PhysicsWorld.cpp 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076
  1. // Copyright (c) 2008-2023 the Urho3D project
  2. // License: MIT
  3. #include "../Precompiled.h"
  4. #include "../Core/Context.h"
  5. #include "../Core/Mutex.h"
  6. #include "../Core/Profiler.h"
  7. #include "../Graphics/DebugRenderer.h"
  8. #include "../Graphics/Model.h"
  9. #include "../IO/Log.h"
  10. #include "../Math/Ray.h"
  11. #include "../Physics/CollisionShape.h"
  12. #include "../Physics/Constraint.h"
  13. #include "../Physics/PhysicsEvents.h"
  14. #include "../Physics/PhysicsUtils.h"
  15. #include "../Physics/PhysicsWorld.h"
  16. #include "../Physics/RaycastVehicle.h"
  17. #include "../Physics/RigidBody.h"
  18. #include "../Scene/Scene.h"
  19. #include "../Scene/SceneEvents.h"
  20. #include <Bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  21. #include <Bullet/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  22. #include <Bullet/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  23. #include <Bullet/BulletCollision/CollisionShapes/btBoxShape.h>
  24. #include <Bullet/BulletCollision/CollisionShapes/btSphereShape.h>
  25. #include <Bullet/BulletCollision/Gimpact/btGImpactCollisionAlgorithm.h>
  26. #include <Bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  27. #include <Bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  28. extern ContactAddedCallback gContactAddedCallback;
  29. using namespace std;
  30. namespace Urho3D
  31. {
  32. const char* PHYSICS_CATEGORY = "Physics";
  33. extern const char* SUBSYSTEM_CATEGORY;
  34. static const int MAX_SOLVER_ITERATIONS = 256;
  35. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  36. PhysicsWorldConfig PhysicsWorld::config;
  37. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  38. {
  39. return lhs.distance_ < rhs.distance_;
  40. }
  41. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  42. {
  43. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  44. }
  45. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  46. {
  47. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  48. }
  49. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  50. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  51. {
  52. // Ensure that shape type of colObj1Wrap is either btScaledBvhTriangleMeshShape or btBvhTriangleMeshShape
  53. // because btAdjustInternalEdgeContacts doesn't check types properly. Bug in the Bullet?
  54. const int shapeType = colObj1Wrap->getCollisionObject()->getCollisionShape()->getShapeType();
  55. if (shapeType == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE || shapeType == TRIANGLE_SHAPE_PROXYTYPE
  56. || shapeType == MULTIMATERIAL_TRIANGLE_MESH_PROXYTYPE)
  57. {
  58. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  59. }
  60. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  61. cp.m_combinedRestitution =
  62. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  63. return true;
  64. }
  65. void RemoveCachedGeometryImpl(CollisionGeometryDataCache& cache, Model* model)
  66. {
  67. for (auto i = cache.Begin(); i != cache.End();)
  68. {
  69. auto current = i++;
  70. if (current->first_.first_ == model)
  71. cache.Erase(current);
  72. }
  73. }
  74. void CleanupGeometryCacheImpl(CollisionGeometryDataCache& cache)
  75. {
  76. for (auto i = cache.Begin(); i != cache.End();)
  77. {
  78. auto current = i++;
  79. if (current->second_.Refs() == 1)
  80. cache.Erase(current);
  81. }
  82. }
  83. /// Callback for physics world queries.
  84. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  85. {
  86. /// Construct.
  87. PhysicsQueryCallback(Vector<RigidBody*>& result, unsigned collisionMask) :
  88. result_(result),
  89. collisionMask_(collisionMask)
  90. {
  91. }
  92. /// Add a contact result.
  93. btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  94. const btCollisionObjectWrapper* colObj1Wrap, int, int) override
  95. {
  96. auto* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  97. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  98. result_.Push(body);
  99. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  100. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  101. result_.Push(body);
  102. return 0.0f;
  103. }
  104. /// Found rigid bodies.
  105. Vector<RigidBody*>& result_;
  106. /// Collision mask for the query.
  107. unsigned collisionMask_;
  108. };
  109. PhysicsWorld::PhysicsWorld(Context* context) :
  110. Component(context),
  111. fps_(DEFAULT_FPS),
  112. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  113. {
  114. gContactAddedCallback = CustomMaterialCombinerCallback;
  115. if (PhysicsWorld::config.collisionConfig_)
  116. collisionConfiguration_ = PhysicsWorld::config.collisionConfig_;
  117. else
  118. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  119. collisionDispatcher_ = make_unique<btCollisionDispatcher>(collisionConfiguration_);
  120. btGImpactCollisionAlgorithm::registerAlgorithm(static_cast<btCollisionDispatcher*>(collisionDispatcher_.get()));
  121. broadphase_ = make_unique<btDbvtBroadphase>();
  122. solver_ = make_unique<btSequentialImpulseConstraintSolver>();
  123. world_ = make_unique<btDiscreteDynamicsWorld>(collisionDispatcher_.get(), broadphase_.get(), solver_.get(), collisionConfiguration_);
  124. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  125. world_->getDispatchInfo().m_useContinuous = true;
  126. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  127. world_->setDebugDrawer(this);
  128. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  129. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  130. world_->setSynchronizeAllMotionStates(true);
  131. }
  132. PhysicsWorld::~PhysicsWorld()
  133. {
  134. if (scene_)
  135. {
  136. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  137. for (Vector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  138. (*i)->ReleaseConstraint();
  139. for (Vector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  140. (*i)->ReleaseBody();
  141. for (Vector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  142. (*i)->ReleaseShape();
  143. }
  144. world_.reset();
  145. solver_.reset();
  146. broadphase_.reset();
  147. collisionDispatcher_.reset();
  148. // Delete configuration only if it was the default created by PhysicsWorld
  149. if (!PhysicsWorld::config.collisionConfig_)
  150. delete collisionConfiguration_;
  151. collisionConfiguration_ = nullptr;
  152. }
  153. void PhysicsWorld::RegisterObject(Context* context)
  154. {
  155. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  156. URHO3D_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, DEFAULT_GRAVITY, AM_DEFAULT);
  157. URHO3D_ATTRIBUTE("Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  158. URHO3D_ATTRIBUTE("Max Substeps", maxSubSteps_, 0, AM_DEFAULT);
  159. URHO3D_ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, 10, AM_DEFAULT);
  160. URHO3D_ATTRIBUTE("Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  161. URHO3D_ATTRIBUTE("Interpolation", interpolation_, true, AM_FILE);
  162. URHO3D_ATTRIBUTE("Internal Edge Utility", internalEdge_, true, AM_DEFAULT);
  163. URHO3D_ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, false, AM_DEFAULT);
  164. }
  165. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  166. {
  167. if (debugRenderer_)
  168. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  169. else
  170. return false;
  171. }
  172. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  173. {
  174. if (debugRenderer_)
  175. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  176. }
  177. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  178. {
  179. if (debug)
  180. {
  181. URHO3D_PROFILE(PhysicsDrawDebug);
  182. debugRenderer_ = debug;
  183. debugDepthTest_ = depthTest;
  184. world_->debugDrawWorld();
  185. debugRenderer_ = nullptr;
  186. }
  187. }
  188. void PhysicsWorld::reportErrorWarning(const char* warningString)
  189. {
  190. URHO3D_LOGWARNING("Physics: " + String(warningString));
  191. }
  192. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  193. const btVector3& color)
  194. {
  195. }
  196. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  197. {
  198. }
  199. void PhysicsWorld::Update(float timeStep)
  200. {
  201. URHO3D_PROFILE(UpdatePhysics);
  202. float internalTimeStep = 1.0f / fps_;
  203. i32 maxSubSteps = (i32)(timeStep * fps_) + 1;
  204. if (maxSubSteps_ < 0)
  205. {
  206. internalTimeStep = timeStep;
  207. maxSubSteps = 1;
  208. }
  209. else if (maxSubSteps_ > 0)
  210. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  211. delayedWorldTransforms_.Clear();
  212. simulating_ = true;
  213. if (interpolation_)
  214. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  215. else
  216. {
  217. timeAcc_ += timeStep;
  218. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  219. {
  220. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  221. timeAcc_ -= internalTimeStep;
  222. --maxSubSteps;
  223. }
  224. }
  225. simulating_ = false;
  226. // Apply delayed (parented) world transforms now
  227. while (!delayedWorldTransforms_.Empty())
  228. {
  229. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  230. i != delayedWorldTransforms_.End();)
  231. {
  232. const DelayedWorldTransform& transform = i->second_;
  233. // If parent's transform has already been assigned, can proceed
  234. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  235. {
  236. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  237. i = delayedWorldTransforms_.Erase(i);
  238. }
  239. else
  240. ++i;
  241. }
  242. }
  243. }
  244. void PhysicsWorld::UpdateCollisions()
  245. {
  246. world_->performDiscreteCollisionDetection();
  247. }
  248. void PhysicsWorld::SetFps(i32 fps)
  249. {
  250. assert(fps > 0);
  251. fps_ = Clamp(fps, 1, 1000);
  252. MarkNetworkUpdate();
  253. }
  254. void PhysicsWorld::SetGravity(const Vector3& gravity)
  255. {
  256. world_->setGravity(ToBtVector3(gravity));
  257. MarkNetworkUpdate();
  258. }
  259. void PhysicsWorld::SetMaxSubSteps(int num)
  260. {
  261. maxSubSteps_ = num;
  262. MarkNetworkUpdate();
  263. }
  264. void PhysicsWorld::SetNumIterations(int num)
  265. {
  266. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  267. world_->getSolverInfo().m_numIterations = num;
  268. MarkNetworkUpdate();
  269. }
  270. void PhysicsWorld::SetUpdateEnabled(bool enable)
  271. {
  272. updateEnabled_ = enable;
  273. }
  274. void PhysicsWorld::SetInterpolation(bool enable)
  275. {
  276. interpolation_ = enable;
  277. }
  278. void PhysicsWorld::SetInternalEdge(bool enable)
  279. {
  280. internalEdge_ = enable;
  281. MarkNetworkUpdate();
  282. }
  283. void PhysicsWorld::SetSplitImpulse(bool enable)
  284. {
  285. world_->getSolverInfo().m_splitImpulse = enable;
  286. MarkNetworkUpdate();
  287. }
  288. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  289. {
  290. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  291. MarkNetworkUpdate();
  292. }
  293. void PhysicsWorld::Raycast(Vector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  294. {
  295. URHO3D_PROFILE(PhysicsRaycast);
  296. if (maxDistance >= M_INFINITY)
  297. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  298. btCollisionWorld::AllHitsRayResultCallback
  299. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  300. rayCallback.m_collisionFilterGroup = (short)0xffff;
  301. rayCallback.m_collisionFilterMask = (short)collisionMask;
  302. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  303. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  304. {
  305. PhysicsRaycastResult newResult;
  306. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  307. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  308. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  309. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  310. newResult.hitFraction_ = rayCallback.m_closestHitFraction;
  311. result.Push(newResult);
  312. }
  313. Sort(result.Begin(), result.End(), CompareRaycastResults);
  314. }
  315. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  316. {
  317. URHO3D_PROFILE(PhysicsRaycastSingle);
  318. if (maxDistance >= M_INFINITY)
  319. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  320. btCollisionWorld::ClosestRayResultCallback
  321. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  322. rayCallback.m_collisionFilterGroup = (short)0xffff;
  323. rayCallback.m_collisionFilterMask = (short)collisionMask;
  324. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  325. if (rayCallback.hasHit())
  326. {
  327. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  328. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  329. result.distance_ = (result.position_ - ray.origin_).Length();
  330. result.hitFraction_ = rayCallback.m_closestHitFraction;
  331. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  332. }
  333. else
  334. {
  335. result.position_ = Vector3::ZERO;
  336. result.normal_ = Vector3::ZERO;
  337. result.distance_ = M_INFINITY;
  338. result.hitFraction_ = 0.0f;
  339. result.body_ = nullptr;
  340. }
  341. }
  342. void PhysicsWorld::RaycastSingleSegmented(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, float segmentDistance, unsigned collisionMask, float overlapDistance)
  343. {
  344. URHO3D_PROFILE(PhysicsRaycastSingleSegmented);
  345. assert(overlapDistance < segmentDistance);
  346. if (maxDistance >= M_INFINITY)
  347. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  348. const btVector3 direction = ToBtVector3(ray.direction_);
  349. const auto count = CeilToInt(maxDistance / segmentDistance);
  350. btVector3 start = ToBtVector3(ray.origin_);
  351. // overlap a bit with the previous segment for better precision, to avoid missing hits
  352. const btVector3 overlap = direction * overlapDistance;
  353. float remainingDistance = maxDistance;
  354. for (auto i = 0; i < count; ++i)
  355. {
  356. const float distance = Min(remainingDistance, segmentDistance); // The last segment may be shorter
  357. const btVector3 end = start + distance * direction;
  358. btCollisionWorld::ClosestRayResultCallback rayCallback(start, end);
  359. rayCallback.m_collisionFilterGroup = (short)0xffff;
  360. rayCallback.m_collisionFilterMask = (short)collisionMask;
  361. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  362. if (rayCallback.hasHit())
  363. {
  364. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  365. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  366. result.distance_ = (result.position_ - ray.origin_).Length();
  367. result.hitFraction_ = rayCallback.m_closestHitFraction;
  368. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  369. // No need to cast the rest of the segments
  370. return;
  371. }
  372. // Use the end position as the new start position
  373. start = end - overlap;
  374. remainingDistance -= segmentDistance;
  375. }
  376. // Didn't hit anything
  377. result.position_ = Vector3::ZERO;
  378. result.normal_ = Vector3::ZERO;
  379. result.distance_ = M_INFINITY;
  380. result.hitFraction_ = 0.0f;
  381. result.body_ = nullptr;
  382. }
  383. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  384. {
  385. URHO3D_PROFILE(PhysicsSphereCast);
  386. if (maxDistance >= M_INFINITY)
  387. URHO3D_LOGWARNING("Infinite maxDistance in physics sphere cast is not supported");
  388. btSphereShape shape(radius);
  389. Vector3 endPos = ray.origin_ + maxDistance * ray.direction_;
  390. btCollisionWorld::ClosestConvexResultCallback
  391. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(endPos));
  392. convexCallback.m_collisionFilterGroup = (short)0xffff;
  393. convexCallback.m_collisionFilterMask = (short)collisionMask;
  394. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  395. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  396. if (convexCallback.hasHit())
  397. {
  398. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  399. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  400. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  401. result.distance_ = convexCallback.m_closestHitFraction * (endPos - ray.origin_).Length();
  402. result.hitFraction_ = convexCallback.m_closestHitFraction;
  403. }
  404. else
  405. {
  406. result.body_ = nullptr;
  407. result.position_ = Vector3::ZERO;
  408. result.normal_ = Vector3::ZERO;
  409. result.distance_ = M_INFINITY;
  410. result.hitFraction_ = 0.0f;
  411. }
  412. }
  413. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  414. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  415. {
  416. if (!shape || !shape->GetCollisionShape())
  417. {
  418. URHO3D_LOGERROR("Null collision shape for convex cast");
  419. result.body_ = nullptr;
  420. result.position_ = Vector3::ZERO;
  421. result.normal_ = Vector3::ZERO;
  422. result.distance_ = M_INFINITY;
  423. result.hitFraction_ = 0.0f;
  424. return;
  425. }
  426. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  427. auto* bodyComp = shape->GetComponent<RigidBody>();
  428. btRigidBody* body = bodyComp ? bodyComp->GetBody() : nullptr;
  429. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : nullptr;
  430. short group = 0;
  431. if (proxy)
  432. {
  433. group = proxy->m_collisionFilterGroup;
  434. proxy->m_collisionFilterGroup = 0;
  435. }
  436. // Take the shape's offset position & rotation into account
  437. Node* shapeNode = shape->GetNode();
  438. Matrix3x4 startTransform(startPos, startRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  439. Matrix3x4 endTransform(endPos, endRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  440. Vector3 effectiveStartPos = startTransform * shape->GetPosition();
  441. Vector3 effectiveEndPos = endTransform * shape->GetPosition();
  442. Quaternion effectiveStartRot = startRot * shape->GetRotation();
  443. Quaternion effectiveEndRot = endRot * shape->GetRotation();
  444. ConvexCast(result, shape->GetCollisionShape(), effectiveStartPos, effectiveStartRot, effectiveEndPos, effectiveEndRot, collisionMask);
  445. // Restore the collision group
  446. if (proxy)
  447. proxy->m_collisionFilterGroup = group;
  448. }
  449. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  450. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  451. {
  452. if (!shape)
  453. {
  454. URHO3D_LOGERROR("Null collision shape for convex cast");
  455. result.body_ = nullptr;
  456. result.position_ = Vector3::ZERO;
  457. result.normal_ = Vector3::ZERO;
  458. result.distance_ = M_INFINITY;
  459. result.hitFraction_ = 0.0f;
  460. return;
  461. }
  462. if (!shape->isConvex())
  463. {
  464. URHO3D_LOGERROR("Can not use non-convex collision shape for convex cast");
  465. result.body_ = nullptr;
  466. result.position_ = Vector3::ZERO;
  467. result.normal_ = Vector3::ZERO;
  468. result.distance_ = M_INFINITY;
  469. result.hitFraction_ = 0.0f;
  470. return;
  471. }
  472. URHO3D_PROFILE(PhysicsConvexCast);
  473. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  474. convexCallback.m_collisionFilterGroup = (short)0xffff;
  475. convexCallback.m_collisionFilterMask = (short)collisionMask;
  476. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  477. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  478. convexCallback);
  479. if (convexCallback.hasHit())
  480. {
  481. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  482. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  483. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  484. result.distance_ = convexCallback.m_closestHitFraction * (endPos - startPos).Length();
  485. result.hitFraction_ = convexCallback.m_closestHitFraction;
  486. }
  487. else
  488. {
  489. result.body_ = nullptr;
  490. result.position_ = Vector3::ZERO;
  491. result.normal_ = Vector3::ZERO;
  492. result.distance_ = M_INFINITY;
  493. result.hitFraction_ = 0.0f;
  494. }
  495. }
  496. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  497. {
  498. RemoveCachedGeometryImpl(triMeshCache_, model);
  499. RemoveCachedGeometryImpl(convexCache_, model);
  500. RemoveCachedGeometryImpl(gimpactTrimeshCache_, model);
  501. }
  502. void PhysicsWorld::GetRigidBodies(Vector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  503. {
  504. URHO3D_PROFILE(PhysicsSphereQuery);
  505. result.Clear();
  506. btSphereShape sphereShape(sphere.radius_);
  507. unique_ptr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, nullptr, &sphereShape));
  508. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  509. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  510. tempRigidBody->activate();
  511. world_->addRigidBody(tempRigidBody.get());
  512. PhysicsQueryCallback callback(result, collisionMask);
  513. world_->contactTest(tempRigidBody.get(), callback);
  514. world_->removeRigidBody(tempRigidBody.get());
  515. }
  516. void PhysicsWorld::GetRigidBodies(Vector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  517. {
  518. URHO3D_PROFILE(PhysicsBoxQuery);
  519. result.Clear();
  520. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  521. unique_ptr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, nullptr, &boxShape));
  522. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  523. tempRigidBody->activate();
  524. world_->addRigidBody(tempRigidBody.get());
  525. PhysicsQueryCallback callback(result, collisionMask);
  526. world_->contactTest(tempRigidBody.get(), callback);
  527. world_->removeRigidBody(tempRigidBody.get());
  528. }
  529. void PhysicsWorld::GetRigidBodies(Vector<RigidBody*>& result, const RigidBody* body)
  530. {
  531. URHO3D_PROFILE(PhysicsBodyQuery);
  532. result.Clear();
  533. if (!body || !body->GetBody())
  534. return;
  535. PhysicsQueryCallback callback(result, body->GetCollisionMask());
  536. world_->contactTest(body->GetBody(), callback);
  537. // Remove the body itself from the returned list
  538. for (i32 i = 0; i < result.Size(); i++)
  539. {
  540. if (result[i] == body)
  541. {
  542. result.Erase(i);
  543. break;
  544. }
  545. }
  546. }
  547. void PhysicsWorld::GetCollidingBodies(Vector<RigidBody*>& result, const RigidBody* body)
  548. {
  549. URHO3D_PROFILE(GetCollidingBodies);
  550. result.Clear();
  551. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody>>, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  552. i != currentCollisions_.End(); ++i)
  553. {
  554. if (i->first_.first_ == body)
  555. {
  556. if (i->first_.second_)
  557. result.Push(i->first_.second_);
  558. }
  559. else if (i->first_.second_ == body)
  560. {
  561. if (i->first_.first_)
  562. result.Push(i->first_.first_);
  563. }
  564. }
  565. }
  566. Vector3 PhysicsWorld::GetGravity() const
  567. {
  568. return ToVector3(world_->getGravity());
  569. }
  570. int PhysicsWorld::GetNumIterations() const
  571. {
  572. return world_->getSolverInfo().m_numIterations;
  573. }
  574. bool PhysicsWorld::GetSplitImpulse() const
  575. {
  576. return world_->getSolverInfo().m_splitImpulse != 0;
  577. }
  578. void PhysicsWorld::AddRigidBody(RigidBody* body)
  579. {
  580. rigidBodies_.Push(body);
  581. }
  582. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  583. {
  584. rigidBodies_.Remove(body);
  585. // Remove possible dangling pointer from the delayedWorldTransforms structure
  586. delayedWorldTransforms_.Erase(body);
  587. }
  588. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  589. {
  590. collisionShapes_.Push(shape);
  591. }
  592. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  593. {
  594. collisionShapes_.Remove(shape);
  595. }
  596. void PhysicsWorld::AddConstraint(Constraint* constraint)
  597. {
  598. constraints_.Push(constraint);
  599. }
  600. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  601. {
  602. constraints_.Remove(constraint);
  603. }
  604. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  605. {
  606. delayedWorldTransforms_[transform.rigidBody_] = transform;
  607. }
  608. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  609. {
  610. auto* debug = GetComponent<DebugRenderer>();
  611. DrawDebugGeometry(debug, depthTest);
  612. }
  613. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  614. {
  615. debugRenderer_ = debug;
  616. }
  617. void PhysicsWorld::SetDebugDepthTest(bool enable)
  618. {
  619. debugDepthTest_ = enable;
  620. }
  621. void PhysicsWorld::CleanupGeometryCache()
  622. {
  623. // Remove cached shapes whose only reference is the cache itself
  624. CleanupGeometryCacheImpl(triMeshCache_);
  625. CleanupGeometryCacheImpl(convexCache_);
  626. CleanupGeometryCacheImpl(gimpactTrimeshCache_);
  627. }
  628. void PhysicsWorld::OnSceneSet(Scene* scene)
  629. {
  630. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  631. if (scene)
  632. {
  633. scene_ = GetScene();
  634. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, URHO3D_HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  635. }
  636. else
  637. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  638. }
  639. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  640. {
  641. if (!updateEnabled_)
  642. return;
  643. using namespace SceneSubsystemUpdate;
  644. Update(eventData[P_TIMESTEP].GetFloat());
  645. }
  646. void PhysicsWorld::PreStep(float timeStep)
  647. {
  648. // Send pre-step event
  649. using namespace PhysicsPreStep;
  650. VariantMap& eventData = GetEventDataMap();
  651. eventData[P_WORLD] = this;
  652. eventData[P_TIMESTEP] = timeStep;
  653. SendEvent(E_PHYSICSPRESTEP, eventData);
  654. // Start profiling block for the actual simulation step
  655. #ifdef URHO3D_PROFILING
  656. auto* profiler = GetSubsystem<Profiler>();
  657. if (profiler)
  658. profiler->BeginBlock("StepSimulation");
  659. #endif
  660. }
  661. void PhysicsWorld::PostStep(float timeStep)
  662. {
  663. #ifdef URHO3D_PROFILING
  664. auto* profiler = GetSubsystem<Profiler>();
  665. if (profiler)
  666. profiler->EndBlock();
  667. #endif
  668. SendCollisionEvents();
  669. // Send post-step event
  670. using namespace PhysicsPostStep;
  671. VariantMap& eventData = GetEventDataMap();
  672. eventData[P_WORLD] = this;
  673. eventData[P_TIMESTEP] = timeStep;
  674. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  675. }
  676. void PhysicsWorld::SendCollisionEvents()
  677. {
  678. URHO3D_PROFILE(SendCollisionEvents);
  679. currentCollisions_.Clear();
  680. physicsCollisionData_.Clear();
  681. nodeCollisionData_.Clear();
  682. int numManifolds = collisionDispatcher_->getNumManifolds();
  683. if (numManifolds)
  684. {
  685. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  686. for (int i = 0; i < numManifolds; ++i)
  687. {
  688. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  689. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  690. if (!contactManifold->getNumContacts())
  691. continue;
  692. const btCollisionObject* objectA = contactManifold->getBody0();
  693. const btCollisionObject* objectB = contactManifold->getBody1();
  694. auto* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  695. auto* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  696. // If it's not a rigidbody, maybe a ghost object
  697. if (!bodyA || !bodyB)
  698. continue;
  699. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  700. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  701. continue;
  702. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  703. continue;
  704. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  705. !bodyA->IsActive() && !bodyB->IsActive())
  706. continue;
  707. WeakPtr<RigidBody> bodyWeakA(bodyA);
  708. WeakPtr<RigidBody> bodyWeakB(bodyB);
  709. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  710. // objects during collision event handling
  711. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody>> bodyPair;
  712. if (bodyA < bodyB)
  713. {
  714. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  715. currentCollisions_[bodyPair].manifold_ = contactManifold;
  716. }
  717. else
  718. {
  719. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  720. currentCollisions_[bodyPair].flippedManifold_ = contactManifold;
  721. }
  722. }
  723. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody>>, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  724. i != currentCollisions_.End(); ++i)
  725. {
  726. RigidBody* bodyA = i->first_.first_;
  727. RigidBody* bodyB = i->first_.second_;
  728. if (!bodyA || !bodyB)
  729. continue;
  730. Node* nodeA = bodyA->GetNode();
  731. Node* nodeB = bodyB->GetNode();
  732. WeakPtr<Node> nodeWeakA(nodeA);
  733. WeakPtr<Node> nodeWeakB(nodeB);
  734. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  735. bool newCollision = !previousCollisions_.Contains(i->first_);
  736. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  737. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  738. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  739. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  740. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  741. contacts_.Clear();
  742. // "Pointers not flipped"-manifold, send unmodified normals
  743. btPersistentManifold* contactManifold = i->second_.manifold_;
  744. if (contactManifold)
  745. {
  746. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  747. {
  748. btManifoldPoint& point = contactManifold->getContactPoint(j);
  749. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  750. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  751. contacts_.WriteFloat(point.m_distance1);
  752. contacts_.WriteFloat(point.m_appliedImpulse);
  753. }
  754. }
  755. // "Pointers flipped"-manifold, flip normals also
  756. contactManifold = i->second_.flippedManifold_;
  757. if (contactManifold)
  758. {
  759. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  760. {
  761. btManifoldPoint& point = contactManifold->getContactPoint(j);
  762. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  763. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  764. contacts_.WriteFloat(point.m_distance1);
  765. contacts_.WriteFloat(point.m_appliedImpulse);
  766. }
  767. }
  768. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  769. // Send separate collision start event if collision is new
  770. if (newCollision)
  771. {
  772. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  773. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  774. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  775. continue;
  776. }
  777. // Then send the ongoing collision event
  778. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  779. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  780. continue;
  781. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  782. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  783. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  784. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  785. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  786. if (newCollision)
  787. {
  788. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  789. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  790. continue;
  791. }
  792. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  793. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  794. continue;
  795. // Flip perspective to body B
  796. contacts_.Clear();
  797. contactManifold = i->second_.manifold_;
  798. if (contactManifold)
  799. {
  800. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  801. {
  802. btManifoldPoint& point = contactManifold->getContactPoint(j);
  803. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  804. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  805. contacts_.WriteFloat(point.m_distance1);
  806. contacts_.WriteFloat(point.m_appliedImpulse);
  807. }
  808. }
  809. contactManifold = i->second_.flippedManifold_;
  810. if (contactManifold)
  811. {
  812. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  813. {
  814. btManifoldPoint& point = contactManifold->getContactPoint(j);
  815. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  816. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  817. contacts_.WriteFloat(point.m_distance1);
  818. contacts_.WriteFloat(point.m_appliedImpulse);
  819. }
  820. }
  821. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  822. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  823. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  824. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  825. if (newCollision)
  826. {
  827. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  828. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  829. continue;
  830. }
  831. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  832. }
  833. }
  834. // Send collision end events as applicable
  835. {
  836. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  837. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody>>, ManifoldPair>::Iterator
  838. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  839. {
  840. if (!currentCollisions_.Contains(i->first_))
  841. {
  842. RigidBody* bodyA = i->first_.first_;
  843. RigidBody* bodyB = i->first_.second_;
  844. if (!bodyA || !bodyB)
  845. continue;
  846. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  847. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  848. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  849. continue;
  850. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  851. continue;
  852. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  853. !bodyA->IsActive() && !bodyB->IsActive())
  854. continue;
  855. Node* nodeA = bodyA->GetNode();
  856. Node* nodeB = bodyB->GetNode();
  857. WeakPtr<Node> nodeWeakA(nodeA);
  858. WeakPtr<Node> nodeWeakB(nodeB);
  859. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  860. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  861. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  862. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  863. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  864. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  865. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  866. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  867. continue;
  868. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  869. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  870. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  871. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  872. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  873. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  874. continue;
  875. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  876. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  877. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  878. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  879. }
  880. }
  881. }
  882. previousCollisions_ = currentCollisions_;
  883. }
  884. void RegisterPhysicsLibrary(Context* context)
  885. {
  886. CollisionShape::RegisterObject(context);
  887. RigidBody::RegisterObject(context);
  888. Constraint::RegisterObject(context);
  889. PhysicsWorld::RegisterObject(context);
  890. RaycastVehicle::RegisterObject(context);
  891. }
  892. }