#region File Description
//-----------------------------------------------------------------------------
// SkinnedModelProcessor.cs
//
// Microsoft XNA Community Game Platform
// Copyright (C) Microsoft Corporation. All rights reserved.
//-----------------------------------------------------------------------------
#endregion
using System;
using System.Collections.Generic;
using CustomModelAnimation;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Content.Pipeline;
using Microsoft.Xna.Framework.Content.Pipeline.Graphics;
using Microsoft.Xna.Framework.Content.Pipeline.Processors;
namespace CustomModelAnimationPipeline
{
///
/// Custom processor extends the builtin framework ModelProcessor class,
/// adding animation support.
///
[ContentProcessor(DisplayName = "Skinned Model Processor")]
public class SkinnedModelProcessor : ModelProcessor
{
// Maximum number of bone matrices we can render in a single pass
const int MaxBones = 59;
///
/// The main Process method converts an intermediate format content pipeline
/// NodeContent tree to a ModelContent object with embedded animation data.
///
public override ModelContent Process(NodeContent input, ContentProcessorContext context)
{
ValidateMesh(input, context, null);
// Find the skeleton.
BoneContent skeleton = MeshHelper.FindSkeleton(input);
if (skeleton == null)
throw new InvalidContentException("Input skeleton not found.");
// We don't want to have to worry about different parts of the model being
// in different local coordinate systems, so let's just bake everything.
FlattenTransforms(input, skeleton);
// Read the bind pose and skeleton hierarchy data.
IList bones = MeshHelper.FlattenSkeleton(skeleton);
if (bones.Count > MaxBones)
{
throw new InvalidContentException(string.Format(
"Skeleton has {0} bones, but the maximum supported is {1}.",
bones.Count, MaxBones));
}
List bindPose = new List();
List inverseBindPose = new List();
List skeletonHierarchy = new List();
foreach (BoneContent bone in bones)
{
bindPose.Add(bone.Transform);
inverseBindPose.Add(Matrix.Invert(bone.AbsoluteTransform));
skeletonHierarchy.Add(bones.IndexOf(bone.Parent as BoneContent));
}
// Convert animation data to our runtime format.
Dictionary animationClips = ProcessAnimations(skeleton.Animations, bones);
Dictionary rootClips = new Dictionary();
// Chain to the base ModelProcessor class so it can convert the model data.
ModelContent model = base.Process(input, context);
// Convert each animation in the root of the object
foreach (KeyValuePair animation in input.Animations)
{
ModelAnimationClip processed =
AnimatedModelProcessor.ProcessRootAnimation(animation.Value, model.Bones[0].Name);
rootClips.Add(animation.Key, processed);
}
// Store our custom animation data in the Tag property of the model.
model.Tag = new ModelData(animationClips, null, bindPose, inverseBindPose, skeletonHierarchy);
return model;
}
protected override void ProcessVertexChannel(
GeometryContent geometry,
int vertexChannelIndex,
ContentProcessorContext context)
{
bool isWeights = geometry.Vertices.Channels[vertexChannelIndex].Name == VertexChannelNames.Weights();
base.ProcessVertexChannel(geometry, vertexChannelIndex, context);
if (isWeights)
{
geometry.Vertices.Channels.ConvertChannelContent("BlendIndices0");
geometry.Vertices.Channels.ConvertChannelContent("BlendWeight0");
}
}
///
/// Converts an intermediate format content pipeline AnimationContentDictionary
/// object to our runtime AnimationClip format.
///
static Dictionary ProcessAnimations(
AnimationContentDictionary animations,
IList bones)
{
// Build up a table mapping bone names to indices.
Dictionary boneMap = new Dictionary();
for (int i = 0; i < bones.Count; i++)
{
string boneName = bones[i].Name;
if (!string.IsNullOrEmpty(boneName))
boneMap.Add(boneName, i);
}
// Convert each animation in turn.
Dictionary animationClips;
animationClips = new Dictionary();
foreach (KeyValuePair animation in animations)
{
ModelAnimationClip processed = ProcessAnimation(animation.Value, boneMap);
animationClips.Add(animation.Key, processed);
}
if (animationClips.Count == 0)
{
throw new InvalidContentException("Input file does not contain any animations.");
}
return animationClips;
}
///
/// Converts an intermediate format content pipeline AnimationContent
/// object to our runtime AnimationClip format.
///
static ModelAnimationClip ProcessAnimation(AnimationContent animation, Dictionary boneMap)
{
List keyframes = new List();
// For each input animation channel.
foreach (KeyValuePair channel in
animation.Channels)
{
// Look up what bone this channel is controlling.
int boneIndex;
if (!boneMap.TryGetValue(channel.Key, out boneIndex))
{
throw new InvalidContentException(string.Format(
"Found animation for bone '{0}', which is not part of the skeleton.",
channel.Key));
}
// Convert the keyframe data.
foreach (AnimationKeyframe keyframe in channel.Value)
{
keyframes.Add(new ModelKeyframe(boneIndex, keyframe.Time, keyframe.Transform));
}
}
// Sort the merged keyframes by time.
keyframes.Sort(CompareKeyframeTimes);
if (keyframes.Count == 0)
throw new InvalidContentException("Animation has no keyframes.");
if (animation.Duration <= TimeSpan.Zero)
throw new InvalidContentException("Animation has a zero duration.");
return new ModelAnimationClip(animation.Duration, keyframes);
}
///
/// Comparison function for sorting keyframes into ascending time order.
///
static int CompareKeyframeTimes(ModelKeyframe a, ModelKeyframe b)
{
return a.Time.CompareTo(b.Time);
}
///
/// Makes sure this mesh contains the kind of data we know how to animate.
///
static void ValidateMesh(NodeContent node, ContentProcessorContext context, string parentBoneName)
{
MeshContent mesh = node as MeshContent;
if (mesh != null)
{
// Validate the mesh.
if (parentBoneName != null)
{
context.Logger.LogWarning(null, null,
"Mesh {0} is a child of bone {1}. SkinnedModelProcessor " +
"does not correctly handle meshes that are children of bones.",
mesh.Name, parentBoneName);
}
if (!MeshHasSkinning(mesh))
{
context.Logger.LogWarning(null, null,
"Mesh {0} has no skinning information, so it has been deleted.",
mesh.Name);
mesh.Parent.Children.Remove(mesh);
return;
}
}
else if (node is BoneContent)
{
// If this is a bone, remember that we are now looking inside it.
parentBoneName = node.Name;
}
// Recurse (iterating over a copy of the child collection,
// because validating children may delete some of them).
foreach (NodeContent child in new List(node.Children))
ValidateMesh(child, context, parentBoneName);
}
///
/// Checks whether a mesh contains skininng information.
///
static bool MeshHasSkinning(MeshContent mesh)
{
foreach (GeometryContent geometry in mesh.Geometry)
{
if (!geometry.Vertices.Channels.Contains(VertexChannelNames.Weights()))
return false;
}
return true;
}
///
/// Bakes unwanted transforms into the model geometry,
/// so everything ends up in the same coordinate system.
///
static void FlattenTransforms(NodeContent node, BoneContent skeleton)
{
foreach (NodeContent child in node.Children)
{
// Don't process the skeleton, because that is special.
if (child == skeleton)
continue;
// Bake the local transform into the actual geometry.
MeshHelper.TransformScene(child, child.Transform);
// Having baked it, we can now set the local
// coordinate system back to identity.
child.Transform = Matrix.Identity;
// Recurse.
FlattenTransforms(child, skeleton);
}
}
}
}