123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638 |
- /*
- * Farseer Physics Engine based on Box2D.XNA port:
- * Copyright (c) 2010 Ian Qvist
- *
- * Box2D.XNA port of Box2D:
- * Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
- *
- * Original source Box2D:
- * Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- */
- using System;
- using System.Diagnostics;
- using System.Runtime.InteropServices;
- using Microsoft.Xna.Framework;
- namespace FarseerPhysics.Common
- {
- public static class MathUtils
- {
- public static float Cross(Vector2 a, Vector2 b)
- {
- return a.X * b.Y - a.Y * b.X;
- }
- public static Vector2 Cross(Vector2 a, float s)
- {
- return new Vector2(s * a.Y, -s * a.X);
- }
- public static Vector2 Cross(float s, Vector2 a)
- {
- return new Vector2(-s * a.Y, s * a.X);
- }
- public static Vector2 Abs(Vector2 v)
- {
- return new Vector2(Math.Abs(v.X), Math.Abs(v.Y));
- }
- public static Vector2 Multiply(ref Mat22 A, Vector2 v)
- {
- return Multiply(ref A, ref v);
- }
- public static Vector2 Multiply(ref Mat22 A, ref Vector2 v)
- {
- return new Vector2(A.Col1.X * v.X + A.Col2.X * v.Y, A.Col1.Y * v.X + A.Col2.Y * v.Y);
- }
- public static Vector2 MultiplyT(ref Mat22 A, Vector2 v)
- {
- return MultiplyT(ref A, ref v);
- }
- public static Vector2 MultiplyT(ref Mat22 A, ref Vector2 v)
- {
- return new Vector2(v.X * A.Col1.X + v.Y * A.Col1.Y, v.X * A.Col2.X + v.Y * A.Col2.Y);
- }
- public static Vector2 Multiply(ref Transform T, Vector2 v)
- {
- return Multiply(ref T, ref v);
- }
- public static Vector2 Multiply(ref Transform T, ref Vector2 v)
- {
- return new Vector2(T.Position.X + T.R.Col1.X * v.X + T.R.Col2.X * v.Y,
- T.Position.Y + T.R.Col1.Y * v.X + T.R.Col2.Y * v.Y);
- }
- public static Vector2 MultiplyT(ref Transform T, Vector2 v)
- {
- return MultiplyT(ref T, ref v);
- }
- public static Vector2 MultiplyT(ref Transform T, ref Vector2 v)
- {
- Vector2 tmp = Vector2.Zero;
- tmp.X = v.X - T.Position.X;
- tmp.Y = v.Y - T.Position.Y;
- return MultiplyT(ref T.R, ref tmp);
- }
- // A^T * B
- public static void MultiplyT(ref Mat22 A, ref Mat22 B, out Mat22 C)
- {
- C = new Mat22();
- C.Col1.X = A.Col1.X * B.Col1.X + A.Col1.Y * B.Col1.Y;
- C.Col1.Y = A.Col2.X * B.Col1.X + A.Col2.Y * B.Col1.Y;
- C.Col2.X = A.Col1.X * B.Col2.X + A.Col1.Y * B.Col2.Y;
- C.Col2.Y = A.Col2.X * B.Col2.X + A.Col2.Y * B.Col2.Y;
- }
- // v2 = A.R' * (B.R * v1 + B.p - A.p) = (A.R' * B.R) * v1 + (B.p - A.p)
- public static void MultiplyT(ref Transform A, ref Transform B, out Transform C)
- {
- C = new Transform();
- MultiplyT(ref A.R, ref B.R, out C.R);
- C.Position.X = B.Position.X - A.Position.X;
- C.Position.Y = B.Position.Y - A.Position.Y;
- }
- public static void Swap<T>(ref T a, ref T b)
- {
- T tmp = a;
- a = b;
- b = tmp;
- }
- /// <summary>
- /// This function is used to ensure that a floating point number is
- /// not a NaN or infinity.
- /// </summary>
- /// <param name="x">The x.</param>
- /// <returns>
- /// <c>true</c> if the specified x is valid; otherwise, <c>false</c>.
- /// </returns>
- public static bool IsValid(float x)
- {
- if (float.IsNaN(x))
- {
- // NaN.
- return false;
- }
- return !float.IsInfinity(x);
- }
- public static bool IsValid(this Vector2 x)
- {
- return IsValid(x.X) && IsValid(x.Y);
- }
- /// <summary>
- /// This is a approximate yet fast inverse square-root.
- /// </summary>
- /// <param name="x">The x.</param>
- /// <returns></returns>
- public static float InvSqrt(float x)
- {
- FloatConverter convert = new FloatConverter();
- convert.x = x;
- float xhalf = 0.5f * x;
- convert.i = 0x5f3759df - (convert.i >> 1);
- x = convert.x;
- x = x * (1.5f - xhalf * x * x);
- return x;
- }
- public static int Clamp(int a, int low, int high)
- {
- return Math.Max(low, Math.Min(a, high));
- }
- public static float Clamp(float a, float low, float high)
- {
- return Math.Max(low, Math.Min(a, high));
- }
- public static Vector2 Clamp(Vector2 a, Vector2 low, Vector2 high)
- {
- return Vector2.Max(low, Vector2.Min(a, high));
- }
- public static void Cross(ref Vector2 a, ref Vector2 b, out float c)
- {
- c = a.X * b.Y - a.Y * b.X;
- }
- /// <summary>
- /// Return the angle between two vectors on a plane
- /// The angle is from vector 1 to vector 2, positive anticlockwise
- /// The result is between -pi -> pi
- /// </summary>
- public static double VectorAngle(ref Vector2 p1, ref Vector2 p2)
- {
- double theta1 = Math.Atan2(p1.Y, p1.X);
- double theta2 = Math.Atan2(p2.Y, p2.X);
- double dtheta = theta2 - theta1;
- while (dtheta > Math.PI)
- dtheta -= (2 * Math.PI);
- while (dtheta < -Math.PI)
- dtheta += (2 * Math.PI);
- return (dtheta);
- }
- public static double VectorAngle(Vector2 p1, Vector2 p2)
- {
- return VectorAngle(ref p1, ref p2);
- }
- /// <summary>
- /// Returns a positive number if c is to the left of the line going from a to b.
- /// </summary>
- /// <returns>Positive number if point is left, negative if point is right,
- /// and 0 if points are collinear.</returns>
- public static float Area(Vector2 a, Vector2 b, Vector2 c)
- {
- return Area(ref a, ref b, ref c);
- }
- /// <summary>
- /// Returns a positive number if c is to the left of the line going from a to b.
- /// </summary>
- /// <returns>Positive number if point is left, negative if point is right,
- /// and 0 if points are collinear.</returns>
- public static float Area(ref Vector2 a, ref Vector2 b, ref Vector2 c)
- {
- return a.X * (b.Y - c.Y) + b.X * (c.Y - a.Y) + c.X * (a.Y - b.Y);
- }
- /// <summary>
- /// Determines if three vertices are collinear (ie. on a straight line)
- /// </summary>
- /// <param name="a">First vertex</param>
- /// <param name="b">Second vertex</param>
- /// <param name="c">Third vertex</param>
- /// <returns></returns>
- public static bool Collinear(ref Vector2 a, ref Vector2 b, ref Vector2 c)
- {
- return Collinear(ref a, ref b, ref c, 0);
- }
- public static bool Collinear(ref Vector2 a, ref Vector2 b, ref Vector2 c, float tolerance)
- {
- return FloatInRange(Area(ref a, ref b, ref c), -tolerance, tolerance);
- }
- public static void Cross(float s, ref Vector2 a, out Vector2 b)
- {
- b = new Vector2(-s * a.Y, s * a.X);
- }
- public static bool FloatEquals(float value1, float value2)
- {
- return Math.Abs(value1 - value2) <= Settings.Epsilon;
- }
- /// <summary>
- /// Checks if a floating point Value is equal to another,
- /// within a certain tolerance.
- /// </summary>
- /// <param name="value1">The first floating point Value.</param>
- /// <param name="value2">The second floating point Value.</param>
- /// <param name="delta">The floating point tolerance.</param>
- /// <returns>True if the values are "equal", false otherwise.</returns>
- public static bool FloatEquals(float value1, float value2, float delta)
- {
- return FloatInRange(value1, value2 - delta, value2 + delta);
- }
- /// <summary>
- /// Checks if a floating point Value is within a specified
- /// range of values (inclusive).
- /// </summary>
- /// <param name="value">The Value to check.</param>
- /// <param name="min">The minimum Value.</param>
- /// <param name="max">The maximum Value.</param>
- /// <returns>True if the Value is within the range specified,
- /// false otherwise.</returns>
- public static bool FloatInRange(float value, float min, float max)
- {
- return (value >= min && value <= max);
- }
- #region Nested type: FloatConverter
- [StructLayout(LayoutKind.Explicit)]
- private struct FloatConverter
- {
- [FieldOffset(0)]
- public float x;
- [FieldOffset(0)]
- public int i;
- }
- #endregion
- }
- /// <summary>
- /// A 2-by-2 matrix. Stored in column-major order.
- /// </summary>
- public struct Mat22
- {
- public Vector2 Col1, Col2;
- /// <summary>
- /// Construct this matrix using columns.
- /// </summary>
- /// <param name="c1">The c1.</param>
- /// <param name="c2">The c2.</param>
- public Mat22(Vector2 c1, Vector2 c2)
- {
- Col1 = c1;
- Col2 = c2;
- }
- /// <summary>
- /// Construct this matrix using scalars.
- /// </summary>
- /// <param name="a11">The a11.</param>
- /// <param name="a12">The a12.</param>
- /// <param name="a21">The a21.</param>
- /// <param name="a22">The a22.</param>
- public Mat22(float a11, float a12, float a21, float a22)
- {
- Col1 = new Vector2(a11, a21);
- Col2 = new Vector2(a12, a22);
- }
- /// <summary>
- /// Construct this matrix using an angle. This matrix becomes
- /// an orthonormal rotation matrix.
- /// </summary>
- /// <param name="angle">The angle.</param>
- public Mat22(float angle)
- {
- // TODO_ERIN compute sin+cos together.
- float c = (float)Math.Cos(angle), s = (float)Math.Sin(angle);
- Col1 = new Vector2(c, s);
- Col2 = new Vector2(-s, c);
- }
- /// <summary>
- /// Extract the angle from this matrix (assumed to be
- /// a rotation matrix).
- /// </summary>
- /// <value></value>
- public float Angle
- {
- get { return (float)Math.Atan2(Col1.Y, Col1.X); }
- }
- public Mat22 Inverse
- {
- get
- {
- float a = Col1.X, b = Col2.X, c = Col1.Y, d = Col2.Y;
- float det = a * d - b * c;
- if (det != 0.0f)
- {
- det = 1.0f / det;
- }
- Mat22 result = new Mat22();
- result.Col1.X = det * d;
- result.Col1.Y = -det * c;
- result.Col2.X = -det * b;
- result.Col2.Y = det * a;
- return result;
- }
- }
- /// <summary>
- /// Initialize this matrix using columns.
- /// </summary>
- /// <param name="c1">The c1.</param>
- /// <param name="c2">The c2.</param>
- public void Set(Vector2 c1, Vector2 c2)
- {
- Col1 = c1;
- Col2 = c2;
- }
- /// <summary>
- /// Initialize this matrix using an angle. This matrix becomes
- /// an orthonormal rotation matrix.
- /// </summary>
- /// <param name="angle">The angle.</param>
- public void Set(float angle)
- {
- float c = (float)Math.Cos(angle), s = (float)Math.Sin(angle);
- Col1.X = c;
- Col2.X = -s;
- Col1.Y = s;
- Col2.Y = c;
- }
- /// <summary>
- /// Set this to the identity matrix.
- /// </summary>
- public void SetIdentity()
- {
- Col1.X = 1.0f;
- Col2.X = 0.0f;
- Col1.Y = 0.0f;
- Col2.Y = 1.0f;
- }
- /// <summary>
- /// Set this matrix to all zeros.
- /// </summary>
- public void SetZero()
- {
- Col1.X = 0.0f;
- Col2.X = 0.0f;
- Col1.Y = 0.0f;
- Col2.Y = 0.0f;
- }
- /// <summary>
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases.
- /// </summary>
- /// <param name="b">The b.</param>
- /// <returns></returns>
- public Vector2 Solve(Vector2 b)
- {
- float a11 = Col1.X, a12 = Col2.X, a21 = Col1.Y, a22 = Col2.Y;
- float det = a11 * a22 - a12 * a21;
- if (det != 0.0f)
- {
- det = 1.0f / det;
- }
- return new Vector2(det * (a22 * b.X - a12 * b.Y), det * (a11 * b.Y - a21 * b.X));
- }
- public static void Add(ref Mat22 A, ref Mat22 B, out Mat22 R)
- {
- R.Col1 = A.Col1 + B.Col1;
- R.Col2 = A.Col2 + B.Col2;
- }
- }
- /// <summary>
- /// A 3-by-3 matrix. Stored in column-major order.
- /// </summary>
- public struct Mat33
- {
- public Vector3 Col1, Col2, Col3;
- /// <summary>
- /// Construct this matrix using columns.
- /// </summary>
- /// <param name="c1">The c1.</param>
- /// <param name="c2">The c2.</param>
- /// <param name="c3">The c3.</param>
- public Mat33(Vector3 c1, Vector3 c2, Vector3 c3)
- {
- Col1 = c1;
- Col2 = c2;
- Col3 = c3;
- }
- /// <summary>
- /// Set this matrix to all zeros.
- /// </summary>
- public void SetZero()
- {
- Col1 = Vector3.Zero;
- Col2 = Vector3.Zero;
- Col3 = Vector3.Zero;
- }
- /// <summary>
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases.
- /// </summary>
- /// <param name="b">The b.</param>
- /// <returns></returns>
- public Vector3 Solve33(Vector3 b)
- {
- float det = Vector3.Dot(Col1, Vector3.Cross(Col2, Col3));
- if (det != 0.0f)
- {
- det = 1.0f / det;
- }
- return new Vector3(det * Vector3.Dot(b, Vector3.Cross(Col2, Col3)),
- det * Vector3.Dot(Col1, Vector3.Cross(b, Col3)),
- det * Vector3.Dot(Col1, Vector3.Cross(Col2, b)));
- }
- /// <summary>
- /// Solve A * x = b, where b is a column vector. This is more efficient
- /// than computing the inverse in one-shot cases. Solve only the upper
- /// 2-by-2 matrix equation.
- /// </summary>
- /// <param name="b">The b.</param>
- /// <returns></returns>
- public Vector2 Solve22(Vector2 b)
- {
- float a11 = Col1.X, a12 = Col2.X, a21 = Col1.Y, a22 = Col2.Y;
- float det = a11 * a22 - a12 * a21;
- if (det != 0.0f)
- {
- det = 1.0f / det;
- }
- return new Vector2(det * (a22 * b.X - a12 * b.Y), det * (a11 * b.Y - a21 * b.X));
- }
- }
- /// <summary>
- /// A transform contains translation and rotation. It is used to represent
- /// the position and orientation of rigid frames.
- /// </summary>
- public struct Transform
- {
- public Vector2 Position;
- public Mat22 R;
- /// <summary>
- /// Initialize using a position vector and a rotation matrix.
- /// </summary>
- /// <param name="position">The position.</param>
- /// <param name="r">The r.</param>
- public Transform(ref Vector2 position, ref Mat22 r)
- {
- Position = position;
- R = r;
- }
- /// <summary>
- /// Calculate the angle that the rotation matrix represents.
- /// </summary>
- /// <value></value>
- public float Angle
- {
- get { return (float)Math.Atan2(R.Col1.Y, R.Col1.X); }
- }
- /// <summary>
- /// Set this to the identity transform.
- /// </summary>
- public void SetIdentity()
- {
- Position = Vector2.Zero;
- R.SetIdentity();
- }
- /// <summary>
- /// Set this based on the position and angle.
- /// </summary>
- /// <param name="position">The position.</param>
- /// <param name="angle">The angle.</param>
- public void Set(Vector2 position, float angle)
- {
- Position = position;
- R.Set(angle);
- }
- }
- /// <summary>
- /// This describes the motion of a body/shape for TOI computation.
- /// Shapes are defined with respect to the body origin, which may
- /// no coincide with the center of mass. However, to support dynamics
- /// we must interpolate the center of mass position.
- /// </summary>
- public struct Sweep
- {
- /// <summary>
- /// World angles
- /// </summary>
- public float A;
- public float A0;
- /// <summary>
- /// Fraction of the current time step in the range [0,1]
- /// c0 and a0 are the positions at alpha0.
- /// </summary>
- public float Alpha0;
- /// <summary>
- /// Center world positions
- /// </summary>
- public Vector2 C;
- public Vector2 C0;
- /// <summary>
- /// Local center of mass position
- /// </summary>
- public Vector2 LocalCenter;
- /// <summary>
- /// Get the interpolated transform at a specific time.
- /// </summary>
- /// <param name="xf">The transform.</param>
- /// <param name="beta">beta is a factor in [0,1], where 0 indicates alpha0.</param>
- public void GetTransform(out Transform xf, float beta)
- {
- xf = new Transform();
- xf.Position.X = (1.0f - beta) * C0.X + beta * C.X;
- xf.Position.Y = (1.0f - beta) * C0.Y + beta * C.Y;
- float angle = (1.0f - beta) * A0 + beta * A;
- xf.R.Set(angle);
- // Shift to origin
- xf.Position -= MathUtils.Multiply(ref xf.R, ref LocalCenter);
- }
- /// <summary>
- /// Advance the sweep forward, yielding a new initial state.
- /// </summary>
- /// <param name="alpha">new initial time..</param>
- public void Advance(float alpha)
- {
- Debug.Assert(Alpha0 < 1.0f);
- float beta = (alpha - Alpha0) / (1.0f - Alpha0);
- C0.X = (1.0f - beta) * C0.X + beta * C.X;
- C0.Y = (1.0f - beta) * C0.Y + beta * C.Y;
- A0 = (1.0f - beta) * A0 + beta * A;
- Alpha0 = alpha;
- }
- /// <summary>
- /// Normalize the angles.
- /// </summary>
- public void Normalize()
- {
- float d = MathHelper.TwoPi * (float)Math.Floor(A0 / MathHelper.TwoPi);
- A0 -= d;
- A -= d;
- }
- }
- }
|