| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564 | //---------------------------------------------------------------------------------------------------------------------// TriangleTest.cs//// Microsoft XNA Community Game Platform// Copyright (C) Microsoft Corporation. All rights reserved.//---------------------------------------------------------------------------------------------------------------------using System;using Microsoft.Xna.Framework;namespace CollisionSample{    /// <summary>    /// Represents a simple triangle by the vertices at each corner.    /// </summary>    public struct Triangle    {        public Vector3 V0;        public Vector3 V1;        public Vector3 V2;        public Triangle(Vector3 v0, Vector3 v1, Vector3 v2)        {            V0 = v0;            V1 = v1;            V2 = v2;        }    }    /// <summary>    /// Triangle-based collision tests    /// </summary>    public static class TriangleTest    {        const float EPSILON = 1e-20F;        /// <summary>        /// Returns true if the given box intersects the triangle (v0,v1,v2).        /// </summary>        public static bool Intersects(ref BoundingBox box, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            Vector3 boxCenter = (box.Max + box.Min) * 0.5f;            Vector3 boxHalfExtent = (box.Max - box.Min) * 0.5f;            // Transform the triangle into the local space with the box center at the origin            Triangle localTri = new Triangle();            Vector3.Subtract(ref v0, ref boxCenter, out localTri.V0);            Vector3.Subtract(ref v1, ref boxCenter, out localTri.V1);            Vector3.Subtract(ref v2, ref boxCenter, out localTri.V2);            return OriginBoxContains(ref boxHalfExtent, ref localTri) != ContainmentType.Disjoint;        }        /// <summary>        /// Tests whether the given box contains, intersects, or is disjoint from the triangle (v0,v1,v2).        /// </summary>        public static ContainmentType Contains(ref BoundingBox box, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            Vector3 boxCenter = (box.Max + box.Min) * 0.5f;            Vector3 boxHalfExtent = (box.Max - box.Min) * 0.5f;            // Transform the triangle into the local space with the box center at the origin            Triangle localTri;            Vector3.Subtract(ref v0, ref boxCenter, out localTri.V0);            Vector3.Subtract(ref v1, ref boxCenter, out localTri.V1);            Vector3.Subtract(ref v2, ref boxCenter, out localTri.V2);            return OriginBoxContains(ref boxHalfExtent, ref localTri);        }        /// <summary>        /// Tests whether the given box contains, intersects, or is disjoint from the given triangle.        /// </summary>        public static ContainmentType Contains(ref BoundingBox box, ref Triangle triangle)        {            return Contains(ref box, ref triangle.V0, ref triangle.V1, ref triangle.V2);        }        /// <summary>        /// Returns true if the given BoundingOrientedBox intersects the triangle (v0,v1,v2)        /// </summary>        public static bool Intersects(ref BoundingOrientedBox obox, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            // Transform the triangle into the local space of the box, so we can use a            // faster axis-aligned box test.            // Note than when transforming more than one point, using an intermediate matrix            // is faster than doing multiple quaternion transforms directly.            Quaternion qinv;            Quaternion.Conjugate(ref obox.Orientation, out qinv);            Matrix minv = Matrix.CreateFromQuaternion(qinv);            Triangle localTri = new Triangle();            localTri.V0 = Vector3.TransformNormal(v0 - obox.Center, minv);            localTri.V1 = Vector3.TransformNormal(v1 - obox.Center, minv);            localTri.V2 = Vector3.TransformNormal(v2 - obox.Center, minv);            return OriginBoxContains(ref obox.HalfExtent, ref localTri) != ContainmentType.Disjoint;        }        /// <summary>        /// Determines whether the given BoundingOrientedBox contains/intersects/is disjoint from the triangle        /// (v0,v1,v2)        /// </summary>        public static ContainmentType Contains(ref BoundingOrientedBox obox, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            // Transform the triangle into the local space of the box, so we can use a            // faster axis-aligned box test.            // Note than when transforming more than one point, using an intermediate matrix            // is faster than doing multiple quaternion transforms directly.            Quaternion qinv;            Quaternion.Conjugate(ref obox.Orientation, out qinv);            Matrix minv;            Matrix.CreateFromQuaternion(ref qinv, out minv);            Triangle localTri = new Triangle();            localTri.V0 = Vector3.TransformNormal(v0 - obox.Center, minv);            localTri.V1 = Vector3.TransformNormal(v1 - obox.Center, minv);            localTri.V2 = Vector3.TransformNormal(v2 - obox.Center, minv);            return OriginBoxContains(ref obox.HalfExtent, ref localTri);        }        /// <summary>        /// Determines whether the given BoundingOrientedBox contains/intersects/is disjoint from the        /// given triangle.        /// </summary>        public static ContainmentType Contains(ref BoundingOrientedBox obox, ref Triangle triangle)        {            return Contains(ref obox, ref triangle.V0, ref triangle.V1, ref triangle.V2);        }        /// <summary>        /// Returns true if the given sphere intersects the triangle (v0,v1,v2).        /// </summary>        public static bool Intersects(ref BoundingSphere sphere, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            Vector3 p = NearestPointOnTriangle(ref sphere.Center, ref v0, ref v1, ref v2);            return Vector3.DistanceSquared(sphere.Center, p) < sphere.Radius * sphere.Radius;        }        /// <summary>        /// Returns true if the given sphere intersects the given triangle.        /// </summary>        public static bool Intersects(ref BoundingSphere sphere, ref Triangle t)        {            Vector3 p = NearestPointOnTriangle(ref sphere.Center, ref t.V0, ref t.V1, ref t.V2);            return Vector3.DistanceSquared(sphere.Center, p) < sphere.Radius * sphere.Radius;        }        /// <summary>        /// Determines whether the given sphere contains/intersects/is disjoint from the triangle        /// (v0,v1,v2)        /// </summary>        public static ContainmentType Contains(ref BoundingSphere sphere, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            float r2 = sphere.Radius * sphere.Radius;            if (Vector3.DistanceSquared(v0, sphere.Center) <= r2 &&                Vector3.DistanceSquared(v1, sphere.Center) <= r2 &&                Vector3.DistanceSquared(v2, sphere.Center) <= r2)                return ContainmentType.Contains;            return Intersects(ref sphere, ref v0, ref v1, ref v2)                   ? ContainmentType.Intersects : ContainmentType.Disjoint;        }        /// <summary>        /// Determines whether the given sphere contains/intersects/is disjoint from the        /// given triangle.        /// </summary>        public static ContainmentType Contains(ref BoundingSphere sphere, ref Triangle triangle)        {            return Contains(ref sphere, ref triangle.V0, ref triangle.V1, ref triangle.V2);        }        /// <summary>        /// Returns true if the given frustum intersects the triangle (v0,v1,v2).        /// </summary>        public static bool Intersects(BoundingFrustum frustum, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            // A BoundingFrustum is defined by a matrix that projects the frustum shape            // into the box from (-1,-1,0) to (1,1,1). We will project the triangle            // through this matrix, and then do a simpler box-triangle test.            Matrix m = frustum.Matrix;            Triangle localTri;            GeomUtil.PerspectiveTransform(ref v0, ref m, out localTri.V0);            GeomUtil.PerspectiveTransform(ref v1, ref m, out localTri.V1);            GeomUtil.PerspectiveTransform(ref v2, ref m, out localTri.V2);            BoundingBox box;            box.Min = new Vector3(-1, -1, 0);            box.Max = new Vector3(1, 1, 1);            return Intersects(ref box, ref localTri.V0, ref localTri.V1, ref localTri.V2);        }        /// <summary>        /// Determines whether the given frustum contains/intersects/is disjoint from the triangle        /// (v0,v1,v2)        /// </summary>        public static ContainmentType Contains(BoundingFrustum frustum, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            // A BoundingFrustum is defined by a matrix that projects the frustum shape            // into the box from (-1,-1,0) to (1,1,1). We will project the triangle            // through this matrix, and then do a simpler box-triangle test.            Matrix m = frustum.Matrix;            Triangle localTri;            GeomUtil.PerspectiveTransform(ref v0, ref m, out localTri.V0);            GeomUtil.PerspectiveTransform(ref v1, ref m, out localTri.V1);            GeomUtil.PerspectiveTransform(ref v2, ref m, out localTri.V2);            // Center the projected box at the origin            Vector3 halfExtent = new Vector3(1, 1, 0.5f);            localTri.V0.Z -= 0.5f;            localTri.V1.Z -= 0.5f;            localTri.V2.Z -= 0.5f;            return OriginBoxContains(ref halfExtent, ref localTri);        }        /// <summary>        /// Determines whether the given frustum contains/intersects/is disjoint from the        /// given triangle.        /// </summary>        public static ContainmentType Contains(BoundingFrustum frustum, ref Triangle triangle)        {            return Contains(frustum, ref triangle.V0, ref triangle.V1, ref triangle.V2);        }        /// <summary>        /// Classify the triangle (v0,v1,v2) with respect to the given plane.        /// </summary>        public static PlaneIntersectionType Intersects(ref Plane plane, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            float dV0 = plane.DotCoordinate(v0);            float dV1 = plane.DotCoordinate(v1);            float dV2 = plane.DotCoordinate(v2);            if (Math.Min(dV0, Math.Min(dV1, dV2)) >= 0)            {                return PlaneIntersectionType.Front;            }            if (Math.Max(dV0, Math.Max(dV1, dV2)) <= 0)            {                return PlaneIntersectionType.Back;            }            return PlaneIntersectionType.Intersecting;        }        /// <summary>        /// Determine whether the triangle (v0,v1,v2) intersects the given ray. If there is intersection,        /// returns the parametric value of the intersection point on the ray. Otherwise returns null.        /// </summary>        public static float? Intersects(ref Ray ray, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            // The algorithm is based on Moller, Tomas and Trumbore, "Fast, Minimum Storage             // Ray-Triangle Intersection", Journal of Graphics Tools, vol. 2, no. 1,             // pp 21-28, 1997.            Vector3 e1 = v1 - v0;            Vector3 e2 = v2 - v0;            Vector3 p = Vector3.Cross(ray.Direction, e2);            float det = Vector3.Dot(e1, p);            float t;            if (det >= EPSILON)            {                // Determinate is positive (front side of the triangle).                Vector3 s = ray.Position - v0;                float u = Vector3.Dot(s, p);                if (u < 0 || u > det)                    return null;                Vector3 q = Vector3.Cross(s, e1);                float v = Vector3.Dot(ray.Direction, q);                if (v < 0 || ((u + v) > det))                    return null;                t = Vector3.Dot(e2, q);                if (t < 0)                    return null;            }            else if (det <= -EPSILON)            {                // Determinate is negative (back side of the triangle).                Vector3 s = ray.Position - v0;                float u = Vector3.Dot(s, p);                if (u > 0 || u < det)                    return null;                Vector3 q = Vector3.Cross(s, e1);                float v = Vector3.Dot(ray.Direction, q);                if (v > 0 || ((u + v) < det))                    return null;                t = Vector3.Dot(e2, q);                if (t > 0)                    return null;            }            else            {                // Parallel ray.                return null;            }            return t / det;        }        /// <summary>        /// Determine whether the given triangle intersects the given ray. If there is intersection,        /// returns the parametric value of the intersection point on the ray. Otherwise returns null.        /// </summary>        public static float? Intersects(ref Ray ray, ref Triangle tri)        {            return Intersects(ref ray, ref tri.V0, ref tri.V1, ref tri.V2);        }        /// <summary>        /// Return the point on triangle (v0,v1,v2) closest to point p.        /// </summary>        public static Vector3 NearestPointOnTriangle(ref Vector3 p, ref Vector3 v0, ref Vector3 v1, ref Vector3 v2)        {            // We'll work in a space where v0 is the origin.            // Let D=p-v0 be the local position of p, E1=v1-v0 and E2=v2-v0 be the            // local positions of v1 and v2.            //            // Points on the triangle are defined by            //      P=v0 + s*E1 + t*E2             //      for s >= 0, t >= 0, s+t <= 1            //            // To compute (s,t) for p, note that s=the ratio of the components of d and e1 which            // are perpendicular to e2 in the plane of the triangle.            //            // s = project(perp(D,E2),E1) / project(perp(E1,E2),E1)            // where project(A,B) = B*(A . B)/(B . B)            //       perp(A,B) = A - project(A,B)            //            // expanding and rearranging terms a bit gives:            //            //     (D . E1)*(E2 . E2) - (D . E2)*(E1 . E2)            // s = ---------------------------------------            //     (E1 . E1)*(E2 . E2) - (E1 . E2)^2            //            // t = [same thing with E1/E2 swapped]            //            // Note that the denominator is the same for s and t, so we only need to compute it            // once, and that the denominator is never negative. So we can compute the numerator            // and denominator separately, and only do the division in case we actually need to            // produce s and/or t.            //            // We also need the parametric projections of p onto each edge:            //      u1 onto E1, u2 onto E2, u12 onto the (v2-v1) edge.            //      u1 = (D . E1)/(E1 . E1)            //      u2 = (D . E2)/(E2 . E2)            Vector3 D = p - v0;            Vector3 E1 = (v1 - v0);            Vector3 E2 = (v2 - v0);            float dot11 = E1.LengthSquared();            float dot12 = Vector3.Dot(E1, E2);            float dot22 = E2.LengthSquared();            float dot1d = Vector3.Dot(E1, D);            float dot2d = Vector3.Dot(E2, D);            float dotdd = D.LengthSquared();            float s = dot1d * dot22 - dot2d * dot12;            float t = dot2d * dot11 - dot1d * dot12;            float d = dot11 * dot22 - dot12 * dot12;            if (dot1d <= 0 && dot2d <= 0)            {                // nearest point is V0                return v0;            }            if (s <= 0 && dot2d >= 0 && dot2d <= dot22)            {                // nearest point is on E2                return v0 + E2 * (dot2d / dot22);            }            if (t <= 0 && dot1d >= 0 && dot1d <= dot11)            {                // nearest point is on E1                return v0 + E1 * (dot1d / dot11);            }            if (s >= 0 && t >= 0 && s + t <= d)            {                // nearest point is inside the triangle                float dr = 1.0f / d;                return v0 + (s * dr) * E1 + (t * dr) * E2;            }            // we need to compute u12. This is hairier than            // u1 or u2 because we're not in a convenient            // basis any more.            float u12_num = dot2d - dot1d - dot12 + dot11;            float u12_den = dot22 + dot11 - 2 * dot12;            if (u12_num <= 0)            {                return v1;            }            if (u12_num >= u12_den)            {                return v2;            }            return v1 + (v2 - v1) * (u12_num / u12_den);        }        /// <summary>        /// Check if an origin-centered, axis-aligned box with the given half extents contains,        /// intersects, or is disjoint from the given triangle. This is used for the box and        /// frustum vs. triangle tests.        /// </summary>        public static ContainmentType OriginBoxContains(ref Vector3 halfExtent, ref Triangle tri)        {            BoundingBox triBounds = new BoundingBox(); // 'new' to work around NetCF bug            triBounds.Min.X = Math.Min(tri.V0.X, Math.Min(tri.V1.X, tri.V2.X));            triBounds.Min.Y = Math.Min(tri.V0.Y, Math.Min(tri.V1.Y, tri.V2.Y));            triBounds.Min.Z = Math.Min(tri.V0.Z, Math.Min(tri.V1.Z, tri.V2.Z));            triBounds.Max.X = Math.Max(tri.V0.X, Math.Max(tri.V1.X, tri.V2.X));            triBounds.Max.Y = Math.Max(tri.V0.Y, Math.Max(tri.V1.Y, tri.V2.Y));            triBounds.Max.Z = Math.Max(tri.V0.Z, Math.Max(tri.V1.Z, tri.V2.Z));            Vector3 triBoundhalfExtent;            triBoundhalfExtent.X = (triBounds.Max.X - triBounds.Min.X) * 0.5f;            triBoundhalfExtent.Y = (triBounds.Max.Y - triBounds.Min.Y) * 0.5f;            triBoundhalfExtent.Z = (triBounds.Max.Z - triBounds.Min.Z) * 0.5f;            Vector3 triBoundCenter;            triBoundCenter.X = (triBounds.Max.X + triBounds.Min.X) * 0.5f;            triBoundCenter.Y = (triBounds.Max.Y + triBounds.Min.Y) * 0.5f;            triBoundCenter.Z = (triBounds.Max.Z + triBounds.Min.Z) * 0.5f;            if (triBoundhalfExtent.X + halfExtent.X <= Math.Abs(triBoundCenter.X) ||                triBoundhalfExtent.Y + halfExtent.Y <= Math.Abs(triBoundCenter.Y) ||                triBoundhalfExtent.Z + halfExtent.Z <= Math.Abs(triBoundCenter.Z))            {                return ContainmentType.Disjoint;            }            if (triBoundhalfExtent.X + Math.Abs(triBoundCenter.X) <= halfExtent.X &&                triBoundhalfExtent.Y + Math.Abs(triBoundCenter.Y) <= halfExtent.Y &&                triBoundhalfExtent.Z + Math.Abs(triBoundCenter.Z) <= halfExtent.Z)            {                return ContainmentType.Contains;            }            Vector3 edge1, edge2, edge3;            Vector3.Subtract(ref tri.V1, ref tri.V0, out edge1);            Vector3.Subtract(ref tri.V2, ref tri.V0, out edge2);            Vector3 normal;            Vector3.Cross(ref edge1, ref edge2, out normal);            float triangleDist = Vector3.Dot(tri.V0, normal);            if(Math.Abs(normal.X*halfExtent.X) + Math.Abs(normal.Y*halfExtent.Y) + Math.Abs(normal.Z*halfExtent.Z) <= Math.Abs(triangleDist))            {                return ContainmentType.Disjoint;            }            // Worst case: we need to check all 9 possible separating planes            // defined by Cross(box edge,triangle edge)            // Check for separation in plane containing an axis of box A and and axis of box B            //            // We need to compute all 9 cross products to find them, but a lot of terms drop out            // since we're working in A's local space. Also, since each such plane is parallel            // to the defining axis in each box, we know those dot products will be 0 and can            // omit them.            Vector3.Subtract(ref tri.V1, ref tri.V2, out edge3);            float dv0, dv1, dv2, dhalf;            // a.X ^ b.X = (1,0,0) ^ edge1            // axis = Vector3(0, -edge1.Z, edge1.Y);            dv0 = tri.V0.Z * edge1.Y - tri.V0.Y * edge1.Z;            dv1 = tri.V1.Z * edge1.Y - tri.V1.Y * edge1.Z;            dv2 = tri.V2.Z * edge1.Y - tri.V2.Y * edge1.Z;            dhalf = Math.Abs(halfExtent.Y * edge1.Z) + Math.Abs(halfExtent.Z * edge1.Y);            if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)                return ContainmentType.Disjoint;            // a.X ^ b.Y = (1,0,0) ^ edge2            // axis = Vector3(0, -edge2.Z, edge2.Y);            dv0 = tri.V0.Z * edge2.Y - tri.V0.Y * edge2.Z;            dv1 = tri.V1.Z * edge2.Y - tri.V1.Y * edge2.Z;            dv2 = tri.V2.Z * edge2.Y - tri.V2.Y * edge2.Z;            dhalf = Math.Abs(halfExtent.Y * edge2.Z) + Math.Abs(halfExtent.Z * edge2.Y);            if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)                return ContainmentType.Disjoint;            // a.X ^ b.Y = (1,0,0) ^ edge3            // axis = Vector3(0, -edge3.Z, edge3.Y);            dv0 = tri.V0.Z * edge3.Y - tri.V0.Y * edge3.Z;            dv1 = tri.V1.Z * edge3.Y - tri.V1.Y * edge3.Z;            dv2 = tri.V2.Z * edge3.Y - tri.V2.Y * edge3.Z;            dhalf = Math.Abs(halfExtent.Y * edge3.Z) + Math.Abs(halfExtent.Z * edge3.Y);            if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)                return ContainmentType.Disjoint;            // a.Y ^ b.X = (0,1,0) ^ edge1            // axis = Vector3(edge1.Z, 0, -edge1.X);            dv0 = tri.V0.X * edge1.Z - tri.V0.Z * edge1.X;            dv1 = tri.V1.X * edge1.Z - tri.V1.Z * edge1.X;            dv2 = tri.V2.X * edge1.Z - tri.V2.Z * edge1.X;            dhalf = Math.Abs(halfExtent.X * edge1.Z) + Math.Abs(halfExtent.Z * edge1.X);            if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)                return ContainmentType.Disjoint;            // a.Y ^ b.X = (0,1,0) ^ edge2            // axis = Vector3(edge2.Z, 0, -edge2.X);            dv0 = tri.V0.X * edge2.Z - tri.V0.Z * edge2.X;            dv1 = tri.V1.X * edge2.Z - tri.V1.Z * edge2.X;            dv2 = tri.V2.X * edge2.Z - tri.V2.Z * edge2.X;            dhalf = Math.Abs(halfExtent.X * edge2.Z) + Math.Abs(halfExtent.Z * edge2.X);            if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)                return ContainmentType.Disjoint;            // a.Y ^ b.X = (0,1,0) ^ bX            // axis = Vector3(edge3.Z, 0, -edge3.X);            dv0 = tri.V0.X * edge3.Z - tri.V0.Z * edge3.X;            dv1 = tri.V1.X * edge3.Z - tri.V1.Z * edge3.X;            dv2 = tri.V2.X * edge3.Z - tri.V2.Z * edge3.X;            dhalf = Math.Abs(halfExtent.X * edge3.Z) + Math.Abs(halfExtent.Z * edge3.X);            if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)                return ContainmentType.Disjoint;            // a.Y ^ b.X = (0,0,1) ^ edge1            // axis = Vector3(-edge1.Y, edge1.X, 0);            dv0 = tri.V0.Y * edge1.X - tri.V0.X * edge1.Y;            dv1 = tri.V1.Y * edge1.X - tri.V1.X * edge1.Y;            dv2 = tri.V2.Y * edge1.X - tri.V2.X * edge1.Y;            dhalf = Math.Abs(halfExtent.Y * edge1.X) + Math.Abs(halfExtent.X * edge1.Y);            if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)                return ContainmentType.Disjoint;            // a.Y ^ b.X = (0,0,1) ^ edge2            // axis = Vector3(-edge2.Y, edge2.X, 0);            dv0 = tri.V0.Y * edge2.X - tri.V0.X * edge2.Y;            dv1 = tri.V1.Y * edge2.X - tri.V1.X * edge2.Y;            dv2 = tri.V2.Y * edge2.X - tri.V2.X * edge2.Y;            dhalf = Math.Abs(halfExtent.Y * edge2.X) + Math.Abs(halfExtent.X * edge2.Y);            if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)                return ContainmentType.Disjoint;            // a.Y ^ b.X = (0,0,1) ^ edge3            // axis = Vector3(-edge3.Y, edge3.X, 0);            dv0 = tri.V0.Y * edge3.X - tri.V0.X * edge3.Y;            dv1 = tri.V1.Y * edge3.X - tri.V1.X * edge3.Y;            dv2 = tri.V2.Y * edge3.X - tri.V2.X * edge3.Y;            dhalf = Math.Abs(halfExtent.Y * edge3.X) + Math.Abs(halfExtent.X * edge3.Y);            if (Math.Min(dv0, Math.Min(dv1, dv2)) >= dhalf || Math.Max(dv0, Math.Max(dv1, dv2)) <= -dhalf)                return ContainmentType.Disjoint;            return ContainmentType.Intersects;        }    }}
 |