using System; using System.Collections.Generic; using System.Numerics; using System.Text; using System.Xml; using Newtonsoft.Json; using NUnit.Framework; using Plotly; namespace SharpGLTF.Transforms { [Category("Core.Transforms")] public class AffineTransformMatrixTests { [TestCase(0, 0, 0, 0, 0, 0)] [TestCase(1, 2, 4, 3, 2, 1)] [TestCase(-1, 1, 3, 2, 0, 1)] [TestCase(0, 0, 1, 0, 1, 0)] [TestCase(0, -1, 1, -2, 1, 0)] public void CalculateInverseBindMatrix(float mx, float my, float mz, float jx, float jy, float jz) { var model = Matrix4x4.CreateFromYawPitchRoll(mx, my, mz); var joint = Matrix4x4.CreateFromYawPitchRoll(jx, jy, jz); joint.Translation = new Vector3(jx, jy, jz); var invBindMatrix = SkinnedTransform.CalculateInverseBinding(model, joint); Matrix4x4.Invert(model, out Matrix4x4 xform); Matrix4x4.Invert(joint * xform, out Matrix4x4 result); NumericsAssert.AreEqual(result, invBindMatrix, 0.000001f); Matrix4x4.Invert(joint, out Matrix4x4 invJoint); result = model * invJoint; NumericsAssert.AreEqual(result, invBindMatrix, 0.000001f); } [Test] public void TestMatrixNormalization() { void testMatrix(Matrix4x4 m, float tolerance = 0) { var o = m; Matrix4x4Factory.NormalizeMatrix(ref m); NumericsAssert.AreEqual(o, m, tolerance); Assert.That(Matrix4x4.Decompose(m, out _, out _, out _), Is.True); Assert.That(Matrix4x4.Invert(m, out _), Is.True); } void testSkewed(Func mf, float tolerance = 0) { var m = Matrix4x4.Identity; var o = m = mf(m); Assert.That(Matrix4x4.Decompose(m, out _, out _, out _), Is.False); Matrix4x4Factory.NormalizeMatrix(ref m); NumericsAssert.AreEqual(o, m, tolerance); Assert.That(Matrix4x4.Decompose(m, out _, out _, out _), Is.True); Assert.That(Matrix4x4.Invert(m, out _), Is.True); } testSkewed(m => { m.M12 += 0.34f; return m; }, 0.34f); testSkewed(m => { m.M13 += 0.34f; return m; }, 0.34f); testSkewed(m => { m.M21 += 0.34f; return m; }, 0.34f); testSkewed(m => { m.M23 += 0.34f; return m; }, 0.34f); testSkewed(m => { m.M31 += 0.34f; return m; }, 0.34f); testSkewed(m => { m.M32 += 0.34f; return m; }, 0.34f); testSkewed(m => { m.M12 += 0.1f; m.M23 -= 0.1f; m.M31 += 0.05f; return m; }, 0.20f); // test normalization with uneven scaling testMatrix(Matrix4x4.CreateScale(0.0001f) * Matrix4x4.CreateFromYawPitchRoll(1, 2, 3), 0.0001f); testMatrix(Matrix4x4.CreateScale(1000) * Matrix4x4.CreateFromYawPitchRoll(1, 2, 3), 0.0002f); var SxR = Matrix4x4.CreateScale(5, 1, 1) * Matrix4x4.CreateFromYawPitchRoll(1, 2, 3); // Decomposable var RxS = Matrix4x4.CreateFromYawPitchRoll(1, 2, 3) * Matrix4x4.CreateScale(5, 1, 1); // Not Decomposable Assert.That(Matrix4x4.Decompose(SxR, out _, out _, out _), Is.True); testMatrix(SxR, 0.0001f); Assert.That(Matrix4x4.Decompose(RxS, out _, out _, out _), Is.False); testMatrix(RxS, 100); } [Test] public void TestAffineTransformIdentity() { var asMatrix = new AffineTransform(Matrix4x4.Identity); var asDecomposed = new AffineTransform(null, null, null); NumericsAssert.AreEqual(Matrix4x4.Identity, asMatrix.Matrix); NumericsAssert.AreEqual(Matrix4x4.Identity, asDecomposed.Matrix); Assert.That(asMatrix.IsIdentity, Is.True); Assert.That(asDecomposed.IsIdentity, Is.True); } [TestCase(false, false, false, false)] [TestCase(false, false, false, true)] [TestCase(false, false, true, false)] [TestCase(false, false, true, true)] [TestCase(false, true, false, false)] [TestCase(false, true, false, true)] [TestCase(false, true, true, false)] [TestCase(false, true, true, true)] [TestCase(true, false, false, false)] [TestCase(true, false, false, true)] [TestCase(true, false, true, false)] [TestCase(true, false, true, true)] [TestCase(true, true, false, false)] [TestCase(true, true, false, true)] [TestCase(true, true, true, false)] [TestCase(true, true, true, true)] public void TestAffineTransformMult(bool sa, bool sb, bool ra, bool rb) { var s_a = sa ? new Vector3(1, 2, 4) : Vector3.One; var r_a = ra ? Quaternion.CreateFromYawPitchRoll(1, 2, 3) : Quaternion.Identity; var t_a = new Vector3(1, 5, -9); var s_b = sb ? new Vector3(1, 2, 4) : Vector3.One; var r_b = rb ? Quaternion.CreateFromYawPitchRoll(1, 0, 2) : Quaternion.Identity; var t_b = new Vector3(3, -4, 2); var mat_a = Matrix4x4.CreateScale(s_a) * Matrix4x4.CreateFromQuaternion(r_a) * Matrix4x4.CreateTranslation(t_a); var mat_b = Matrix4x4.CreateScale(s_b) * Matrix4x4.CreateFromQuaternion(r_b) * Matrix4x4.CreateTranslation(t_b); var mat_ab = Matrix4x4.Multiply(mat_a, mat_b); var mat_ba = Matrix4x4.Multiply(mat_b, mat_a); var srt_a = new AffineTransform(s_a, r_a, t_a); var srt_b = new AffineTransform(s_b, r_b, t_b); var srt_ab = AffineTransform.Multiply(srt_a, srt_b); var srt_ba = AffineTransform.Multiply(srt_b, srt_a); TestContext.WriteLine($"A({sa},{ra}) x B({sb},{rb}) = {srt_ab.IsSRT}"); TestContext.WriteLine($"B({sb},{rb}) x A({sa},{ra}) = {srt_ba.IsSRT}"); NumericsAssert.AreEqual(mat_ab, srt_ab.Matrix, 0.00001f); NumericsAssert.AreEqual(mat_ba, srt_ba.Matrix, 0.00001f); } [TestCase(true, 1, 10, 100, 0, 0, 0, 5,5,5)] [TestCase(true, 1, 1, 1, 0, 0, 0, 0, 0, 0)] [TestCase(true, 1, 1, 1, 2, 0, -1, 100, 50, 0)] [TestCase(true, 5, 5, 5, 1, 2, 3, 100, 50, 0)] [TestCase(false, 1, 2, 3, 1, 2, 3, 1, 2, 3)] [TestCase(false, 1, 2, 30, 1, 2, 3, 1, 2, 3)] [TestCase(false, -1, -2, 3, 0, 1, 0, 1, 0, 0)] public void TestAffineTransformInverse(bool isInvertibleToSRT, float sx, float sy, float sz, float y, float p, float r, float tx, float ty, float tz) { var xf = new AffineTransform(new Vector3(sx, sy, sz), Quaternion.CreateFromYawPitchRoll(y, p, r), new Vector3(tx, ty, tz)); Assert.That(AffineTransform.TryInvert(xf, out var xi), Is.True); Assert.That(Matrix4x4.Invert(xf.Matrix, out var mi), Is.True); mi.M44 = 1f; if (isInvertibleToSRT) Assert.That(xi.IsSRT, Is.True); var xmi = xi.Matrix; var tolerance = 0.00001f; #if NET8_0_OR_GREATER tolerance = 0.0001f; // something has changed on net8 that has lowered the precission #endif var diff = NumericsAssert.AreGeometryicallyEquivalent(mi, xmi, tolerance); TestContext.WriteLine(diff); Assert.That(AffineTransform.AreGeometricallyEquivalent(mi, xi, tolerance), Is.True); } } }