|
@@ -0,0 +1,578 @@
|
|
|
|
+//---------------------------------------------------------------------------------------------------------------------
|
|
|
|
+// TriangleTest.cs
|
|
|
|
+//
|
|
|
|
+// Microsoft XNA Community Game Platform
|
|
|
|
+// Copyright (C) Microsoft Corporation. All rights reserved.
|
|
|
|
+//---------------------------------------------------------------------------------------------------------------------
|
|
|
|
+
|
|
|
|
+using System;
|
|
|
|
+using Microsoft.Xna.Framework;
|
|
|
|
+
|
|
|
|
+namespace CollisionSample
|
|
|
|
+{
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Represents a simple triangle by the vertices at each corner.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public struct Triangle
|
|
|
|
+ {
|
|
|
|
+ public Vector3 V0;
|
|
|
|
+ public Vector3 V1;
|
|
|
|
+ public Vector3 V2;
|
|
|
|
+
|
|
|
|
+ public Triangle(Vector3 v0, Vector3 v1, Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ V0 = v0;
|
|
|
|
+ V1 = v1;
|
|
|
|
+ V2 = v2;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Triangle-based collision tests
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static class TriangleTest
|
|
|
|
+ {
|
|
|
|
+ const float EPSILON = 1e-20F;
|
|
|
|
+
|
|
|
|
+ #region Triangle-BoundingBox
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Returns true if the given box intersects the triangle (v0,v1,v2).
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static bool Intersects(ref BoundingBox box, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ Vector3 boxCenter = (box.Max + box.Min) * 0.5f;
|
|
|
|
+ Vector3 boxHalfExtent = (box.Max - box.Min) * 0.5f;
|
|
|
|
+
|
|
|
|
+ // Transform the triangle into the local space with the box center at the origin
|
|
|
|
+ Triangle localTri = new Triangle();
|
|
|
|
+ Vector3.Subtract(ref v0, ref boxCenter, out localTri.V0);
|
|
|
|
+ Vector3.Subtract(ref v1, ref boxCenter, out localTri.V1);
|
|
|
|
+ Vector3.Subtract(ref v2, ref boxCenter, out localTri.V2);
|
|
|
|
+
|
|
|
|
+ return OriginBoxContains(ref boxHalfExtent, ref localTri) != ContainmentType.Disjoint;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Tests whether the given box contains, intersects, or is disjoint from the triangle (v0,v1,v2).
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ContainmentType Contains(ref BoundingBox box, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ Vector3 boxCenter = (box.Max + box.Min) * 0.5f;
|
|
|
|
+ Vector3 boxHalfExtent = (box.Max - box.Min) * 0.5f;
|
|
|
|
+
|
|
|
|
+ // Transform the triangle into the local space with the box center at the origin
|
|
|
|
+ Triangle localTri;
|
|
|
|
+ Vector3.Subtract(ref v0, ref boxCenter, out localTri.V0);
|
|
|
|
+ Vector3.Subtract(ref v1, ref boxCenter, out localTri.V1);
|
|
|
|
+ Vector3.Subtract(ref v2, ref boxCenter, out localTri.V2);
|
|
|
|
+
|
|
|
|
+ return OriginBoxContains(ref boxHalfExtent, ref localTri);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Tests whether the given box contains, intersects, or is disjoint from the given triangle.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ContainmentType Contains(ref BoundingBox box, ref Triangle triangle)
|
|
|
|
+ {
|
|
|
|
+ return Contains(ref box, ref triangle.V0, ref triangle.V1, ref triangle.V2);
|
|
|
|
+ }
|
|
|
|
+ #endregion
|
|
|
|
+
|
|
|
|
+ #region Triangle-BoundingOrientedBox
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Returns true if the given BoundingOrientedBox intersects the triangle (v0,v1,v2)
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static bool Intersects(ref BoundingOrientedBox obox, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ // Transform the triangle into the local space of the box, so we can use a
|
|
|
|
+ // faster axis-aligned box test.
|
|
|
|
+ // Note than when transforming more than one point, using an intermediate matrix
|
|
|
|
+ // is faster than doing multiple quaternion transforms directly.
|
|
|
|
+ Quaternion qinv;
|
|
|
|
+ Quaternion.Conjugate(ref obox.Orientation, out qinv);
|
|
|
|
+
|
|
|
|
+ Matrix minv = Matrix.CreateFromQuaternion(qinv);
|
|
|
|
+ Triangle localTri = new Triangle();
|
|
|
|
+ localTri.V0 = Vector3.TransformNormal(v0 - obox.Center, minv);
|
|
|
|
+ localTri.V1 = Vector3.TransformNormal(v1 - obox.Center, minv);
|
|
|
|
+ localTri.V2 = Vector3.TransformNormal(v2 - obox.Center, minv);
|
|
|
|
+
|
|
|
|
+ return OriginBoxContains(ref obox.HalfExtent, ref localTri) != ContainmentType.Disjoint;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Determines whether the given BoundingOrientedBox contains/intersects/is disjoint from the triangle
|
|
|
|
+ /// (v0,v1,v2)
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ContainmentType Contains(ref BoundingOrientedBox obox, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ // Transform the triangle into the local space of the box, so we can use a
|
|
|
|
+ // faster axis-aligned box test.
|
|
|
|
+ // Note than when transforming more than one point, using an intermediate matrix
|
|
|
|
+ // is faster than doing multiple quaternion transforms directly.
|
|
|
|
+ Quaternion qinv;
|
|
|
|
+ Quaternion.Conjugate(ref obox.Orientation, out qinv);
|
|
|
|
+
|
|
|
|
+ Matrix minv;
|
|
|
|
+ Matrix.CreateFromQuaternion(ref qinv, out minv);
|
|
|
|
+
|
|
|
|
+ Triangle localTri = new Triangle();
|
|
|
|
+ localTri.V0 = Vector3.TransformNormal(v0 - obox.Center, minv);
|
|
|
|
+ localTri.V1 = Vector3.TransformNormal(v1 - obox.Center, minv);
|
|
|
|
+ localTri.V2 = Vector3.TransformNormal(v2 - obox.Center, minv);
|
|
|
|
+
|
|
|
|
+ return OriginBoxContains(ref obox.HalfExtent, ref localTri);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Determines whether the given BoundingOrientedBox contains/intersects/is disjoint from the
|
|
|
|
+ /// given triangle.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ContainmentType Contains(ref BoundingOrientedBox obox, ref Triangle triangle)
|
|
|
|
+ {
|
|
|
|
+ return Contains(ref obox, ref triangle.V0, ref triangle.V1, ref triangle.V2);
|
|
|
|
+ }
|
|
|
|
+ #endregion
|
|
|
|
+
|
|
|
|
+ #region Triangle-Sphere
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Returns true if the given sphere intersects the triangle (v0,v1,v2).
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static bool Intersects(ref BoundingSphere sphere, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ Vector3 p = NearestPointOnTriangle(ref sphere.Center, ref v0, ref v1, ref v2);
|
|
|
|
+ return Vector3.DistanceSquared(sphere.Center, p) < sphere.Radius * sphere.Radius;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Returns true if the given sphere intersects the given triangle.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static bool Intersects(ref BoundingSphere sphere, ref Triangle t)
|
|
|
|
+ {
|
|
|
|
+ Vector3 p = NearestPointOnTriangle(ref sphere.Center, ref t.V0, ref t.V1, ref t.V2);
|
|
|
|
+ return Vector3.DistanceSquared(sphere.Center, p) < sphere.Radius * sphere.Radius;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Determines whether the given sphere contains/intersects/is disjoint from the triangle
|
|
|
|
+ /// (v0,v1,v2)
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ContainmentType Contains(ref BoundingSphere sphere, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ float r2 = sphere.Radius * sphere.Radius;
|
|
|
|
+ if (Vector3.DistanceSquared(v0, sphere.Center) <= r2 &&
|
|
|
|
+ Vector3.DistanceSquared(v1, sphere.Center) <= r2 &&
|
|
|
|
+ Vector3.DistanceSquared(v2, sphere.Center) <= r2)
|
|
|
|
+ return ContainmentType.Contains;
|
|
|
|
+
|
|
|
|
+ return Intersects(ref sphere, ref v0, ref v1, ref v2)
|
|
|
|
+ ? ContainmentType.Intersects : ContainmentType.Disjoint;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Determines whether the given sphere contains/intersects/is disjoint from the
|
|
|
|
+ /// given triangle.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ContainmentType Contains(ref BoundingSphere sphere, ref Triangle triangle)
|
|
|
|
+ {
|
|
|
|
+ return Contains(ref sphere, ref triangle.V0, ref triangle.V1, ref triangle.V2);
|
|
|
|
+ }
|
|
|
|
+ #endregion
|
|
|
|
+
|
|
|
|
+ #region Triangle-Frustum
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Returns true if the given frustum intersects the triangle (v0,v1,v2).
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static bool Intersects(BoundingFrustum frustum, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ // A BoundingFrustum is defined by a matrix that projects the frustum shape
|
|
|
|
+ // into the box from (-1,-1,0) to (1,1,1). We will project the triangle
|
|
|
|
+ // through this matrix, and then do a simpler box-triangle test.
|
|
|
|
+ Matrix m = frustum.Matrix;
|
|
|
|
+ Triangle localTri;
|
|
|
|
+ GeomUtil.PerspectiveTransform(ref v0, ref m, out localTri.V0);
|
|
|
|
+ GeomUtil.PerspectiveTransform(ref v1, ref m, out localTri.V1);
|
|
|
|
+ GeomUtil.PerspectiveTransform(ref v2, ref m, out localTri.V2);
|
|
|
|
+
|
|
|
|
+ BoundingBox box;
|
|
|
|
+ box.Min = new Vector3(-1, -1, 0);
|
|
|
|
+ box.Max = new Vector3(1, 1, 1);
|
|
|
|
+
|
|
|
|
+ return Intersects(ref box, ref localTri.V0, ref localTri.V1, ref localTri.V2);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Determines whether the given frustum contains/intersects/is disjoint from the triangle
|
|
|
|
+ /// (v0,v1,v2)
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ContainmentType Contains(BoundingFrustum frustum, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ // A BoundingFrustum is defined by a matrix that projects the frustum shape
|
|
|
|
+ // into the box from (-1,-1,0) to (1,1,1). We will project the triangle
|
|
|
|
+ // through this matrix, and then do a simpler box-triangle test.
|
|
|
|
+ Matrix m = frustum.Matrix;
|
|
|
|
+ Triangle localTri;
|
|
|
|
+ GeomUtil.PerspectiveTransform(ref v0, ref m, out localTri.V0);
|
|
|
|
+ GeomUtil.PerspectiveTransform(ref v1, ref m, out localTri.V1);
|
|
|
|
+ GeomUtil.PerspectiveTransform(ref v2, ref m, out localTri.V2);
|
|
|
|
+
|
|
|
|
+ // Center the projected box at the origin
|
|
|
|
+ Vector3 halfExtent = new Vector3(1, 1, 0.5f);
|
|
|
|
+ localTri.V0.Z -= 0.5f;
|
|
|
|
+ localTri.V1.Z -= 0.5f;
|
|
|
|
+ localTri.V2.Z -= 0.5f;
|
|
|
|
+ return OriginBoxContains(ref halfExtent, ref localTri);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Determines whether the given frustum contains/intersects/is disjoint from the
|
|
|
|
+ /// given triangle.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ContainmentType Contains(BoundingFrustum frustum, ref Triangle triangle)
|
|
|
|
+ {
|
|
|
|
+ return Contains(frustum, ref triangle.V0, ref triangle.V1, ref triangle.V2);
|
|
|
|
+ }
|
|
|
|
+ #endregion
|
|
|
|
+
|
|
|
|
+ #region Triangle-Plane
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Classify the triangle (v0,v1,v2) with respect to the given plane.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static PlaneIntersectionType Intersects(ref Plane plane, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ float dV0 = plane.DotCoordinate(v0);
|
|
|
|
+ float dV1 = plane.DotCoordinate(v1);
|
|
|
|
+ float dV2 = plane.DotCoordinate(v2);
|
|
|
|
+
|
|
|
|
+ if (Math.Min(dV0, Math.Min(dV1, dV2)) >= 0)
|
|
|
|
+ {
|
|
|
|
+ return PlaneIntersectionType.Front;
|
|
|
|
+ }
|
|
|
|
+ if (Math.Max(dV0, Math.Max(dV1, dV2)) <= 0)
|
|
|
|
+ {
|
|
|
|
+ return PlaneIntersectionType.Back;
|
|
|
|
+ }
|
|
|
|
+ return PlaneIntersectionType.Intersecting;
|
|
|
|
+ }
|
|
|
|
+ #endregion
|
|
|
|
+
|
|
|
|
+ #region Triangle-Ray
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Determine whether the triangle (v0,v1,v2) intersects the given ray. If there is intersection,
|
|
|
|
+ /// returns the parametric value of the intersection point on the ray. Otherwise returns null.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static float? Intersects(ref Ray ray, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ // The algorithm is based on Moller, Tomas and Trumbore, "Fast, Minimum Storage
|
|
|
|
+ // Ray-Triangle Intersection", Journal of Graphics Tools, vol. 2, no. 1,
|
|
|
|
+ // pp 21-28, 1997.
|
|
|
|
+
|
|
|
|
+ Vector3 e1 = v1 - v0;
|
|
|
|
+ Vector3 e2 = v2 - v0;
|
|
|
|
+
|
|
|
|
+ Vector3 p = Vector3.Cross(ray.Direction, e2);
|
|
|
|
+
|
|
|
|
+ float det = Vector3.Dot(e1, p);
|
|
|
|
+
|
|
|
|
+ float t;
|
|
|
|
+ if (det >= EPSILON)
|
|
|
|
+ {
|
|
|
|
+ // Determinate is positive (front side of the triangle).
|
|
|
|
+ Vector3 s = ray.Position - v0;
|
|
|
|
+ float u = Vector3.Dot(s, p);
|
|
|
|
+ if (u < 0 || u > det)
|
|
|
|
+ return null;
|
|
|
|
+
|
|
|
|
+ Vector3 q = Vector3.Cross(s, e1);
|
|
|
|
+ float v = Vector3.Dot(ray.Direction, q);
|
|
|
|
+ if (v < 0 || ((u + v) > det))
|
|
|
|
+ return null;
|
|
|
|
+
|
|
|
|
+ t = Vector3.Dot(e2, q);
|
|
|
|
+ if (t < 0)
|
|
|
|
+ return null;
|
|
|
|
+ }
|
|
|
|
+ else if (det <= -EPSILON)
|
|
|
|
+ {
|
|
|
|
+ // Determinate is negative (back side of the triangle).
|
|
|
|
+ Vector3 s = ray.Position - v0;
|
|
|
|
+ float u = Vector3.Dot(s, p);
|
|
|
|
+ if (u > 0 || u < det)
|
|
|
|
+ return null;
|
|
|
|
+
|
|
|
|
+ Vector3 q = Vector3.Cross(s, e1);
|
|
|
|
+ float v = Vector3.Dot(ray.Direction, q);
|
|
|
|
+ if (v > 0 || ((u + v) < det))
|
|
|
|
+ return null;
|
|
|
|
+
|
|
|
|
+ t = Vector3.Dot(e2, q);
|
|
|
|
+ if (t > 0)
|
|
|
|
+ return null;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ // Parallel ray.
|
|
|
|
+ return null;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return t / det;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Determine whether the given triangle intersects the given ray. If there is intersection,
|
|
|
|
+ /// returns the parametric value of the intersection point on the ray. Otherwise returns null.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static float? Intersects(ref Ray ray, ref Triangle tri)
|
|
|
|
+ {
|
|
|
|
+ return Intersects(ref ray, ref tri.V0, ref tri.V1, ref tri.V2);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ #endregion
|
|
|
|
+
|
|
|
|
+ #region Common utility methods
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Return the point on triangle (v0,v1,v2) closest to point p.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static Vector3 NearestPointOnTriangle(ref Vector3 p, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)
|
|
|
|
+ {
|
|
|
|
+ // We'll work in a space where v0 is the origin.
|
|
|
|
+ // Let D=p-v0 be the local position of p, E1=v1-v0 and E2=v2-v0 be the
|
|
|
|
+ // local positions of v1 and v2.
|
|
|
|
+ //
|
|
|
|
+ // Points on the triangle are defined by
|
|
|
|
+ // P=v0 + s*E1 + t*E2
|
|
|
|
+ // for s >= 0, t >= 0, s+t <= 1
|
|
|
|
+ //
|
|
|
|
+ // To compute (s,t) for p, note that s=the ratio of the components of d and e1 which
|
|
|
|
+ // are perpendicular to e2 in the plane of the triangle.
|
|
|
|
+ //
|
|
|
|
+ // s = project(perp(D,E2),E1) / project(perp(E1,E2),E1)
|
|
|
|
+ // where project(A,B) = B*(A . B)/(B . B)
|
|
|
|
+ // perp(A,B) = A - project(A,B)
|
|
|
|
+ //
|
|
|
|
+ // expanding and rearranging terms a bit gives:
|
|
|
|
+ //
|
|
|
|
+ // (D . E1)*(E2 . E2) - (D . E2)*(E1 . E2)
|
|
|
|
+ // s = ---------------------------------------
|
|
|
|
+ // (E1 . E1)*(E2 . E2) - (E1 . E2)^2
|
|
|
|
+ //
|
|
|
|
+ // t = [same thing with E1/E2 swapped]
|
|
|
|
+ //
|
|
|
|
+ // Note that the denominator is the same for s and t, so we only need to compute it
|
|
|
|
+ // once, and that the denominator is never negative. So we can compute the numerator
|
|
|
|
+ // and denominator separately, and only do the division in case we actually need to
|
|
|
|
+ // produce s and/or t.
|
|
|
|
+ //
|
|
|
|
+ // We also need the parametric projections of p onto each edge:
|
|
|
|
+ // u1 onto E1, u2 onto E2, u12 onto the (v2-v1) edge.
|
|
|
|
+ // u1 = (D . E1)/(E1 . E1)
|
|
|
|
+ // u2 = (D . E2)/(E2 . E2)
|
|
|
|
+ Vector3 D = p - v0;
|
|
|
|
+ Vector3 E1 = (v1 - v0);
|
|
|
|
+ Vector3 E2 = (v2 - v0);
|
|
|
|
+ float dot11 = E1.LengthSquared();
|
|
|
|
+ float dot12 = Vector3.Dot(E1, E2);
|
|
|
|
+ float dot22 = E2.LengthSquared();
|
|
|
|
+ float dot1d = Vector3.Dot(E1, D);
|
|
|
|
+ float dot2d = Vector3.Dot(E2, D);
|
|
|
|
+ float dotdd = D.LengthSquared();
|
|
|
|
+
|
|
|
|
+ float s = dot1d * dot22 - dot2d * dot12;
|
|
|
|
+ float t = dot2d * dot11 - dot1d * dot12;
|
|
|
|
+ float d = dot11 * dot22 - dot12 * dot12;
|
|
|
|
+
|
|
|
|
+ if (dot1d <= 0 && dot2d <= 0)
|
|
|
|
+ {
|
|
|
|
+ // nearest point is V0
|
|
|
|
+ return v0;
|
|
|
|
+ }
|
|
|
|
+ if (s <= 0 && dot2d >= 0 && dot2d <= dot22)
|
|
|
|
+ {
|
|
|
|
+ // nearest point is on E2
|
|
|
|
+ return v0 + E2 * (dot2d / dot22);
|
|
|
|
+ }
|
|
|
|
+ if (t <= 0 && dot1d >= 0 && dot1d <= dot11)
|
|
|
|
+ {
|
|
|
|
+ // nearest point is on E1
|
|
|
|
+ return v0 + E1 * (dot1d / dot11);
|
|
|
|
+ }
|
|
|
|
+ if (s >= 0 && t >= 0 && s + t <= d)
|
|
|
|
+ {
|
|
|
|
+ // nearest point is inside the triangle
|
|
|
|
+ float dr = 1.0f / d;
|
|
|
|
+ return v0 + (s * dr) * E1 + (t * dr) * E2;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // we need to compute u12. This is hairier than
|
|
|
|
+ // u1 or u2 because we're not in a convenient
|
|
|
|
+ // basis any more.
|
|
|
|
+ float u12_num = dot2d - dot1d - dot12 + dot11;
|
|
|
|
+ float u12_den = dot22 + dot11 - 2 * dot12;
|
|
|
|
+ if (u12_num <= 0)
|
|
|
|
+ {
|
|
|
|
+ return v1;
|
|
|
|
+ }
|
|
|
|
+ if (u12_num >= u12_den)
|
|
|
|
+ {
|
|
|
|
+ return v2;
|
|
|
|
+ }
|
|
|
|
+ return v1 + (v2 - v1) * (u12_num / u12_den);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Check if an origin-centered, axis-aligned box with the given half extents contains,
|
|
|
|
+ /// intersects, or is disjoint from the given triangle. This is used for the box and
|
|
|
|
+ /// frustum vs. triangle tests.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ContainmentType OriginBoxContains(ref Vector3 halfExtent, ref Triangle tri)
|
|
|
|
+ {
|
|
|
|
+ BoundingBox triBounds = new BoundingBox(); // 'new' to work around NetCF bug
|
|
|
|
+ triBounds.Min.X = Math.Min(tri.V0.X, Math.Min(tri.V1.X, tri.V2.X));
|
|
|
|
+ triBounds.Min.Y = Math.Min(tri.V0.Y, Math.Min(tri.V1.Y, tri.V2.Y));
|
|
|
|
+ triBounds.Min.Z = Math.Min(tri.V0.Z, Math.Min(tri.V1.Z, tri.V2.Z));
|
|
|
|
+
|
|
|
|
+ triBounds.Max.X = Math.Max(tri.V0.X, Math.Max(tri.V1.X, tri.V2.X));
|
|
|
|
+ triBounds.Max.Y = Math.Max(tri.V0.Y, Math.Max(tri.V1.Y, tri.V2.Y));
|
|
|
|
+ triBounds.Max.Z = Math.Max(tri.V0.Z, Math.Max(tri.V1.Z, tri.V2.Z));
|
|
|
|
+
|
|
|
|
+ Vector3 triBoundhalfExtent;
|
|
|
|
+ triBoundhalfExtent.X = (triBounds.Max.X - triBounds.Min.X) * 0.5f;
|
|
|
|
+ triBoundhalfExtent.Y = (triBounds.Max.Y - triBounds.Min.Y) * 0.5f;
|
|
|
|
+ triBoundhalfExtent.Z = (triBounds.Max.Z - triBounds.Min.Z) * 0.5f;
|
|
|
|
+
|
|
|
|
+ Vector3 triBoundCenter;
|
|
|
|
+ triBoundCenter.X = (triBounds.Max.X + triBounds.Min.X) * 0.5f;
|
|
|
|
+ triBoundCenter.Y = (triBounds.Max.Y + triBounds.Min.Y) * 0.5f;
|
|
|
|
+ triBoundCenter.Z = (triBounds.Max.Z + triBounds.Min.Z) * 0.5f;
|
|
|
|
+
|
|
|
|
+ if (triBoundhalfExtent.X + halfExtent.X <= Math.Abs(triBoundCenter.X) ||
|
|
|
|
+ triBoundhalfExtent.Y + halfExtent.Y <= Math.Abs(triBoundCenter.Y) ||
|
|
|
|
+ triBoundhalfExtent.Z + halfExtent.Z <= Math.Abs(triBoundCenter.Z))
|
|
|
|
+ {
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (triBoundhalfExtent.X + Math.Abs(triBoundCenter.X) <= halfExtent.X &&
|
|
|
|
+ triBoundhalfExtent.Y + Math.Abs(triBoundCenter.Y) <= halfExtent.Y &&
|
|
|
|
+ triBoundhalfExtent.Z + Math.Abs(triBoundCenter.Z) <= halfExtent.Z)
|
|
|
|
+ {
|
|
|
|
+ return ContainmentType.Contains;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ Vector3 edge1, edge2, edge3;
|
|
|
|
+ Vector3.Subtract(ref tri.V1, ref tri.V0, out edge1);
|
|
|
|
+ Vector3.Subtract(ref tri.V2, ref tri.V0, out edge2);
|
|
|
|
+
|
|
|
|
+ Vector3 normal;
|
|
|
|
+ Vector3.Cross(ref edge1, ref edge2, out normal);
|
|
|
|
+ float triangleDist = Vector3.Dot(tri.V0, normal);
|
|
|
|
+ if(Math.Abs(normal.X*halfExtent.X) + Math.Abs(normal.Y*halfExtent.Y) + Math.Abs(normal.Z*halfExtent.Z) <= Math.Abs(triangleDist))
|
|
|
|
+ {
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Worst case: we need to check all 9 possible separating planes
|
|
|
|
+ // defined by Cross(box edge,triangle edge)
|
|
|
|
+ // Check for separation in plane containing an axis of box A and and axis of box B
|
|
|
|
+ //
|
|
|
|
+ // We need to compute all 9 cross products to find them, but a lot of terms drop out
|
|
|
|
+ // since we're working in A's local space. Also, since each such plane is parallel
|
|
|
|
+ // to the defining axis in each box, we know those dot products will be 0 and can
|
|
|
|
+ // omit them.
|
|
|
|
+ Vector3.Subtract(ref tri.V1, ref tri.V2, out edge3);
|
|
|
|
+ float dv0, dv1, dv2, dhalf;
|
|
|
|
+
|
|
|
|
+ // a.X ^ b.X = (1,0,0) ^ edge1
|
|
|
|
+ // axis = Vector3(0, -edge1.Z, edge1.Y);
|
|
|
|
+ dv0 = tri.V0.Z * edge1.Y - tri.V0.Y * edge1.Z;
|
|
|
|
+ dv1 = tri.V1.Z * edge1.Y - tri.V1.Y * edge1.Z;
|
|
|
|
+ dv2 = tri.V2.Z * edge1.Y - tri.V2.Y * edge1.Z;
|
|
|
|
+ dhalf = Math.Abs(halfExtent.Y * edge1.Z) + Math.Abs(halfExtent.Z * edge1.Y);
|
|
|
|
+ if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+
|
|
|
|
+ // a.X ^ b.Y = (1,0,0) ^ edge2
|
|
|
|
+ // axis = Vector3(0, -edge2.Z, edge2.Y);
|
|
|
|
+ dv0 = tri.V0.Z * edge2.Y - tri.V0.Y * edge2.Z;
|
|
|
|
+ dv1 = tri.V1.Z * edge2.Y - tri.V1.Y * edge2.Z;
|
|
|
|
+ dv2 = tri.V2.Z * edge2.Y - tri.V2.Y * edge2.Z;
|
|
|
|
+ dhalf = Math.Abs(halfExtent.Y * edge2.Z) + Math.Abs(halfExtent.Z * edge2.Y);
|
|
|
|
+ if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+
|
|
|
|
+ // a.X ^ b.Y = (1,0,0) ^ edge3
|
|
|
|
+ // axis = Vector3(0, -edge3.Z, edge3.Y);
|
|
|
|
+ dv0 = tri.V0.Z * edge3.Y - tri.V0.Y * edge3.Z;
|
|
|
|
+ dv1 = tri.V1.Z * edge3.Y - tri.V1.Y * edge3.Z;
|
|
|
|
+ dv2 = tri.V2.Z * edge3.Y - tri.V2.Y * edge3.Z;
|
|
|
|
+ dhalf = Math.Abs(halfExtent.Y * edge3.Z) + Math.Abs(halfExtent.Z * edge3.Y);
|
|
|
|
+ if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+
|
|
|
|
+ // a.Y ^ b.X = (0,1,0) ^ edge1
|
|
|
|
+ // axis = Vector3(edge1.Z, 0, -edge1.X);
|
|
|
|
+ dv0 = tri.V0.X * edge1.Z - tri.V0.Z * edge1.X;
|
|
|
|
+ dv1 = tri.V1.X * edge1.Z - tri.V1.Z * edge1.X;
|
|
|
|
+ dv2 = tri.V2.X * edge1.Z - tri.V2.Z * edge1.X;
|
|
|
|
+ dhalf = Math.Abs(halfExtent.X * edge1.Z) + Math.Abs(halfExtent.Z * edge1.X);
|
|
|
|
+ if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+
|
|
|
|
+ // a.Y ^ b.X = (0,1,0) ^ edge2
|
|
|
|
+ // axis = Vector3(edge2.Z, 0, -edge2.X);
|
|
|
|
+ dv0 = tri.V0.X * edge2.Z - tri.V0.Z * edge2.X;
|
|
|
|
+ dv1 = tri.V1.X * edge2.Z - tri.V1.Z * edge2.X;
|
|
|
|
+ dv2 = tri.V2.X * edge2.Z - tri.V2.Z * edge2.X;
|
|
|
|
+ dhalf = Math.Abs(halfExtent.X * edge2.Z) + Math.Abs(halfExtent.Z * edge2.X);
|
|
|
|
+ if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+
|
|
|
|
+ // a.Y ^ b.X = (0,1,0) ^ bX
|
|
|
|
+ // axis = Vector3(edge3.Z, 0, -edge3.X);
|
|
|
|
+ dv0 = tri.V0.X * edge3.Z - tri.V0.Z * edge3.X;
|
|
|
|
+ dv1 = tri.V1.X * edge3.Z - tri.V1.Z * edge3.X;
|
|
|
|
+ dv2 = tri.V2.X * edge3.Z - tri.V2.Z * edge3.X;
|
|
|
|
+ dhalf = Math.Abs(halfExtent.X * edge3.Z) + Math.Abs(halfExtent.Z * edge3.X);
|
|
|
|
+ if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+
|
|
|
|
+ // a.Y ^ b.X = (0,0,1) ^ edge1
|
|
|
|
+ // axis = Vector3(-edge1.Y, edge1.X, 0);
|
|
|
|
+ dv0 = tri.V0.Y * edge1.X - tri.V0.X * edge1.Y;
|
|
|
|
+ dv1 = tri.V1.Y * edge1.X - tri.V1.X * edge1.Y;
|
|
|
|
+ dv2 = tri.V2.Y * edge1.X - tri.V2.X * edge1.Y;
|
|
|
|
+ dhalf = Math.Abs(halfExtent.Y * edge1.X) + Math.Abs(halfExtent.X * edge1.Y);
|
|
|
|
+ if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+
|
|
|
|
+ // a.Y ^ b.X = (0,0,1) ^ edge2
|
|
|
|
+ // axis = Vector3(-edge2.Y, edge2.X, 0);
|
|
|
|
+ dv0 = tri.V0.Y * edge2.X - tri.V0.X * edge2.Y;
|
|
|
|
+ dv1 = tri.V1.Y * edge2.X - tri.V1.X * edge2.Y;
|
|
|
|
+ dv2 = tri.V2.Y * edge2.X - tri.V2.X * edge2.Y;
|
|
|
|
+ dhalf = Math.Abs(halfExtent.Y * edge2.X) + Math.Abs(halfExtent.X * edge2.Y);
|
|
|
|
+ if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+
|
|
|
|
+ // a.Y ^ b.X = (0,0,1) ^ edge3
|
|
|
|
+ // axis = Vector3(-edge3.Y, edge3.X, 0);
|
|
|
|
+ dv0 = tri.V0.Y * edge3.X - tri.V0.X * edge3.Y;
|
|
|
|
+ dv1 = tri.V1.Y * edge3.X - tri.V1.X * edge3.Y;
|
|
|
|
+ dv2 = tri.V2.Y * edge3.X - tri.V2.X * edge3.Y;
|
|
|
|
+ dhalf = Math.Abs(halfExtent.Y * edge3.X) + Math.Abs(halfExtent.X * edge3.Y);
|
|
|
|
+ if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)
|
|
|
|
+ return ContainmentType.Disjoint;
|
|
|
|
+
|
|
|
|
+ return ContainmentType.Intersects;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ #endregion
|
|
|
|
+ }
|
|
|
|
+}
|