using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using Color = Terminal.Gui.Color; namespace UnitTests.Drawing; public class SixelEncoderTests { [Fact] public void EncodeSixel_RedSquare12x12_ReturnsExpectedSixel () { var expected = "\u001bP" + // Start sixel sequence "0;0;0" + // Defaults for aspect ratio and grid size "q" + // Signals beginning of sixel image data "\"1;1;12;2" + // no scaling factors (1x1) and filling 12px width with 2 'sixel' height = 12 px high /* * Definition of the color palette */ "#0;2;100;0;0" + // Red color definition in the format "#;;;;" - 2 means RGB. The values range 0 to 100 /* * Start of the Pixel data * We draw 6 rows at once, so end up with 2 'lines' * Both are basically the same and terminate with dollar hyphen (except last row) * Format is: * #0 (selects to use color palette index 0 i.e. red) * !12 (repeat next byte 12 times i.e. the whole length of the row) * ~ (the byte 111111 i.e. fill completely) * $ (return to start of line) * - (move down to next line) */ "#0!12~$-" + "#0!12~$" + // Next 6 rows of red pixels "\u001b\\"; // End sixel sequence // Arrange: Create a 12x12 bitmap filled with red var pixels = new Color [12, 12]; for (int x = 0; x < 12; x++) { for (int y = 0; y < 12; y++) { pixels [x, y] = new Color(255,0,0); } } // Act: Encode the image var encoder = new SixelEncoder (); // Assuming SixelEncoder is the class that contains the EncodeSixel method string result = encoder.EncodeSixel (pixels); // Since image is only red we should only have 1 color definition Color c1 = Assert.Single (encoder.Quantizer.Palette); Assert.Equal (new Color(255,0,0),c1); Assert.Equal (expected, result); } [Fact] public void EncodeSixel_12x12GridPattern3x3_ReturnsExpectedSixel () { /* * Each block is a 3x3 square, alternating black and white. * The pattern alternates between rows, creating a checkerboard. * We have 4 blocks per row, and this repeats over 12x12 pixels. ███...███... ███...███... ███...███... ...███...███ ...███...███ ...███...███ ███...███... ███...███... ███...███... ...███...███ ...███...███ ...███...███ Because we are dealing with sixels (drawing 6 rows at once) we will see 2 bands being drawn. We will also see how we have to 'go back over' the current line after drawing the black (so we can draw the white). */ var expected = "\u001bP" + // Start sixel sequence "0;0;0" + // Defaults for aspect ratio and grid size "q" + // Signals beginning of sixel image data "\"1;1;12;2" + // no scaling factors (1x1) and filling 12px width with 2 'sixel' height = 12 px high /* * Definition of the color palette */ "#0;2;0;0;0" + // Black color definition (index 0: RGB 0,0,0) "#1;2;100;100;100" + // White color definition (index 1: RGB 100,100,100) /* * Start of the Pixel data * * Lets consider only the first 6 pixel (vertically). We have to fill the top 3 black and bottom 3 white. * So we need to select black and fill 000111. To convert this into a character we must +63 and convert to ASCII * Later on we will also need to select white and fill the inverse i.e. 111000. * * 111000 (binary) → w (ASCII 119). * 000111 (binary) → F (ASCII 70). * * Therefore the lines become * * #0 (Select black) * FFF (fill first 3 pixels horizontally - and top half of band black) * www (fill next 3 pixels horizontally - bottom half of band black) * FFFwww (as above to finish the line * * Next we must go back and fill the white (on the same band) * #1 (Select white) * */ "#0FFFwwwFFFwww$" + // First pass of top band (Filling black) "#1wwwFFFwwwFFF$-" + // Second pass of top band (Filling white) // Sequence repeats exactly the same because top band is actually identical pixels to bottom band "#0FFFwwwFFFwww$" + // First pass of bottom band (Filling white) "#1wwwFFFwwwFFF$" + // Second pass of bottom band (Filling black) "\u001b\\"; // End sixel sequence // Arrange: Create a 12x12 bitmap with a 3x3 checkerboard pattern var pixels = new Color [12, 12]; for (int y = 0; y < 12; y++) { for (int x = 0; x < 12; x++) { // Create a 3x3 checkerboard by alternating the color based on pixel coordinates if (((x / 3) + (y / 3)) % 2 == 0) { pixels [x, y] = new Color (0, 0, 0); // Black } else { pixels [x, y] = new Color (255, 255, 255); // White } } } // Act: Encode the image var encoder = new SixelEncoder (); // Assuming SixelEncoder is the class that contains the EncodeSixel method string result = encoder.EncodeSixel (pixels); // We should have only black and white in the palette Assert.Equal (2, encoder.Quantizer.Palette.Count); Color black = encoder.Quantizer.Palette.ElementAt (0); Color white = encoder.Quantizer.Palette.ElementAt(1); Assert.Equal (new Color (0, 0, 0), black); Assert.Equal (new Color (255, 255, 255), white); // Compare the generated SIXEL string with the expected one Assert.Equal (expected, result); } }