM_DEFAULT);
  102. URHO3D_ACCESSOR_ATTRIBUTE("Spot FOV", GetFov, SetFov, DEFAULT_LIGHT_FOV, AM_DEFAULT);
  103. URHO3D_ACCESSOR_ATTRIBUTE("Spot Aspect Ratio", GetAspectRatio, SetAspectRatio, 1.0f, AM_DEFAULT);
  104. URHO3D_ACCESSOR_ATTRIBUTE("Attenuation Texture", GetRampTextureAttr, SetRampTextureAttr,
  105. ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  106. URHO3D_ACCESSOR_ATTRIBUTE("Light Shape Texture", GetShapeTextureAttr, SetShapeTextureAttr,
  107. ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  108. URHO3D_ACCESSOR_ATTRIBUTE("Can Be Occluded", IsOccludee, SetOccludee, true, AM_DEFAULT);
  109. URHO3D_ATTRIBUTE("Cast Shadows", castShadows_, false, AM_DEFAULT);
  110. URHO3D_ATTRIBUTE("Per Vertex", perVertex_, false, AM_DEFAULT);
  111. URHO3D_ACCESSOR_ATTRIBUTE("Draw Distance", GetDrawDistance, SetDrawDistance, 0.0f, AM_DEFAULT);
  112. URHO3D_ACCESSOR_ATTRIBUTE("Fade Distance", GetFadeDistance, SetFadeDistance, 0.0f, AM_DEFAULT);
  113. URHO3D_ACCESSOR_ATTRIBUTE("Shadow Distance", GetShadowDistance, SetShadowDistance, 0.0f, AM_DEFAULT);
  114. URHO3D_ACCESSOR_ATTRIBUTE("Shadow Fade Distance", GetShadowFadeDistance, SetShadowFadeDistance, 0.0f, AM_DEFAULT);
  115. URHO3D_ACCESSOR_ATTRIBUTE("Shadow Intensity", GetShadowIntensity, SetShadowIntensity, 0.0f, AM_DEFAULT);
  116. URHO3D_ACCESSOR_ATTRIBUTE("Shadow Resolution", GetShadowResolution, SetShadowResolution, 1.0f, AM_DEFAULT);
  117. URHO3D_ATTRIBUTE_EX("Focus To Scene", shadowFocus_.focus_, ValidateShadowFocus, true, AM_DEFAULT);
  118. URHO3D_ATTRIBUTE_EX("Non-uniform View", shadowFocus_.nonUniform_, ValidateShadowFocus, true, AM_DEFAULT);
  119. URHO3D_ATTRIBUTE_EX("Auto-Reduce Size", shadowFocus_.autoSize_, ValidateShadowFocus, true, AM_DEFAULT);
  120. URHO3D_ATTRIBUTE_EX("CSM Splits", shadowCascade_.splits_, ValidateShadowCascade, Vector4(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f), AM_DEFAULT);
  121. URHO3D_ATTRIBUTE_EX("CSM Fade Start", shadowCascade_.fadeStart_, ValidateShadowCascade, DEFAULT_SHADOWFADESTART, AM_DEFAULT);
  122. URHO3D_ATTRIBUTE_EX("CSM Bias Auto Adjust", shadowCascade_.biasAutoAdjust_, ValidateShadowCascade, DEFAULT_BIASAUTOADJUST, AM_DEFAULT);
  123. URHO3D_ATTRIBUTE_EX("View Size Quantize", shadowFocus_.quantize_, ValidateShadowFocus, DEFAULT_SHADOWQUANTIZE, AM_DEFAULT);
  124. URHO3D_ATTRIBUTE_EX("View Size Minimum", shadowFocus_.minView_, ValidateShadowFocus, DEFAULT_SHADOWMINVIEW, AM_DEFAULT);
  125. URHO3D_ATTRIBUTE_EX("Depth Constant Bias", shadowBias_.constantBias_, ValidateShadowBias, DEFAULT_CONSTANTBIAS, AM_DEFAULT);
  126. URHO3D_ATTRIBUTE_EX("Depth Slope Bias", shadowBias_.slopeScaledBias_, ValidateShadowBias, DEFAULT_SLOPESCALEDBIAS, AM_DEFAULT);
  127. URHO3D_ATTRIBUTE_EX("Normal Offset", shadowBias_.normalOffset_, ValidateShadowBias, DEFAULT_NORMALOFFSET, AM_DEFAULT);
  128. URHO3D_ATTRIBUTE("Near/Farclip Ratio", shadowNearFarRatio_, DEFAULT_SHADOWNEARFARRATIO, AM_DEFAULT);
  129. URHO3D_ACCESSOR_ATTRIBUTE("Max Extrusion", GetShadowMaxExtrusion, SetShadowMaxExtrusion, DEFAULT_SHADOWMAXEXTRUSION, AM_DEFAULT);
  130. URHO3D_ATTRIBUTE("View Mask", viewMask_, DEFAULT_VIEWMASK, AM_DEFAULT);
  131. URHO3D_ATTRIBUTE("Light Mask", lightMask_, DEFAULT_LIGHTMASK, AM_DEFAULT);
  132. }
  133. void Light::ProcessRayQuery(const RayOctreeQuery& query, Vector<RayQueryResult>& results)
  134. {
  135. // Do not record a raycast result for a directional light, as it would block all other results
  136. if (lightType_ == LIGHT_DIRECTIONAL)
  137. return;
  138. float distance = query.maxDistance_;
  139. switch (query.level_)
  140. {
  141. case RAY_AABB:
  142. Drawable::ProcessRayQuery(query, results);
  143. return;
  144. case RAY_OBB:
  145. {
  146. Matrix3x4 inverse(node_->GetWorldTransform().Inverse());
  147. Ray localRay = query.ray_.Transformed(inverse);
  148. distance = localRay.HitDistance(GetWorldBoundingBox().Transformed(inverse));
  149. if (distance >= query.maxDistance_)
  150. return;
  151. }
  152. break;
  153. case RAY_TRIANGLE:
  154. if (lightType_ == LIGHT_SPOT)
  155. {
  156. distance = query.ray_.HitDistance(GetFrustum());
  157. if (distance >= query.maxDistance_)
  158. return;
  159. }
  160. else
  161. {
  162. distance = query.ray_.HitDistance(Sphere(node_->GetWorldPosition(), range_));
  163. if (distance >= query.maxDistance_)
  164. return;
  165. }
  166. break;
  167. case RAY_TRIANGLE_UV:
  168. URHO3D_LOGWARNING("RAY_TRIANGLE_UV query level is not supported for Light component");
  169. return;
  170. }
  171. // If the code reaches here then we have a hit
  172. RayQueryResult result;
  173. result.position_ = query.ray_.origin_ + distance * query.ray_.direction_;
  174. result.normal_ = -query.ray_.direction_;
  175. result.distance_ = distance;
  176. result.drawable_ = this;
  177. result.node_ = node_;
  178. result.subObject_ = NINDEX;
  179. results.Push(result);
  180. }
  181. void Light::UpdateBatches(const FrameInfo& frame)
  182. {
  183. switch (lightType_)
  184. {
  185. case LIGHT_DIRECTIONAL:
  186. // Directional light affects the whole scene, so it is always "closest"
  187. distance_ = 0.0f;
  188. break;
  189. default:
  190. distance_ = frame.camera_->GetDistance(node_->GetWorldPosition());
  191. break;
  192. }
  193. }
  194. void Light::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  195. {
  196. Color color = GetEffectiveColor();
  197. if (debug && IsEnabledEffective())
  198. {
  199. switch (lightType_)
  200. {
  201. case LIGHT_DIRECTIONAL:
  202. {
  203. Vector3 start = node_->GetWorldPosition();
  204. Vector3 end = start + node_->GetWorldDirection() * 10.f;
  205. for (int i = -1; i < 2; ++i)
  206. {
  207. for (int j = -1; j < 2; ++j)
  208. {
  209. Vector3 offset = Vector3::UP * (5.f * i) + Vector3::RIGHT * (5.f * j);
  210. debug->AddSphere(Sphere(start + offset, 0.1f), color, depthTest);
  211. debug->AddLine(start + offset, end + offset, color, depthTest);
  212. }
  213. }
  214. }
  215. break;
  216. case LIGHT_SPOT:
  217. debug->AddFrustum(GetFrustum(), color, depthTest);
  218. break;
  219. case LIGHT_POINT:
  220. debug->AddSphere(Sphere(node_->GetWorldPosition(), range_), color, depthTest);
  221. break;
  222. }
  223. }
  224. }
  225. void Light::SetLightType(LightType type)
  226. {
  227. lightType_ = type;
  228. OnMarkedDirty(node_);
  229. MarkNetworkUpdate();
  230. }
  231. void Light::SetPerVertex(bool enable)
  232. {
  233. perVertex_ = enable;
  234. MarkNetworkUpdate();
  235. }
  236. void Light::SetColor(const Color& color)
  237. {
  238. color_ = Color(color.r_, color.g_, color.b_, 1.0f);
  239. MarkNetworkUpdate();
  240. }
  241. void Light::SetTemperature(float temperature)
  242. {
  243. temperature_ = Clamp(temperature, 1000.0f, 10000.0f);
  244. MarkNetworkUpdate();
  245. }
  246. void Light::SetRadius(float radius)
  247. {
  248. lightRad_ = radius;
  249. MarkNetworkUpdate();
  250. }
  251. void Light::SetLength(float length)
  252. {
  253. lightLength_ = length;
  254. MarkNetworkUpdate();
  255. }
  256. void Light::SetUsePhysicalValues(bool enable)
  257. {
  258. usePhysicalValues_ = enable;
  259. MarkNetworkUpdate();
  260. }
  261. void Light::SetSpecularIntensity(float intensity)
  262. {
  263. specularIntensity_ = Max(intensity, 0.0f);
  264. MarkNetworkUpdate();
  265. }
  266. void Light::SetBrightness(float brightness)
  267. {
  268. brightness_ = brightness;
  269. MarkNetworkUpdate();
  270. }
  271. void Light::SetRange(float range)
  272. {
  273. range_ = Max(range, 0.0f);
  274. OnMarkedDirty(node_);
  275. MarkNetworkUpdate();
  276. }
  277. void Light::SetFov(float fov)
  278. {
  279. fov_ = Clamp(fov, 0.0f, M_MAX_FOV);
  280. OnMarkedDirty(node_);
  281. MarkNetworkUpdate();
  282. }
  283. void Light::SetAspectRatio(float aspectRatio)
  284. {
  285. aspectRatio_ = Max(aspectRatio, M_EPSILON);
  286. OnMarkedDirty(node_);
  287. MarkNetworkUpdate();
  288. }
  289. void Light::SetShadowNearFarRatio(float nearFarRatio)
  290. {
  291. shadowNearFarRatio_ = Clamp(nearFarRatio, 0.0f, 0.5f);
  292. MarkNetworkUpdate();
  293. }
  294. void Light::SetShadowMaxExtrusion(float extrusion)
  295. {
  296. shadowMaxExtrusion_ = Max(extrusion, 0.0f);
  297. MarkNetworkUpdate();
  298. }
  299. void Light::SetFadeDistance(float distance)
  300. {
  301. fadeDistance_ = Max(distance, 0.0f);
  302. MarkNetworkUpdate();
  303. }
  304. void Light::SetShadowBias(const BiasParameters& parameters)
  305. {
  306. shadowBias_ = parameters;
  307. shadowBias_.Validate();
  308. MarkNetworkUpdate();
  309. }
  310. void Light::SetShadowCascade(const CascadeParameters& parameters)
  311. {
  312. shadowCascade_ = parameters;
  313. shadowCascade_.Validate();
  314. MarkNetworkUpdate();
  315. }
  316. void Light::SetShadowFocus(const FocusParameters& parameters)
  317. {
  318. shadowFocus_ = parameters;
  319. shadowFocus_.Validate();
  320. MarkNetworkUpdate();
  321. }
  322. void Light::SetShadowFadeDistance(float distance)
  323. {
  324. shadowFadeDistance_ = Max(distance, 0.0f);
  325. MarkNetworkUpdate();
  326. }
  327. void Light::SetShadowIntensity(float intensity)
  328. {
  329. shadowIntensity_ = Clamp(intensity, 0.0f, 1.0f);
  330. MarkNetworkUpdate();
  331. }
  332. void Light::SetShadowResolution(float resolution)
  333. {
  334. shadowResolution_ = Clamp(resolution, 0.125f, 1.0f);
  335. MarkNetworkUpdate();
  336. }
  337. void Light::SetRampTexture(Texture* texture)
  338. {
  339. rampTexture_ = texture;
  340. MarkNetworkUpdate();
  341. }
  342. void Light::SetShapeTexture(Texture* texture)
  343. {
  344. shapeTexture_ = texture;
  345. MarkNetworkUpdate();
  346. }
  347. Color Light::GetColorFromTemperature() const
  348. {
  349. // Approximate Planckian locus in CIE 1960 UCS
  350. float u = (0.860117757f + 1.54118254e-4f * temperature_ + 1.28641212e-7f * temperature_ * temperature_) /
  351. (1.0f + 8.42420235e-4f * temperature_ + 7.08145163e-7f * temperature_ * temperature_);
  352. float v = (0.317398726f + 4.22806245e-5f * temperature_ + 4.20481691e-8f * temperature_ * temperature_) /
  353. (1.0f - 2.89741816e-5f * temperature_ + 1.61456053e-7f * temperature_ * temperature_);
  354. float x = 3.0f * u / (2.0f * u - 8.0f * v + 4.0f);
  355. float y = 2.0f * v / (2.0f * u - 8.0f * v + 4.0f);
  356. float z = 1.0f - x - y;
  357. float y_ = 1.0f;
  358. float x_ = y_ / y * x;
  359. float z_ = y_ / y * z;
  360. float red = 3.2404542f * x_ + -1.5371385f * y_ + -0.4985314f * z_;
  361. float green = -0.9692660f * x_ + 1.8760108f * y_ + 0.0415560f * z_;
  362. float blue = 0.0556434f * x_ + -0.2040259f * y_ + 1.0572252f * z_;
  363. return Color(red, green, blue);
  364. }
  365. Color Light::GetEffectiveColor() const
  366. {
  367. if (usePhysicalValues_)
  368. {
  369. // Light color in kelvin.
  370. Color tempColor = GetColorFromTemperature();
  371. // Light brightness in lumens
  372. float energy = (brightness_ * 4.0f * M_PI) * 16.0f / (100.0f * 100.0f) / M_PI;
  373. return Color(tempColor.r_ * color_.r_ * energy, tempColor.g_ * color_.g_ * energy, tempColor.b_ * color_.b_ * energy, 1.0f);
  374. }
  375. else
  376. {
  377. return Color(color_ * brightness_, 1.0f);
  378. }
  379. }
  380. Frustum Light::GetFrustum() const
  381. {
  382. // Note: frustum is unaffected by node or parent scale
  383. Matrix3x4 frustumTransform(node_ ? Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), 1.0f) :
  384. Matrix3x4::IDENTITY);
  385. Frustum ret;
  386. ret.Define(fov_, aspectRatio_, 1.0f, M_MIN_NEARCLIP, range_, frustumTransform);
  387. return ret;
  388. }
  389. Frustum Light::GetViewSpaceFrustum(const Matrix3x4& view) const
  390. {
  391. // Note: frustum is unaffected by node or parent scale
  392. Matrix3x4 frustumTransform(node_ ? Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), 1.0f) :
  393. Matrix3x4::IDENTITY);
  394. Frustum ret;
  395. ret.Define(fov_, aspectRatio_, 1.0f, M_MIN_NEARCLIP, range_, view * frustumTransform);
  396. return ret;
  397. }
  398. i32 Light::GetNumShadowSplits() const
  399. {
  400. i32 ret = 1;
  401. if (shadowCascade_.splits_[1] > shadowCascade_.splits_[0])
  402. {
  403. ++ret;
  404. if (shadowCascade_.splits_[2] > shadowCascade_.splits_[1])
  405. {
  406. ++ret;
  407. if (shadowCascade_.splits_[3] > shadowCascade_.splits_[2])
  408. ++ret;
  409. }
  410. }
  411. return Min(ret, MAX_CASCADE_SPLITS);
  412. }
  413. const Matrix3x4& Light::GetVolumeTransform(Camera* camera)
  414. {
  415. if (!node_)
  416. return Matrix3x4::IDENTITY;
  417. switch (lightType_)
  418. {
  419. case LIGHT_DIRECTIONAL:
  420. volumeTransform_ = GetFullscreenQuadTransform(camera);
  421. break;
  422. case LIGHT_SPOT:
  423. {
  424. float yScale = tanf(fov_ * M_DEGTORAD * 0.5f) * range_;
  425. float xScale = aspectRatio_ * yScale;
  426. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), Vector3(xScale, yScale, range_));
  427. }
  428. break;
  429. case LIGHT_POINT:
  430. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), Quaternion::IDENTITY, range_);
  431. break;
  432. }
  433. return volumeTransform_;
  434. }
  435. void Light::SetRampTextureAttr(const ResourceRef& value)
  436. {
  437. auto* cache = GetSubsystem<ResourceCache>();
  438. rampTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  439. }
  440. void Light::SetShapeTextureAttr(const ResourceRef& value)
  441. {
  442. auto* cache = GetSubsystem<ResourceCache>();
  443. shapeTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  444. }
  445. ResourceRef Light::GetRampTextureAttr() const
  446. {
  447. return GetResourceRef(rampTexture_, Texture2D::GetTypeStatic());
  448. }
  449. ResourceRef Light::GetShapeTextureAttr() const
  450. {
  451. return GetResourceRef(shapeTexture_, lightType_ == LIGHT_POINT ? TextureCube::GetTypeStatic() : Texture2D::GetTypeStatic());
  452. }
  453. void Light::OnWorldBoundingBoxUpdate()
  454. {
  455. switch (lightType_)
  456. {
  457. case LIGHT_DIRECTIONAL:
  458. // Directional light always sets humongous bounding box not affected by transform
  459. worldBoundingBox_.Define(-M_LARGE_VALUE, M_LARGE_VALUE);
  460. break;
  461. case LIGHT_SPOT:
  462. // Frustum is already transformed into world space
  463. worldBoundingBox_.Define(GetFrustum());
  464. break;
  465. case LIGHT_POINT:
  466. {
  467. const Vector3& center = node_->GetWorldPosition();
  468. Vector3 edge(range_, range_, range_);
  469. worldBoundingBox_.Define(center - edge, center + edge);
  470. }
  471. break;
  472. }
  473. }
  474. void Light::SetIntensitySortValue(float distance)
  475. {
  476. // When sorting lights globally, give priority to directional lights so that they will be combined into the ambient pass
  477. if (!IsNegative())
  478. {
  479. if (lightType_ != LIGHT_DIRECTIONAL)
  480. sortValue_ = Max(distance, M_MIN_NEARCLIP) / GetIntensityDivisor();
  481. else
  482. sortValue_ = M_EPSILON / GetIntensityDivisor();
  483. }
  484. else
  485. {
  486. // Give extra priority to negative lights in the global sorting order so that they're handled first, right after ambient.
  487. // Positive lights are added after them
  488. if (lightType_ != LIGHT_DIRECTIONAL)
  489. sortValue_ = -Max(distance, M_MIN_NEARCLIP) * GetIntensityDivisor();
  490. else
  491. sortValue_ = -M_LARGE_VALUE * GetIntensityDivisor();
  492. }
  493. }
  494. void Light::SetIntensitySortValue(const BoundingBox& box)
  495. {
  496. // When sorting lights for object's maximum light cap, give priority based on attenuation and intensity
  497. switch (lightType_)
  498. {
  499. case LIGHT_DIRECTIONAL:
  500. sortValue_ = 1.0f / GetIntensityDivisor();
  501. break;
  502. case LIGHT_SPOT:
  503. {
  504. Vector3 centerPos = box.Center();
  505. Vector3 lightPos = node_->GetWorldPosition();
  506. Vector3 lightDir = node_->GetWorldDirection();
  507. Ray lightRay(lightPos, lightDir);
  508. Vector3 centerProj = lightRay.Project(centerPos);
  509. float centerDistance = (centerProj - lightPos).Length();
  510. Ray centerRay(centerProj, centerPos - centerProj);
  511. float centerAngle = centerRay.HitDistance(box) / centerDistance;
  512. // Check if a corner of the bounding box is closer to the light ray than the center, use its angle in that case
  513. Vector3 cornerPos = centerPos + box.HalfSize() * Vector3(centerPos.x_ < centerProj.x_ ? 1.0f : -1.0f,
  514. centerPos.y_ < centerProj.y_ ? 1.0f : -1.0f, centerPos.z_ < centerProj.z_ ? 1.0f : -1.0f);
  515. Vector3 cornerProj = lightRay.Project(cornerPos);
  516. float cornerDistance = (cornerProj - lightPos).Length();
  517. float cornerAngle = (cornerPos - cornerProj).Length() / cornerDistance;
  518. float spotAngle = Min(centerAngle, cornerAngle);
  519. float maxAngle = tanf(fov_ * M_DEGTORAD * 0.5f);
  520. float spotFactor = Min(spotAngle / maxAngle, 1.0f);
  521. // We do not know the actual range attenuation ramp, so take only spot attenuation into account
  522. float att = Max(1.0f - spotFactor * spotFactor, M_EPSILON);
  523. sortValue_ = 1.0f / GetIntensityDivisor(att);
  524. }
  525. break;
  526. case LIGHT_POINT:
  527. {
  528. Vector3 centerPos = box.Center();
  529. Vector3 lightPos = node_->GetWorldPosition();
  530. Vector3 lightDir = (centerPos - lightPos).Normalized();
  531. Ray lightRay(lightPos, lightDir);
  532. float distance = lightRay.HitDistance(box);
  533. float normDistance = distance / range_;
  534. float att = Max(1.0f - normDistance * normDistance, M_EPSILON);
  535. sortValue_ = 1.0f / GetIntensityDivisor(att);
  536. }
  537. break;
  538. }
  539. }
  540. void Light::SetLightQueue(LightBatchQueue* queue)
  541. {
  542. lightQueue_ = queue;
  543. }
  544. Matrix3x4 Light::GetFullscreenQuadTransform(Camera* camera)
  545. {
  546. Matrix3x4 quadTransform;
  547. Vector3 near, far;
  548. // Position the directional light quad in halfway between far & near planes to prevent depth clipping
  549. camera->GetFrustumSize(near, far);
  550. quadTransform.SetTranslation(Vector3(0.0f, 0.0f, (camera->GetNearClip() + camera->GetFarClip()) * 0.5f));
  551. quadTransform.SetScale(Vector3(far.x_, far.y_, 1.0f)); // Will be oversized, but doesn't matter (gets frustum clipped)
  552. return camera->GetEffectiveWorldTransform() * quadTransform;
  553. }
  554. }