ParticleEmitter2D.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. //
  2. // Copyright (c) 2008-2017 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Graphics/Camera.h"
  25. #include "../Graphics/Material.h"
  26. #include "../Resource/ResourceCache.h"
  27. #include "../Scene/Scene.h"
  28. #include "../Scene/SceneEvents.h"
  29. #include "../Urho2D/ParticleEffect2D.h"
  30. #include "../Urho2D/ParticleEmitter2D.h"
  31. #include "../Urho2D/Renderer2D.h"
  32. #include "../Urho2D/Sprite2D.h"
  33. #include "../Urho2D/Urho2DEvents.h"
  34. #include "../DebugNew.h"
  35. namespace Urho3D
  36. {
  37. extern const char* URHO2D_CATEGORY;
  38. extern const char* blendModeNames[];
  39. ParticleEmitter2D::ParticleEmitter2D(Context* context) :
  40. Drawable2D(context),
  41. blendMode_(BLEND_ADDALPHA),
  42. numParticles_(0),
  43. emissionTime_(0.0f),
  44. emitParticleTime_(0.0f),
  45. boundingBoxMinPoint_(Vector3::ZERO),
  46. boundingBoxMaxPoint_(Vector3::ZERO)
  47. {
  48. sourceBatches_.Resize(1);
  49. sourceBatches_[0].owner_ = this;
  50. }
  51. ParticleEmitter2D::~ParticleEmitter2D()
  52. {
  53. }
  54. void ParticleEmitter2D::RegisterObject(Context* context)
  55. {
  56. context->RegisterFactory<ParticleEmitter2D>(URHO2D_CATEGORY);
  57. URHO3D_ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT);
  58. URHO3D_COPY_BASE_ATTRIBUTES(Drawable2D);
  59. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Particle Effect", GetParticleEffectAttr, SetParticleEffectAttr, ResourceRef,
  60. ResourceRef(ParticleEffect2D::GetTypeStatic()), AM_DEFAULT);
  61. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Sprite ", GetSpriteAttr, SetSpriteAttr, ResourceRef, ResourceRef(Sprite2D::GetTypeStatic()),
  62. AM_DEFAULT);
  63. URHO3D_ENUM_ACCESSOR_ATTRIBUTE("Blend Mode", GetBlendMode, SetBlendMode, BlendMode, blendModeNames, BLEND_ALPHA, AM_DEFAULT);
  64. }
  65. void ParticleEmitter2D::OnSetEnabled()
  66. {
  67. Drawable2D::OnSetEnabled();
  68. Scene* scene = GetScene();
  69. if (scene)
  70. {
  71. if (IsEnabledEffective())
  72. SubscribeToEvent(scene, E_SCENEPOSTUPDATE, URHO3D_HANDLER(ParticleEmitter2D, HandleScenePostUpdate));
  73. else
  74. UnsubscribeFromEvent(scene, E_SCENEPOSTUPDATE);
  75. }
  76. }
  77. void ParticleEmitter2D::SetEffect(ParticleEffect2D* model)
  78. {
  79. if (model == effect_)
  80. return;
  81. effect_ = model;
  82. MarkNetworkUpdate();
  83. if (!effect_)
  84. return;
  85. SetSprite(effect_->GetSprite());
  86. SetBlendMode(effect_->GetBlendMode());
  87. SetMaxParticles((unsigned)effect_->GetMaxParticles());
  88. emitParticleTime_ = 0.0f;
  89. emissionTime_ = effect_->GetDuration();
  90. }
  91. void ParticleEmitter2D::SetSprite(Sprite2D* sprite)
  92. {
  93. if (sprite == sprite_)
  94. return;
  95. sprite_ = sprite;
  96. UpdateMaterial();
  97. MarkNetworkUpdate();
  98. }
  99. void ParticleEmitter2D::SetBlendMode(BlendMode blendMode)
  100. {
  101. if (blendMode == blendMode_)
  102. return;
  103. blendMode_ = blendMode;
  104. UpdateMaterial();
  105. MarkNetworkUpdate();
  106. }
  107. void ParticleEmitter2D::SetMaxParticles(unsigned maxParticles)
  108. {
  109. maxParticles = Max(maxParticles, 1U);
  110. particles_.Resize(maxParticles);
  111. sourceBatches_[0].vertices_.Reserve(maxParticles * 4);
  112. numParticles_ = Min(maxParticles, numParticles_);
  113. }
  114. ParticleEffect2D* ParticleEmitter2D::GetEffect() const
  115. {
  116. return effect_;
  117. }
  118. Sprite2D* ParticleEmitter2D::GetSprite() const
  119. {
  120. return sprite_;
  121. }
  122. void ParticleEmitter2D::SetParticleEffectAttr(const ResourceRef& value)
  123. {
  124. ResourceCache* cache = GetSubsystem<ResourceCache>();
  125. SetEffect(cache->GetResource<ParticleEffect2D>(value.name_));
  126. }
  127. ResourceRef ParticleEmitter2D::GetParticleEffectAttr() const
  128. {
  129. return GetResourceRef(effect_, ParticleEffect2D::GetTypeStatic());
  130. }
  131. void ParticleEmitter2D::SetSpriteAttr(const ResourceRef& value)
  132. {
  133. Sprite2D* sprite = Sprite2D::LoadFromResourceRef(this, value);
  134. if (sprite)
  135. SetSprite(sprite);
  136. }
  137. ResourceRef ParticleEmitter2D::GetSpriteAttr() const
  138. {
  139. return Sprite2D::SaveToResourceRef(sprite_);
  140. }
  141. void ParticleEmitter2D::OnSceneSet(Scene* scene)
  142. {
  143. Drawable2D::OnSceneSet(scene);
  144. if (scene && IsEnabledEffective())
  145. SubscribeToEvent(scene, E_SCENEPOSTUPDATE, URHO3D_HANDLER(ParticleEmitter2D, HandleScenePostUpdate));
  146. else if (!scene)
  147. UnsubscribeFromEvent(E_SCENEPOSTUPDATE);
  148. }
  149. void ParticleEmitter2D::OnWorldBoundingBoxUpdate()
  150. {
  151. boundingBox_.Clear();
  152. boundingBox_.Merge(boundingBoxMinPoint_);
  153. boundingBox_.Merge(boundingBoxMaxPoint_);
  154. worldBoundingBox_ = boundingBox_;
  155. }
  156. void ParticleEmitter2D::OnDrawOrderChanged()
  157. {
  158. sourceBatches_[0].drawOrder_ = GetDrawOrder();
  159. }
  160. void ParticleEmitter2D::UpdateSourceBatches()
  161. {
  162. if (!sourceBatchesDirty_)
  163. return;
  164. Vector<Vertex2D>& vertices = sourceBatches_[0].vertices_;
  165. vertices.Clear();
  166. if (!sprite_)
  167. return;
  168. Rect textureRect;
  169. if (!sprite_->GetTextureRectangle(textureRect))
  170. return;
  171. /*
  172. V1---------V2
  173. | / |
  174. | / |
  175. | / |
  176. | / |
  177. | / |
  178. V0---------V3
  179. */
  180. Vertex2D vertex0;
  181. Vertex2D vertex1;
  182. Vertex2D vertex2;
  183. Vertex2D vertex3;
  184. vertex0.uv_ = textureRect.min_;
  185. vertex1.uv_ = Vector2(textureRect.min_.x_, textureRect.max_.y_);
  186. vertex2.uv_ = textureRect.max_;
  187. vertex3.uv_ = Vector2(textureRect.max_.x_, textureRect.min_.y_);
  188. for (unsigned i = 0; i < numParticles_; ++i)
  189. {
  190. Particle2D& p = particles_[i];
  191. float rotation = -p.rotation_;
  192. float c = Cos(rotation);
  193. float s = Sin(rotation);
  194. float add = (c + s) * p.size_ * 0.5f;
  195. float sub = (c - s) * p.size_ * 0.5f;
  196. vertex0.position_ = Vector3(p.position_.x_ - sub, p.position_.y_ - add, p.position_.z_);
  197. vertex1.position_ = Vector3(p.position_.x_ - add, p.position_.y_ + sub, p.position_.z_);
  198. vertex2.position_ = Vector3(p.position_.x_ + sub, p.position_.y_ + add, p.position_.z_);
  199. vertex3.position_ = Vector3(p.position_.x_ + add, p.position_.y_ - sub, p.position_.z_);
  200. vertex0.color_ = vertex1.color_ = vertex2.color_ = vertex3.color_ = p.color_.ToUInt();
  201. vertices.Push(vertex0);
  202. vertices.Push(vertex1);
  203. vertices.Push(vertex2);
  204. vertices.Push(vertex3);
  205. }
  206. sourceBatchesDirty_ = false;
  207. }
  208. void ParticleEmitter2D::UpdateMaterial()
  209. {
  210. if (sprite_ && renderer_)
  211. sourceBatches_[0].material_ = renderer_->GetMaterial(sprite_->GetTexture(), blendMode_);
  212. else
  213. sourceBatches_[0].material_ = 0;
  214. }
  215. void ParticleEmitter2D::HandleScenePostUpdate(StringHash eventType, VariantMap& eventData)
  216. {
  217. using namespace ScenePostUpdate;
  218. bool hasParticles = numParticles_ > 0;
  219. bool emitting = emissionTime_ > 0.0f;
  220. float timeStep = eventData[P_TIMESTEP].GetFloat();
  221. Update(timeStep);
  222. if (emitting && emissionTime_ == 0.0f)
  223. {
  224. // Make a weak pointer to self to check for destruction during event handling
  225. WeakPtr<ParticleEmitter2D> self(this);
  226. using namespace ParticlesDuration;
  227. VariantMap& eventData = GetEventDataMap();
  228. eventData[P_NODE] = node_;
  229. eventData[P_EFFECT] = effect_;
  230. SendEvent(E_PARTICLESDURATION, eventData); // Emitting particles stopped
  231. if (self.Expired())
  232. return;
  233. }
  234. if (hasParticles && numParticles_ == 0)
  235. {
  236. using namespace ParticlesEnd;
  237. VariantMap& eventData = GetEventDataMap();
  238. eventData[P_NODE] = node_;
  239. eventData[P_EFFECT] = effect_;
  240. SendEvent(E_PARTICLESEND, eventData); // All particles over
  241. }
  242. }
  243. void ParticleEmitter2D::Update(float timeStep)
  244. {
  245. if (!effect_)
  246. return;
  247. Vector3 worldPosition = GetNode()->GetWorldPosition();
  248. float worldScale = GetNode()->GetWorldScale().x_ * PIXEL_SIZE;
  249. boundingBoxMinPoint_ = Vector3(M_INFINITY, M_INFINITY, M_INFINITY);
  250. boundingBoxMaxPoint_ = Vector3(-M_INFINITY, -M_INFINITY, -M_INFINITY);
  251. unsigned particleIndex = 0;
  252. while (particleIndex < numParticles_)
  253. {
  254. Particle2D& particle = particles_[particleIndex];
  255. if (particle.timeToLive_ > 0.0f)
  256. {
  257. UpdateParticle(particle, timeStep, worldPosition, worldScale);
  258. ++particleIndex;
  259. }
  260. else
  261. {
  262. if (particleIndex != numParticles_ - 1)
  263. particles_[particleIndex] = particles_[numParticles_ - 1];
  264. --numParticles_;
  265. }
  266. }
  267. if (emissionTime_ > 0.0f)
  268. {
  269. float worldAngle = GetNode()->GetWorldRotation().RollAngle();
  270. float timeBetweenParticles = effect_->GetParticleLifeSpan() / particles_.Size();
  271. emitParticleTime_ += timeStep;
  272. while (emitParticleTime_ > 0.0f)
  273. {
  274. if (EmitParticle(worldPosition, worldAngle, worldScale))
  275. UpdateParticle(particles_[numParticles_ - 1], emitParticleTime_, worldPosition, worldScale);
  276. emitParticleTime_ -= timeBetweenParticles;
  277. }
  278. if (emissionTime_ > 0.0f)
  279. emissionTime_ = Max(0.0f, emissionTime_ - timeStep);
  280. }
  281. sourceBatchesDirty_ = true;
  282. OnMarkedDirty(node_);
  283. }
  284. bool ParticleEmitter2D::EmitParticle(const Vector3& worldPosition, float worldAngle, float worldScale)
  285. {
  286. if (numParticles_ >= (unsigned)effect_->GetMaxParticles() || numParticles_ >= particles_.Size())
  287. return false;
  288. float lifespan = effect_->GetParticleLifeSpan() + effect_->GetParticleLifespanVariance() * Random(-1.0f, 1.0f);
  289. if (lifespan <= 0.0f)
  290. return false;
  291. float invLifespan = 1.0f / lifespan;
  292. Particle2D& particle = particles_[numParticles_++];
  293. particle.timeToLive_ = lifespan;
  294. particle.position_.x_ = worldPosition.x_ + worldScale * effect_->GetSourcePositionVariance().x_ * Random(-1.0f, 1.0f);
  295. particle.position_.y_ = worldPosition.y_ + worldScale * effect_->GetSourcePositionVariance().y_ * Random(-1.0f, 1.0f);
  296. particle.position_.z_ = worldPosition.z_;
  297. particle.startPos_.x_ = worldPosition.x_;
  298. particle.startPos_.y_ = worldPosition.y_;
  299. float angle = worldAngle + effect_->GetAngle() + effect_->GetAngleVariance() * Random(-1.0f, 1.0f);
  300. float speed = worldScale * (effect_->GetSpeed() + effect_->GetSpeedVariance() * Random(-1.0f, 1.0f));
  301. particle.velocity_.x_ = speed * Cos(angle);
  302. particle.velocity_.y_ = speed * Sin(angle);
  303. float maxRadius = Max(0.0f, worldScale * (effect_->GetMaxRadius() + effect_->GetMaxRadiusVariance() * Random(-1.0f, 1.0f)));
  304. float minRadius = Max(0.0f, worldScale * (effect_->GetMinRadius() + effect_->GetMinRadiusVariance() * Random(-1.0f, 1.0f)));
  305. particle.emitRadius_ = maxRadius;
  306. particle.emitRadiusDelta_ = (minRadius - maxRadius) * invLifespan;
  307. particle.emitRotation_ = worldAngle + effect_->GetAngle() + effect_->GetAngleVariance() * Random(-1.0f, 1.0f);
  308. particle.emitRotationDelta_ = effect_->GetRotatePerSecond() + effect_->GetRotatePerSecondVariance() * Random(-1.0f, 1.0f);
  309. particle.radialAcceleration_ =
  310. worldScale * (effect_->GetRadialAcceleration() + effect_->GetRadialAccelVariance() * Random(-1.0f, 1.0f));
  311. particle.tangentialAcceleration_ =
  312. worldScale * (effect_->GetTangentialAcceleration() + effect_->GetTangentialAccelVariance() * Random(-1.0f, 1.0f));
  313. float startSize =
  314. worldScale * Max(0.1f, effect_->GetStartParticleSize() + effect_->GetStartParticleSizeVariance() * Random(-1.0f, 1.0f));
  315. float finishSize =
  316. worldScale * Max(0.1f, effect_->GetFinishParticleSize() + effect_->GetFinishParticleSizeVariance() * Random(-1.0f, 1.0f));
  317. particle.size_ = startSize;
  318. particle.sizeDelta_ = (finishSize - startSize) * invLifespan;
  319. particle.color_ = effect_->GetStartColor() + effect_->GetStartColorVariance() * Random(-1.0f, 1.0f);
  320. Color endColor = effect_->GetFinishColor() + effect_->GetFinishColorVariance() * Random(-1.0f, 1.0f);
  321. particle.colorDelta_ = (endColor - particle.color_) * invLifespan;
  322. particle.rotation_ = worldAngle + effect_->GetRotationStart() + effect_->GetRotationStartVariance() * Random(-1.0f, 1.0f);
  323. float endRotation = worldAngle + effect_->GetRotationEnd() + effect_->GetRotationEndVariance() * Random(-1.0f, 1.0f);
  324. particle.rotationDelta_ = (endRotation - particle.rotation_) * invLifespan;
  325. return true;
  326. }
  327. void ParticleEmitter2D::UpdateParticle(Particle2D& particle, float timeStep, const Vector3& worldPosition, float worldScale)
  328. {
  329. if (timeStep > particle.timeToLive_)
  330. timeStep = particle.timeToLive_;
  331. particle.timeToLive_ -= timeStep;
  332. if (effect_->GetEmitterType() == EMITTER_TYPE_RADIAL)
  333. {
  334. particle.emitRotation_ += particle.emitRotationDelta_ * timeStep;
  335. particle.emitRadius_ += particle.emitRadiusDelta_ * timeStep;
  336. particle.position_.x_ = particle.startPos_.x_ - Cos(particle.emitRotation_) * particle.emitRadius_;
  337. particle.position_.y_ = particle.startPos_.y_ + Sin(particle.emitRotation_) * particle.emitRadius_;
  338. }
  339. else
  340. {
  341. float distanceX = particle.position_.x_ - particle.startPos_.x_;
  342. float distanceY = particle.position_.y_ - particle.startPos_.y_;
  343. float distanceScalar = Vector2(distanceX, distanceY).Length();
  344. if (distanceScalar < 0.0001f)
  345. distanceScalar = 0.0001f;
  346. float radialX = distanceX / distanceScalar;
  347. float radialY = distanceY / distanceScalar;
  348. float tangentialX = radialX;
  349. float tangentialY = radialY;
  350. radialX *= particle.radialAcceleration_;
  351. radialY *= particle.radialAcceleration_;
  352. float newY = tangentialX;
  353. tangentialX = -tangentialY * particle.tangentialAcceleration_;
  354. tangentialY = newY * particle.tangentialAcceleration_;
  355. particle.velocity_.x_ += (effect_->GetGravity().x_ * worldScale + radialX - tangentialX) * timeStep;
  356. particle.velocity_.y_ -= (effect_->GetGravity().y_ * worldScale - radialY + tangentialY) * timeStep;
  357. particle.position_.x_ += particle.velocity_.x_ * timeStep;
  358. particle.position_.y_ += particle.velocity_.y_ * timeStep;
  359. }
  360. particle.size_ += particle.sizeDelta_ * timeStep;
  361. particle.rotation_ += particle.rotationDelta_ * timeStep;
  362. particle.color_ += particle.colorDelta_ * timeStep;
  363. float halfSize = particle.size_ * 0.5f;
  364. boundingBoxMinPoint_.x_ = Min(boundingBoxMinPoint_.x_, particle.position_.x_ - halfSize);
  365. boundingBoxMinPoint_.y_ = Min(boundingBoxMinPoint_.y_, particle.position_.y_ - halfSize);
  366. boundingBoxMinPoint_.z_ = Min(boundingBoxMinPoint_.z_, particle.position_.z_);
  367. boundingBoxMaxPoint_.x_ = Max(boundingBoxMaxPoint_.x_, particle.position_.x_ + halfSize);
  368. boundingBoxMaxPoint_.y_ = Max(boundingBoxMaxPoint_.y_, particle.position_.y_ + halfSize);
  369. boundingBoxMaxPoint_.z_ = Max(boundingBoxMaxPoint_.z_, particle.position_.z_);
  370. }
  371. }