using System;
using System.Collections.Generic;
using System.Text;
using System.Numerics;
using System.Linq;
using SharpGLTF.Schema2;
namespace SharpGLTF
{
///
/// Extensions used internally.
///
static class _Extensions
{
#region constants
// constants from: https://github.com/KhronosGroup/glTF-Validator/blob/master/lib/src/errors.dart
private const float _UnitLengthThresholdVec3 = 0.00674f;
private const float _UnitLengthThresholdVec4 = 0.00769f;
// This value is slightly greater
// than the maximum error from unsigned 8-bit quantization
// 1..2 elements - 0 * step
// 3..4 elements - 1 * step
// 5..6 elements - 2 * step
// ...
private const float _UnitSumThresholdStep = 0.0039216f;
#endregion
#region private numerics extensions
internal static bool IsMultipleOf(this int value, int mult)
{
return (value % mult) == 0;
}
internal static int WordPadded(this int length)
{
var padding = length & 3;
return length + (padding == 0 ? 0 : 4 - padding);
}
internal static bool _IsFinite(this float value)
{
return !(float.IsNaN(value) || float.IsInfinity(value));
}
internal static bool _IsFinite(this Vector2 v)
{
return v.X._IsFinite() && v.Y._IsFinite();
}
internal static bool _IsFinite(this Vector3 v)
{
return v.X._IsFinite() && v.Y._IsFinite() && v.Z._IsFinite();
}
internal static bool _IsFinite(this Vector4 v)
{
return v.X._IsFinite() && v.Y._IsFinite() && v.Z._IsFinite() && v.W._IsFinite();
}
internal static bool _IsFinite(this Matrix4x4 v)
{
if (!(v.M11._IsFinite() && v.M12._IsFinite() && v.M13._IsFinite() && v.M14._IsFinite())) return false;
if (!(v.M21._IsFinite() && v.M22._IsFinite() && v.M23._IsFinite() && v.M24._IsFinite())) return false;
if (!(v.M31._IsFinite() && v.M32._IsFinite() && v.M33._IsFinite() && v.M34._IsFinite())) return false;
if (!(v.M41._IsFinite() && v.M42._IsFinite() && v.M43._IsFinite() && v.M44._IsFinite())) return false;
return true;
}
internal static bool _IsFinite(this Quaternion v)
{
return v.X._IsFinite() && v.Y._IsFinite() && v.Z._IsFinite() && v.W._IsFinite();
}
internal static Vector3 WithLength(this Vector3 v, float len)
{
return Vector3.Normalize(v) * len;
}
internal static Boolean IsNormalized(this Vector3 normal)
{
if (!normal._IsFinite()) return false;
return Math.Abs(normal.Length() - 1) <= _UnitLengthThresholdVec3;
}
internal static Boolean IsNormalized(this Quaternion rotation)
{
if (!rotation._IsFinite()) return false;
return Math.Abs(rotation.Length() - 1) <= _UnitLengthThresholdVec4;
}
internal static Quaternion AsQuaternion(this Vector4 v)
{
return new Quaternion(v.X, v.Y, v.Z, v.W);
}
internal static Quaternion Sanitized(this Quaternion q)
{
return q.IsNormalized() ? q : Quaternion.Normalize(q);
}
internal static bool IsInRange(this Vector3 value, Vector3 min, Vector3 max)
{
if (value.X < min.X || value.X > max.X) return false;
if (value.Y < min.Y || value.Y > max.Y) return false;
if (value.Z < min.Z || value.Z > max.Z) return false;
return true;
}
internal static bool IsInRange(this Vector4 value, Vector4 min, Vector4 max)
{
if (value.X < min.X || value.X > max.X) return false;
if (value.Y < min.Y || value.Y > max.Y) return false;
if (value.Z < min.Z || value.Z > max.Z) return false;
if (value.W < min.W || value.W > max.W) return false;
return true;
}
internal static bool IsRound(this Vector4 value)
{
var r = new Vector4((int)value.X, (int)value.Y, (int)value.Z, (int)value.W);
return (value - r) == Vector4.Zero;
}
/*
internal static void Validate(this Vector3 vector, string msg)
{
if (!vector._IsFinite()) throw new NotFiniteNumberException($"{msg} is invalid.");
}*/
internal static void ValidateNormal(this Vector3 normal, string msg)
{
if (!normal._IsFinite()) throw new NotFiniteNumberException($"{msg} is invalid.");
if (!normal.IsNormalized()) throw new ArithmeticException($"{msg} is not unit length.");
}
internal static void ValidateTangent(this Vector4 tangent, string msg)
{
if (tangent.W != 1 && tangent.W != -1) throw new ArithmeticException(msg);
new Vector3(tangent.X, tangent.Y, tangent.Z).ValidateNormal(msg);
}
internal static Vector3 SanitizeNormal(this Vector3 normal)
{
return normal.IsNormalized() ? normal : Vector3.Normalize(normal);
}
internal static bool IsValidTangent(this Vector4 tangent)
{
if (tangent.W != 1 && tangent.W != -1) return false;
return new Vector3(tangent.X, tangent.Y, tangent.Z).IsNormalized();
}
internal static Vector4 SanitizeTangent(this Vector4 tangent)
{
var n = new Vector3(tangent.X, tangent.Y, tangent.Z).SanitizeNormal();
var s = float.IsNaN(tangent.W) ? 1 : tangent.W;
return new Vector4(n, s > 0 ? 1 : -1);
}
internal static Matrix4x4 Inverse(this Matrix4x4 src)
{
if (!Matrix4x4.Invert(src, out Matrix4x4 dst)) Guard.IsTrue(false, nameof(src), "Matrix cannot be inverted.");
return dst;
}
internal static bool IsValid(this in Matrix4x4 matrix)
{
if (!matrix._IsFinite()) return false;
if (!Matrix4x4.Decompose(matrix, out Vector3 s, out Quaternion r, out Vector3 t)) return false;
if (!Matrix4x4.Invert(matrix, out Matrix4x4 inverse)) return false;
return true;
}
#endregion
#region linq
internal static int GetContentHashCode(this IEnumerable collection, int count = int.MaxValue)
{
if (collection == null) return 0;
int h = 0;
// this will handle default(ArraySegment)
if (collection is IReadOnlyList list)
{
count = Math.Min(count, list.Count);
for (int i = 0; i < count; ++i)
{
var element = list[i];
h ^= element == null ? 0 : element.GetHashCode();
h *= 17;
}
return h;
}
foreach (var element in collection.Take(count))
{
h ^= element == null ? 0 : element.GetHashCode();
h *= 17;
}
return h;
}
internal static ArraySegment Slice(this T[] array, int offset)
{
return new ArraySegment(array, offset, array.Length - offset);
}
internal static ArraySegment Slice(this ArraySegment array, int offset)
{
return new ArraySegment(array.Array, array.Offset + offset, array.Count - offset);
}
internal static ArraySegment Slice(this ArraySegment array, int offset, int count)
{
return new ArraySegment(array.Array, array.Offset + offset, count);
}
internal static T[] CloneArray(this T[] srcArray)
{
if (srcArray == null) return null;
var dstArray = new T[srcArray.Length];
srcArray.CopyTo(dstArray, 0);
return dstArray;
}
internal static void Fill(this IList collection, T value)
{
for (int i = 0; i < collection.Count; ++i)
{
collection[i] = value;
}
}
internal static void Fill(this T[] array, T value)
{
for (int i = 0; i < array.Length; ++i)
{
array[i] = value;
}
}
internal static int IndexOf(this IReadOnlyList collection, T value)
{
var l = collection.Count;
for (int i = 0; i < l; ++i)
{
if (Object.Equals(collection[i], value)) return i;
}
return -1;
}
internal static int IndexOf(this IReadOnlyList collection, Predicate predicate)
{
var l = collection.Count;
for (int i = 0; i < l; ++i)
{
if (predicate(collection[i])) return i;
}
return -1;
}
internal static int IndexOfReference(this IReadOnlyList collection, T value)
where T : class
{
var l = collection.Count;
for (int i = 0; i < l; ++i)
{
if (Object.ReferenceEquals(collection[i], value)) return i;
}
return -1;
}
internal static int IndexOf(this IReadOnlyList collection, T[] subset)
where T : IEquatable
{
var l = collection.Count - subset.Length;
for (int i = 0; i < l; ++i)
{
bool r = false;
for (int j = 0; j < subset.Length; ++j)
{
if (!collection[i + j].Equals(subset[j])) break;
r = true;
}
if (r) return i;
}
return -1;
}
internal static void CopyTo(this T[] src, int srcOffset, IList dst, int dstOffset, int count)
{
var srcArray = new ArraySegment(src);
srcArray.CopyTo(srcOffset, dst, dstOffset, count);
}
internal static void CopyTo(this ArraySegment src, int srcOffset, IList dst, int dstOffset, int count)
{
if (dst is T[] dstArray)
{
Array.Copy(src.Array, src.Offset + srcOffset, dstArray, dstOffset, count);
return;
}
for (int i = 0; i < count; ++i)
{
dst[dstOffset + i] = src.Array[src.Offset + srcOffset + i];
}
}
internal static void AddRange(this IList dst, IEnumerable src, Converter cvt)
{
foreach (var item in src)
{
dst.Add(cvt(item));
}
}
internal static IEnumerable ConcatItems(this IEnumerable collection, params T[] instances)
{
return collection.Concat(instances.Where(item => item != null));
}
public static void SanitizeNormals(this IList normals)
{
for (int i = 0; i < normals.Count; ++i)
{
if (!normals[i].IsNormalized()) normals[i] = normals[i].SanitizeNormal();
}
}
public static void SanitizeTangents(this IList tangents)
{
for (int i = 0; i < tangents.Count; ++i)
{
if (!tangents[i].IsValidTangent()) tangents[i] = tangents[i].SanitizeTangent();
}
}
#endregion
#region vertex & index accessors
public static String ToDebugString(this EncodingType encoding, DimensionType dimensions, bool normalized)
{
var txt = string.Empty;
switch (encoding)
{
case EncodingType.BYTE: txt += "SByte"; break;
case EncodingType.FLOAT: txt += "Float"; break;
case EncodingType.SHORT: txt += "SShort"; break;
case EncodingType.UNSIGNED_BYTE: txt += "UByte"; break;
case EncodingType.UNSIGNED_INT: txt += "UInt"; break;
case EncodingType.UNSIGNED_SHORT: txt += "UShort"; break;
}
switch (dimensions)
{
case DimensionType.SCALAR: break;
case DimensionType.VEC2: txt += "2"; break;
case DimensionType.VEC3: txt += "3"; break;
case DimensionType.VEC4: txt += "4"; break;
case DimensionType.MAT2: txt += "2x2"; break;
case DimensionType.MAT3: txt += "3x3"; break;
case DimensionType.MAT4: txt += "4x4"; break;
}
if (normalized) txt = "Norm" + txt;
return txt;
}
public static int ByteLength(this IndexEncodingType encoding)
{
switch (encoding)
{
case IndexEncodingType.UNSIGNED_BYTE: return 1;
case IndexEncodingType.UNSIGNED_SHORT: return 2;
case IndexEncodingType.UNSIGNED_INT: return 4;
default: throw new NotImplementedException();
}
}
public static int ByteLength(this EncodingType encoding)
{
switch (encoding)
{
case EncodingType.BYTE: return 1;
case EncodingType.SHORT: return 2;
case EncodingType.FLOAT: return 4;
case EncodingType.UNSIGNED_BYTE: return 1;
case EncodingType.UNSIGNED_SHORT: return 2;
case EncodingType.UNSIGNED_INT: return 4;
default: throw new NotImplementedException();
}
}
public static EncodingType ToComponent(this IndexEncodingType t)
{
switch (t)
{
case IndexEncodingType.UNSIGNED_BYTE: return EncodingType.UNSIGNED_BYTE;
case IndexEncodingType.UNSIGNED_SHORT: return EncodingType.UNSIGNED_SHORT;
case IndexEncodingType.UNSIGNED_INT: return EncodingType.UNSIGNED_INT;
default: throw new NotImplementedException();
}
}
public static IndexEncodingType ToIndex(this EncodingType t)
{
switch (t)
{
case EncodingType.UNSIGNED_BYTE: return IndexEncodingType.UNSIGNED_BYTE;
case EncodingType.UNSIGNED_SHORT: return IndexEncodingType.UNSIGNED_SHORT;
case EncodingType.UNSIGNED_INT: return IndexEncodingType.UNSIGNED_INT;
default: throw new NotImplementedException();
}
}
public static int DimCount(this DimensionType dimension)
{
switch (dimension)
{
case DimensionType.SCALAR: return 1;
case DimensionType.VEC2: return 2;
case DimensionType.VEC3: return 3;
case DimensionType.VEC4: return 4;
case DimensionType.MAT2: return 4;
case DimensionType.MAT3: return 9;
case DimensionType.MAT4: return 16;
default: throw new NotImplementedException();
}
}
internal static DimensionType ToDimension(this int l)
{
switch (l)
{
case 1: return DimensionType.SCALAR;
case 2: return DimensionType.VEC2;
case 3: return DimensionType.VEC3;
case 4: return DimensionType.VEC4;
// case 4: return ElementType.MAT2;
case 9: return DimensionType.MAT3;
case 16: return DimensionType.MAT4;
default: throw new NotImplementedException();
}
}
public static int GetPrimitiveVertexSize(this PrimitiveType ptype)
{
switch (ptype)
{
case PrimitiveType.POINTS: return 1;
case PrimitiveType.LINES: return 2;
case PrimitiveType.LINE_LOOP: return 2;
case PrimitiveType.LINE_STRIP: return 2;
case PrimitiveType.TRIANGLES: return 3;
case PrimitiveType.TRIANGLE_FAN: return 3;
case PrimitiveType.TRIANGLE_STRIP: return 3;
default: throw new NotImplementedException();
}
}
public static IEnumerable<(int A, int B)> GetLinesIndices(this PrimitiveType ptype, int vertexCount)
{
return ptype.GetLinesIndices(Enumerable.Range(0, vertexCount).Select(item => (UInt32)item));
}
public static IEnumerable<(int A, int B, int C)> GetTrianglesIndices(this PrimitiveType ptype, int vertexCount)
{
return ptype.GetTrianglesIndices(Enumerable.Range(0, vertexCount).Select(item => (UInt32)item));
}
public static IEnumerable<(int A, int B)> GetLinesIndices(this PrimitiveType ptype, IEnumerable sourceIndices)
{
switch (ptype)
{
case PrimitiveType.LINES:
{
using (var ptr = sourceIndices.GetEnumerator())
{
while (true)
{
if (!ptr.MoveNext()) break;
var a = ptr.Current;
if (!ptr.MoveNext()) break;
var b = ptr.Current;
if (!_IsDegenerated(a, b)) yield return ((int)a, (int)b);
}
}
break;
}
default: throw new NotImplementedException();
}
}
public static IEnumerable<(int A, int B, int C)> GetTrianglesIndices(this PrimitiveType ptype, IEnumerable sourceIndices)
{
switch (ptype)
{
case PrimitiveType.TRIANGLES:
{
using (var ptr = sourceIndices.GetEnumerator())
{
while (true)
{
if (!ptr.MoveNext()) break;
var a = ptr.Current;
if (!ptr.MoveNext()) break;
var b = ptr.Current;
if (!ptr.MoveNext()) break;
var c = ptr.Current;
if (!_IsDegenerated(a, b, c)) yield return ((int)a, (int)b, (int)c);
}
}
break;
}
case PrimitiveType.TRIANGLE_FAN:
{
using (var ptr = sourceIndices.GetEnumerator())
{
if (!ptr.MoveNext()) break;
var a = ptr.Current;
if (!ptr.MoveNext()) break;
var b = ptr.Current;
while (true)
{
if (!ptr.MoveNext()) break;
var c = ptr.Current;
if (!_IsDegenerated(a, b, c)) yield return ((int)a, (int)b, (int)c);
b = c;
}
}
break;
}
case PrimitiveType.TRIANGLE_STRIP:
{
using (var ptr = sourceIndices.GetEnumerator())
{
if (!ptr.MoveNext()) break;
var a = ptr.Current;
if (!ptr.MoveNext()) break;
var b = ptr.Current;
bool reversed = false;
while (true)
{
if (!ptr.MoveNext()) break;
var c = ptr.Current;
if (!_IsDegenerated(a, b, c))
{
if (reversed) yield return ((int)b, (int)a, (int)c);
else yield return ((int)a, (int)b, (int)c);
}
a = b;
b = c;
reversed = !reversed;
}
}
break;
}
default: throw new NotImplementedException();
}
}
private static bool _IsDegenerated(uint a, uint b)
{
return a == b;
}
private static bool _IsDegenerated(uint a, uint b, uint c)
{
if (a == b) return true;
if (a == c) return true;
if (b == c) return true;
return false;
}
#endregion
#region serialization
public static Byte[] ToUnderlayingArray(this ArraySegment segment)
{
if (segment.Offset == 0 && segment.Count == segment.Array.Length) return segment.Array;
return segment.ToArray();
}
public static ArraySegment ToArraySegment(this System.IO.MemoryStream m)
{
if (m.TryGetBuffer(out ArraySegment data)) return data;
return new ArraySegment(m.ToArray());
}
public static Byte[] GetPaddedContent(this Byte[] content)
{
if (content == null) return null;
if (content.Length.IsMultipleOf(4)) return content;
var rest = content.Length % 4;
rest = rest == 0 ? 0 : 4 - rest;
var paddedContent = new Byte[content.Length + rest];
content.CopyTo(paddedContent, 0);
return paddedContent;
}
public static Byte[] TryParseBase64Unchecked(this string uri, params string[] prefixes)
{
if (uri == null) return null;
if (!uri.StartsWith("data:", StringComparison.OrdinalIgnoreCase)) return null;
foreach (var prefix in prefixes)
{
var data = _TryParseBase64Unchecked(uri, prefix);
if (data != null) return data;
}
return null;
}
private static Byte[] _TryParseBase64Unchecked(string uri, string prefix)
{
if (!uri.StartsWith(prefix, StringComparison.OrdinalIgnoreCase)) return null;
var content = uri.Substring(prefix.Length);
if (content.StartsWith(";base64,", StringComparison.OrdinalIgnoreCase))
{
content = content.Substring(";base64,".Length);
return Convert.FromBase64String(content);
}
if (content.StartsWith(",", StringComparison.OrdinalIgnoreCase))
{
content = content.Substring(",".Length);
if (content.Length == 1) return new Byte[] { Byte.Parse(content, System.Globalization.NumberStyles.HexNumber, System.Globalization.CultureInfo.InvariantCulture) };
throw new NotImplementedException();
}
throw new NotImplementedException();
}
#endregion
}
}