123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- /*
- * Farseer Physics Engine based on Box2D.XNA port:
- * Copyright (c) 2010 Ian Qvist
- *
- * Box2D.XNA port of Box2D:
- * Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
- *
- * Original source Box2D:
- * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- */
- using System;
- using System.Diagnostics;
- using FarseerPhysics.Common;
- using Microsoft.Xna.Framework;
- namespace FarseerPhysics.Dynamics.Joints
- {
- // Point-to-point constraint
- // C = p2 - p1
- // Cdot = v2 - v1
- // = v2 + cross(w2, r2) - v1 - cross(w1, r1)
- // J = [-I -r1_skew I r2_skew ]
- // Identity used:
- // w k % (rx i + ry j) = w * (-ry i + rx j)
- // Angle constraint
- // C = angle2 - angle1 - referenceAngle
- // Cdot = w2 - w1
- // J = [0 0 -1 0 0 1]
- // K = invI1 + invI2
- /// <summary>
- /// A weld joint essentially glues two bodies together. A weld joint may
- /// distort somewhat because the island constraint solver is approximate.
- /// </summary>
- public class WeldJoint : Joint
- {
- public Vector2 LocalAnchorA;
- public Vector2 LocalAnchorB;
- private Vector3 _impulse;
- private Mat33 _mass;
- internal WeldJoint()
- {
- JointType = JointType.Weld;
- }
- /// <summary>
- /// You need to specify a local anchor point
- /// where they are attached and the relative body angle. The position
- /// of the anchor point is important for computing the reaction torque.
- /// You can change the anchor points relative to bodyA or bodyB by changing LocalAnchorA
- /// and/or LocalAnchorB.
- /// </summary>
- /// <param name="bodyA">The first body</param>
- /// <param name="bodyB">The second body</param>
- /// <param name="localAnchorA">The first body anchor.</param>
- /// <param name="localAnchorB">The second body anchor.</param>
- public WeldJoint(Body bodyA, Body bodyB, Vector2 localAnchorA, Vector2 localAnchorB)
- : base(bodyA, bodyB)
- {
- JointType = JointType.Weld;
- LocalAnchorA = localAnchorA;
- LocalAnchorB = localAnchorB;
- ReferenceAngle = BodyB.Rotation - BodyA.Rotation;
- }
- public override Vector2 WorldAnchorA
- {
- get { return BodyA.GetWorldPoint(LocalAnchorA); }
- }
- public override Vector2 WorldAnchorB
- {
- get { return BodyB.GetWorldPoint(LocalAnchorB); }
- set { Debug.Assert(false, "You can't set the world anchor on this joint type."); }
- }
- /// <summary>
- /// The body2 angle minus body1 angle in the reference state (radians).
- /// </summary>
- public float ReferenceAngle { get; private set; }
- public override Vector2 GetReactionForce(float inv_dt)
- {
- return inv_dt * new Vector2(_impulse.X, _impulse.Y);
- }
- public override float GetReactionTorque(float inv_dt)
- {
- return inv_dt * _impulse.Z;
- }
- internal override void InitVelocityConstraints(ref TimeStep step)
- {
- Body bA = BodyA;
- Body bB = BodyB;
- Transform xfA, xfB;
- bA.GetTransform(out xfA);
- bB.GetTransform(out xfB);
- // Compute the effective mass matrix.
- Vector2 rA = MathUtils.Multiply(ref xfA.R, LocalAnchorA - bA.LocalCenter);
- Vector2 rB = MathUtils.Multiply(ref xfB.R, LocalAnchorB - bB.LocalCenter);
- // J = [-I -r1_skew I r2_skew]
- // [ 0 -1 0 1]
- // r_skew = [-ry; rx]
- // Matlab
- // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
- // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
- // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
- float mA = bA.InvMass, mB = bB.InvMass;
- float iA = bA.InvI, iB = bB.InvI;
- _mass.Col1.X = mA + mB + rA.Y * rA.Y * iA + rB.Y * rB.Y * iB;
- _mass.Col2.X = -rA.Y * rA.X * iA - rB.Y * rB.X * iB;
- _mass.Col3.X = -rA.Y * iA - rB.Y * iB;
- _mass.Col1.Y = _mass.Col2.X;
- _mass.Col2.Y = mA + mB + rA.X * rA.X * iA + rB.X * rB.X * iB;
- _mass.Col3.Y = rA.X * iA + rB.X * iB;
- _mass.Col1.Z = _mass.Col3.X;
- _mass.Col2.Z = _mass.Col3.Y;
- _mass.Col3.Z = iA + iB;
- if (Settings.EnableWarmstarting)
- {
- // Scale impulses to support a variable time step.
- _impulse *= step.dtRatio;
- Vector2 P = new Vector2(_impulse.X, _impulse.Y);
- bA.LinearVelocityInternal -= mA * P;
- bA.AngularVelocityInternal -= iA * (MathUtils.Cross(rA, P) + _impulse.Z);
- bB.LinearVelocityInternal += mB * P;
- bB.AngularVelocityInternal += iB * (MathUtils.Cross(rB, P) + _impulse.Z);
- }
- else
- {
- _impulse = Vector3.Zero;
- }
- }
- internal override void SolveVelocityConstraints(ref TimeStep step)
- {
- Body bA = BodyA;
- Body bB = BodyB;
- Vector2 vA = bA.LinearVelocityInternal;
- float wA = bA.AngularVelocityInternal;
- Vector2 vB = bB.LinearVelocityInternal;
- float wB = bB.AngularVelocityInternal;
- float mA = bA.InvMass, mB = bB.InvMass;
- float iA = bA.InvI, iB = bB.InvI;
- Transform xfA, xfB;
- bA.GetTransform(out xfA);
- bB.GetTransform(out xfB);
- Vector2 rA = MathUtils.Multiply(ref xfA.R, LocalAnchorA - bA.LocalCenter);
- Vector2 rB = MathUtils.Multiply(ref xfB.R, LocalAnchorB - bB.LocalCenter);
- // Solve point-to-point constraint
- Vector2 Cdot1 = vB + MathUtils.Cross(wB, rB) - vA - MathUtils.Cross(wA, rA);
- float Cdot2 = wB - wA;
- Vector3 Cdot = new Vector3(Cdot1.X, Cdot1.Y, Cdot2);
- Vector3 impulse = _mass.Solve33(-Cdot);
- _impulse += impulse;
- Vector2 P = new Vector2(impulse.X, impulse.Y);
- vA -= mA * P;
- wA -= iA * (MathUtils.Cross(rA, P) + impulse.Z);
- vB += mB * P;
- wB += iB * (MathUtils.Cross(rB, P) + impulse.Z);
- bA.LinearVelocityInternal = vA;
- bA.AngularVelocityInternal = wA;
- bB.LinearVelocityInternal = vB;
- bB.AngularVelocityInternal = wB;
- }
- internal override bool SolvePositionConstraints()
- {
- Body bA = BodyA;
- Body bB = BodyB;
- float mA = bA.InvMass, mB = bB.InvMass;
- float iA = bA.InvI, iB = bB.InvI;
- Transform xfA;
- Transform xfB;
- bA.GetTransform(out xfA);
- bB.GetTransform(out xfB);
- Vector2 rA = MathUtils.Multiply(ref xfA.R, LocalAnchorA - bA.LocalCenter);
- Vector2 rB = MathUtils.Multiply(ref xfB.R, LocalAnchorB - bB.LocalCenter);
- Vector2 C1 = bB.Sweep.C + rB - bA.Sweep.C - rA;
- float C2 = bB.Sweep.A - bA.Sweep.A - ReferenceAngle;
- // Handle large detachment.
- const float k_allowedStretch = 10.0f * Settings.LinearSlop;
- float positionError = C1.Length();
- float angularError = Math.Abs(C2);
- if (positionError > k_allowedStretch)
- {
- iA *= 1.0f;
- iB *= 1.0f;
- }
- _mass.Col1.X = mA + mB + rA.Y * rA.Y * iA + rB.Y * rB.Y * iB;
- _mass.Col2.X = -rA.Y * rA.X * iA - rB.Y * rB.X * iB;
- _mass.Col3.X = -rA.Y * iA - rB.Y * iB;
- _mass.Col1.Y = _mass.Col2.X;
- _mass.Col2.Y = mA + mB + rA.X * rA.X * iA + rB.X * rB.X * iB;
- _mass.Col3.Y = rA.X * iA + rB.X * iB;
- _mass.Col1.Z = _mass.Col3.X;
- _mass.Col2.Z = _mass.Col3.Y;
- _mass.Col3.Z = iA + iB;
- Vector3 C = new Vector3(C1.X, C1.Y, C2);
- Vector3 impulse = _mass.Solve33(-C);
- Vector2 P = new Vector2(impulse.X, impulse.Y);
- bA.Sweep.C -= mA * P;
- bA.Sweep.A -= iA * (MathUtils.Cross(rA, P) + impulse.Z);
- bB.Sweep.C += mB * P;
- bB.Sweep.A += iB * (MathUtils.Cross(rB, P) + impulse.Z);
- bA.SynchronizeTransform();
- bB.SynchronizeTransform();
- return positionError <= Settings.LinearSlop && angularError <= Settings.AngularSlop;
- }
- }
- }
|