Ray.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. //
  2. // Copyright (c) 2008-2020 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Math/BoundingBox.h"
  24. #include "../Math/Frustum.h"
  25. #include "../Math/Ray.h"
  26. #include "../DebugNew.h"
  27. namespace Urho3D
  28. {
  29. Vector3 Ray::ClosestPoint(const Ray& ray) const
  30. {
  31. // Algorithm based on http://paulbourke.net/geometry/lineline3d/
  32. Vector3 p13 = origin_ - ray.origin_;
  33. Vector3 p43 = ray.direction_;
  34. Vector3 p21 = direction_;
  35. float d1343 = p13.DotProduct(p43);
  36. float d4321 = p43.DotProduct(p21);
  37. float d1321 = p13.DotProduct(p21);
  38. float d4343 = p43.DotProduct(p43);
  39. float d2121 = p21.DotProduct(p21);
  40. float d = d2121 * d4343 - d4321 * d4321;
  41. if (Abs(d) < M_EPSILON)
  42. return origin_;
  43. float n = d1343 * d4321 - d1321 * d4343;
  44. float a = n / d;
  45. return origin_ + a * direction_;
  46. }
  47. float Ray::HitDistance(const Plane& plane) const
  48. {
  49. float d = plane.normal_.DotProduct(direction_);
  50. if (Abs(d) >= M_EPSILON)
  51. {
  52. float t = -(plane.normal_.DotProduct(origin_) + plane.d_) / d;
  53. if (t >= 0.0f)
  54. return t;
  55. else
  56. return M_INFINITY;
  57. }
  58. else
  59. return M_INFINITY;
  60. }
  61. float Ray::HitDistance(const BoundingBox& box) const
  62. {
  63. // If undefined, no hit (infinite distance)
  64. if (!box.Defined())
  65. return M_INFINITY;
  66. // Check for ray origin being inside the box
  67. if (box.IsInside(origin_))
  68. return 0.0f;
  69. float dist = M_INFINITY;
  70. // Check for intersecting in the X-direction
  71. if (origin_.x_ < box.min_.x_ && direction_.x_ > 0.0f)
  72. {
  73. float x = (box.min_.x_ - origin_.x_) / direction_.x_;
  74. if (x < dist)
  75. {
  76. Vector3 point = origin_ + x * direction_;
  77. if (point.y_ >= box.min_.y_ && point.y_ <= box.max_.y_ && point.z_ >= box.min_.z_ && point.z_ <= box.max_.z_)
  78. dist = x;
  79. }
  80. }
  81. if (origin_.x_ > box.max_.x_ && direction_.x_ < 0.0f)
  82. {
  83. float x = (box.max_.x_ - origin_.x_) / direction_.x_;
  84. if (x < dist)
  85. {
  86. Vector3 point = origin_ + x * direction_;
  87. if (point.y_ >= box.min_.y_ && point.y_ <= box.max_.y_ && point.z_ >= box.min_.z_ && point.z_ <= box.max_.z_)
  88. dist = x;
  89. }
  90. }
  91. // Check for intersecting in the Y-direction
  92. if (origin_.y_ < box.min_.y_ && direction_.y_ > 0.0f)
  93. {
  94. float x = (box.min_.y_ - origin_.y_) / direction_.y_;
  95. if (x < dist)
  96. {
  97. Vector3 point = origin_ + x * direction_;
  98. if (point.x_ >= box.min_.x_ && point.x_ <= box.max_.x_ && point.z_ >= box.min_.z_ && point.z_ <= box.max_.z_)
  99. dist = x;
  100. }
  101. }
  102. if (origin_.y_ > box.max_.y_ && direction_.y_ < 0.0f)
  103. {
  104. float x = (box.max_.y_ - origin_.y_) / direction_.y_;
  105. if (x < dist)
  106. {
  107. Vector3 point = origin_ + x * direction_;
  108. if (point.x_ >= box.min_.x_ && point.x_ <= box.max_.x_ && point.z_ >= box.min_.z_ && point.z_ <= box.max_.z_)
  109. dist = x;
  110. }
  111. }
  112. // Check for intersecting in the Z-direction
  113. if (origin_.z_ < box.min_.z_ && direction_.z_ > 0.0f)
  114. {
  115. float x = (box.min_.z_ - origin_.z_) / direction_.z_;
  116. if (x < dist)
  117. {
  118. Vector3 point = origin_ + x * direction_;
  119. if (point.x_ >= box.min_.x_ && point.x_ <= box.max_.x_ && point.y_ >= box.min_.y_ && point.y_ <= box.max_.y_)
  120. dist = x;
  121. }
  122. }
  123. if (origin_.z_ > box.max_.z_ && direction_.z_ < 0.0f)
  124. {
  125. float x = (box.max_.z_ - origin_.z_) / direction_.z_;
  126. if (x < dist)
  127. {
  128. Vector3 point = origin_ + x * direction_;
  129. if (point.x_ >= box.min_.x_ && point.x_ <= box.max_.x_ && point.y_ >= box.min_.y_ && point.y_ <= box.max_.y_)
  130. dist = x;
  131. }
  132. }
  133. return dist;
  134. }
  135. float Ray::HitDistance(const Frustum& frustum, bool solidInside) const
  136. {
  137. float maxOutside = 0.0f;
  138. float minInside = M_INFINITY;
  139. bool allInside = true;
  140. for (const auto& plane : frustum.planes_)
  141. {
  142. float distance = HitDistance(plane);
  143. if (plane.Distance(origin_) < 0.0f)
  144. {
  145. maxOutside = Max(maxOutside, distance);
  146. allInside = false;
  147. }
  148. else
  149. minInside = Min(minInside, distance);
  150. }
  151. if (allInside)
  152. return solidInside ? 0.0f : minInside;
  153. else if (maxOutside <= minInside)
  154. return maxOutside;
  155. else
  156. return M_INFINITY;
  157. }
  158. float Ray::HitDistance(const Sphere& sphere) const
  159. {
  160. Vector3 centeredOrigin = origin_ - sphere.center_;
  161. float squaredRadius = sphere.radius_ * sphere.radius_;
  162. // Check if ray originates inside the sphere
  163. if (centeredOrigin.LengthSquared() <= squaredRadius)
  164. return 0.0f;
  165. // Calculate intersection by quadratic equation
  166. float a = direction_.DotProduct(direction_);
  167. float b = 2.0f * centeredOrigin.DotProduct(direction_);
  168. float c = centeredOrigin.DotProduct(centeredOrigin) - squaredRadius;
  169. float d = b * b - 4.0f * a * c;
  170. // No solution
  171. if (d < 0.0f)
  172. return M_INFINITY;
  173. // Get the nearer solution
  174. float dSqrt = sqrtf(d);
  175. float dist = (-b - dSqrt) / (2.0f * a);
  176. if (dist >= 0.0f)
  177. return dist;
  178. else
  179. return (-b + dSqrt) / (2.0f * a);
  180. }
  181. float Ray::HitDistance(const Vector3& v0, const Vector3& v1, const Vector3& v2, Vector3* outNormal, Vector3* outBary) const
  182. {
  183. // Based on Fast, Minimum Storage Ray/Triangle Intersection by Möller & Trumbore
  184. // http://www.graphics.cornell.edu/pubs/1997/MT97.pdf
  185. // Calculate edge vectors
  186. Vector3 edge1(v1 - v0);
  187. Vector3 edge2(v2 - v0);
  188. // Calculate determinant & check backfacing
  189. Vector3 p(direction_.CrossProduct(edge2));
  190. float det = edge1.DotProduct(p);
  191. if (det >= M_EPSILON)
  192. {
  193. // Calculate u & v parameters and test
  194. Vector3 t(origin_ - v0);
  195. float u = t.DotProduct(p);
  196. if (u >= 0.0f && u <= det)
  197. {
  198. Vector3 q(t.CrossProduct(edge1));
  199. float v = direction_.DotProduct(q);
  200. if (v >= 0.0f && u + v <= det)
  201. {
  202. float distance = edge2.DotProduct(q) / det;
  203. // Discard hits behind the ray
  204. if (distance >= 0.0f)
  205. {
  206. // There is an intersection, so calculate distance & optional normal
  207. if (outNormal)
  208. *outNormal = edge1.CrossProduct(edge2);
  209. if (outBary)
  210. *outBary = Vector3(1 - (u / det) - (v / det), u / det, v / det);
  211. return distance;
  212. }
  213. }
  214. }
  215. }
  216. return M_INFINITY;
  217. }
  218. float Ray::HitDistance(const void* vertexData, unsigned vertexStride, unsigned vertexStart, unsigned vertexCount,
  219. Vector3* outNormal, Vector2* outUV, unsigned uvOffset) const
  220. {
  221. float nearest = M_INFINITY;
  222. const unsigned char* vertices = ((const unsigned char*)vertexData) + vertexStart * vertexStride;
  223. unsigned index = 0, nearestIdx = M_MAX_UNSIGNED;
  224. Vector3 barycentric;
  225. Vector3* outBary = outUV ? &barycentric : nullptr;
  226. while (index + 2 < vertexCount)
  227. {
  228. const Vector3& v0 = *((const Vector3*)(&vertices[index * vertexStride]));
  229. const Vector3& v1 = *((const Vector3*)(&vertices[(index + 1) * vertexStride]));
  230. const Vector3& v2 = *((const Vector3*)(&vertices[(index + 2) * vertexStride]));
  231. float distance = HitDistance(v0, v1, v2, outNormal, outBary);
  232. if (distance < nearest)
  233. {
  234. nearestIdx = index;
  235. nearest = distance;
  236. }
  237. index += 3;
  238. }
  239. if (outUV)
  240. {
  241. if (nearestIdx == M_MAX_UNSIGNED)
  242. *outUV = Vector2::ZERO;
  243. else
  244. {
  245. // Interpolate the UV coordinate using barycentric coordinate
  246. const Vector2& uv0 = *((const Vector2*)(&vertices[uvOffset + nearestIdx * vertexStride]));
  247. const Vector2& uv1 = *((const Vector2*)(&vertices[uvOffset + (nearestIdx + 1) * vertexStride]));
  248. const Vector2& uv2 = *((const Vector2*)(&vertices[uvOffset + (nearestIdx + 2) * vertexStride]));
  249. *outUV = Vector2(uv0.x_ * barycentric.x_ + uv1.x_ * barycentric.y_ + uv2.x_ * barycentric.z_,
  250. uv0.y_ * barycentric.x_ + uv1.y_ * barycentric.y_ + uv2.y_ * barycentric.z_);
  251. }
  252. }
  253. return nearest;
  254. }
  255. float Ray::HitDistance(const void* vertexData, unsigned vertexStride, const void* indexData, unsigned indexSize,
  256. unsigned indexStart, unsigned indexCount, Vector3* outNormal, Vector2* outUV, unsigned uvOffset) const
  257. {
  258. float nearest = M_INFINITY;
  259. const auto* vertices = (const unsigned char*)vertexData;
  260. Vector3 barycentric;
  261. Vector3* outBary = outUV ? &barycentric : nullptr;
  262. // 16-bit indices
  263. if (indexSize == sizeof(unsigned short))
  264. {
  265. const unsigned short* indices = ((const unsigned short*)indexData) + indexStart;
  266. const unsigned short* indicesEnd = indices + indexCount;
  267. const unsigned short* nearestIndices = nullptr;
  268. while (indices < indicesEnd)
  269. {
  270. const Vector3& v0 = *((const Vector3*)(&vertices[indices[0] * vertexStride]));
  271. const Vector3& v1 = *((const Vector3*)(&vertices[indices[1] * vertexStride]));
  272. const Vector3& v2 = *((const Vector3*)(&vertices[indices[2] * vertexStride]));
  273. float distance = HitDistance(v0, v1, v2, outNormal, outBary);
  274. if (distance < nearest)
  275. {
  276. nearestIndices = indices;
  277. nearest = distance;
  278. }
  279. indices += 3;
  280. }
  281. if (outUV)
  282. {
  283. if (nearestIndices == nullptr)
  284. *outUV = Vector2::ZERO;
  285. else
  286. {
  287. // Interpolate the UV coordinate using barycentric coordinate
  288. const Vector2& uv0 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[0] * vertexStride]));
  289. const Vector2& uv1 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[1] * vertexStride]));
  290. const Vector2& uv2 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[2] * vertexStride]));
  291. *outUV = Vector2(uv0.x_ * barycentric.x_ + uv1.x_ * barycentric.y_ + uv2.x_ * barycentric.z_,
  292. uv0.y_ * barycentric.x_ + uv1.y_ * barycentric.y_ + uv2.y_ * barycentric.z_);
  293. }
  294. }
  295. }
  296. // 32-bit indices
  297. else
  298. {
  299. const unsigned* indices = ((const unsigned*)indexData) + indexStart;
  300. const unsigned* indicesEnd = indices + indexCount;
  301. const unsigned* nearestIndices = nullptr;
  302. while (indices < indicesEnd)
  303. {
  304. const Vector3& v0 = *((const Vector3*)(&vertices[indices[0] * vertexStride]));
  305. const Vector3& v1 = *((const Vector3*)(&vertices[indices[1] * vertexStride]));
  306. const Vector3& v2 = *((const Vector3*)(&vertices[indices[2] * vertexStride]));
  307. float distance = HitDistance(v0, v1, v2, outNormal, outBary);
  308. if (distance < nearest)
  309. {
  310. nearestIndices = indices;
  311. nearest = distance;
  312. }
  313. indices += 3;
  314. }
  315. if (outUV)
  316. {
  317. if (nearestIndices == nullptr)
  318. *outUV = Vector2::ZERO;
  319. else
  320. {
  321. // Interpolate the UV coordinate using barycentric coordinate
  322. const Vector2& uv0 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[0] * vertexStride]));
  323. const Vector2& uv1 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[1] * vertexStride]));
  324. const Vector2& uv2 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[2] * vertexStride]));
  325. *outUV = Vector2(uv0.x_ * barycentric.x_ + uv1.x_ * barycentric.y_ + uv2.x_ * barycentric.z_,
  326. uv0.y_ * barycentric.x_ + uv1.y_ * barycentric.y_ + uv2.y_ * barycentric.z_);
  327. }
  328. }
  329. }
  330. return nearest;
  331. }
  332. bool Ray::InsideGeometry(const void* vertexData, unsigned vertexSize, unsigned vertexStart, unsigned vertexCount) const
  333. {
  334. float currentFrontFace = M_INFINITY;
  335. float currentBackFace = M_INFINITY;
  336. const unsigned char* vertices = ((const unsigned char*)vertexData) + vertexStart * vertexSize;
  337. unsigned index = 0;
  338. while (index + 2 < vertexCount)
  339. {
  340. const Vector3& v0 = *((const Vector3*)(&vertices[index * vertexSize]));
  341. const Vector3& v1 = *((const Vector3*)(&vertices[(index + 1) * vertexSize]));
  342. const Vector3& v2 = *((const Vector3*)(&vertices[(index + 2) * vertexSize]));
  343. float frontFaceDistance = HitDistance(v0, v1, v2);
  344. float backFaceDistance = HitDistance(v2, v1, v0);
  345. currentFrontFace = Min(frontFaceDistance > 0.0f ? frontFaceDistance : M_INFINITY, currentFrontFace);
  346. // A backwards face is just a regular one, with the vertices in the opposite order. This essentially checks backfaces by
  347. // checking reversed frontfaces
  348. currentBackFace = Min(backFaceDistance > 0.0f ? backFaceDistance : M_INFINITY, currentBackFace);
  349. index += 3;
  350. }
  351. // If the closest face is a backface, that means that the ray originates from the inside of the geometry
  352. // NOTE: there may be cases where both are equal, as in, no collision to either. This is prevented in the most likely case
  353. // (ray doesn't hit either) by this conditional
  354. if (currentFrontFace != M_INFINITY || currentBackFace != M_INFINITY)
  355. return currentBackFace < currentFrontFace;
  356. // It is still possible for two triangles to be equally distant from the triangle, however, this is extremely unlikely.
  357. // As such, it is safe to assume they are not
  358. return false;
  359. }
  360. bool Ray::InsideGeometry(const void* vertexData, unsigned vertexSize, const void* indexData, unsigned indexSize,
  361. unsigned indexStart, unsigned indexCount) const
  362. {
  363. float currentFrontFace = M_INFINITY;
  364. float currentBackFace = M_INFINITY;
  365. const auto* vertices = (const unsigned char*)vertexData;
  366. // 16-bit indices
  367. if (indexSize == sizeof(unsigned short))
  368. {
  369. const unsigned short* indices = ((const unsigned short*)indexData) + indexStart;
  370. const unsigned short* indicesEnd = indices + indexCount;
  371. while (indices < indicesEnd)
  372. {
  373. const Vector3& v0 = *((const Vector3*)(&vertices[indices[0] * vertexSize]));
  374. const Vector3& v1 = *((const Vector3*)(&vertices[indices[1] * vertexSize]));
  375. const Vector3& v2 = *((const Vector3*)(&vertices[indices[2] * vertexSize]));
  376. float frontFaceDistance = HitDistance(v0, v1, v2);
  377. float backFaceDistance = HitDistance(v2, v1, v0);
  378. currentFrontFace = Min(frontFaceDistance > 0.0f ? frontFaceDistance : M_INFINITY, currentFrontFace);
  379. // A backwards face is just a regular one, with the vertices in the opposite order. This essentially checks backfaces by
  380. // checking reversed frontfaces
  381. currentBackFace = Min(backFaceDistance > 0.0f ? backFaceDistance : M_INFINITY, currentBackFace);
  382. indices += 3;
  383. }
  384. }
  385. // 32-bit indices
  386. else
  387. {
  388. const unsigned* indices = ((const unsigned*)indexData) + indexStart;
  389. const unsigned* indicesEnd = indices + indexCount;
  390. while (indices < indicesEnd)
  391. {
  392. const Vector3& v0 = *((const Vector3*)(&vertices[indices[0] * vertexSize]));
  393. const Vector3& v1 = *((const Vector3*)(&vertices[indices[1] * vertexSize]));
  394. const Vector3& v2 = *((const Vector3*)(&vertices[indices[2] * vertexSize]));
  395. float frontFaceDistance = HitDistance(v0, v1, v2);
  396. float backFaceDistance = HitDistance(v2, v1, v0);
  397. currentFrontFace = Min(frontFaceDistance > 0.0f ? frontFaceDistance : M_INFINITY, currentFrontFace);
  398. // A backwards face is just a regular one, with the vertices in the opposite order. This essentially checks backfaces by
  399. // checking reversed frontfaces
  400. currentBackFace = Min(backFaceDistance > 0.0f ? backFaceDistance : M_INFINITY, currentBackFace);
  401. indices += 3;
  402. }
  403. }
  404. // If the closest face is a backface, that means that the ray originates from the inside of the geometry
  405. // NOTE: there may be cases where both are equal, as in, no collision to either. This is prevented in the most likely case
  406. // (ray doesn't hit either) by this conditional
  407. if (currentFrontFace != M_INFINITY || currentBackFace != M_INFINITY)
  408. return currentBackFace < currentFrontFace;
  409. // It is still possible for two triangles to be equally distant from the triangle, however, this is extremely unlikely.
  410. // As such, it is safe to assume they are not
  411. return false;
  412. }
  413. Ray Ray::Transformed(const Matrix3x4& transform) const
  414. {
  415. Ray ret;
  416. ret.origin_ = transform * origin_;
  417. ret.direction_ = transform * Vector4(direction_, 0.0f);
  418. return ret;
  419. }
  420. }