#nullable enable
//
// WindowsDriver.cs: Windows specific driver
//
// HACK:
// WindowsConsole/Terminal has two issues:
// 1) Tearing can occur when the console is resized.
// 2) The values provided during Init (and the first WindowsConsole.EventType.WindowBufferSize) are not correct.
//
// If HACK_CHECK_WINCHANGED is defined then we ignore WindowsConsole.EventType.WindowBufferSize events
// and instead check the console size every 500ms in a thread in WidowsMainLoop.
// As of Windows 11 23H2 25947.1000 and/or WT 1.19.2682 tearing no longer occurs when using
// the WindowsConsole.EventType.WindowBufferSize event. However, on Init the window size is
// still incorrect so we still need this hack.
//#define HACK_CHECK_WINCHANGED
using System.ComponentModel;
using System.Diagnostics;
using System.Runtime.InteropServices;
using static Terminal.Gui.ConsoleDrivers.ConsoleKeyMapping;
using static Terminal.Gui.SpinnerStyle;
namespace Terminal.Gui;
internal class WindowsDriver : ConsoleDriver
{
private readonly bool _isWindowsTerminal;
private WindowsConsole.SmallRect _damageRegion;
private bool _isButtonDoubleClicked;
private bool _isButtonPressed;
private bool _isButtonReleased;
private bool _isOneFingerDoubleClicked;
private WindowsConsole.ButtonState? _lastMouseButtonPressed;
private WindowsMainLoop? _mainLoopDriver;
private WindowsConsole.ExtendedCharInfo [] _outputBuffer = new WindowsConsole.ExtendedCharInfo [0 * 0];
private Point? _point;
private Point _pointMove;
private bool _processButtonClick;
public WindowsDriver ()
{
if (Environment.OSVersion.Platform == PlatformID.Win32NT)
{
WinConsole = new ();
// otherwise we're probably running in unit tests
Clipboard = new WindowsClipboard ();
}
else
{
Clipboard = new FakeDriver.FakeClipboard ();
}
// TODO: if some other Windows-based terminal supports true color, update this logic to not
// force 16color mode (.e.g ConEmu which really doesn't work well at all).
_isWindowsTerminal = _isWindowsTerminal =
Environment.GetEnvironmentVariable ("WT_SESSION") is { } || Environment.GetEnvironmentVariable ("VSAPPIDNAME") != null;
if (!_isWindowsTerminal)
{
Force16Colors = true;
}
}
public override bool SupportsTrueColor => RunningUnitTests || (Environment.OSVersion.Version.Build >= 14931 && _isWindowsTerminal);
public WindowsConsole? WinConsole { get; private set; }
public static WindowsConsole.KeyEventRecord FromVKPacketToKeyEventRecord (WindowsConsole.KeyEventRecord keyEvent)
{
if (keyEvent.wVirtualKeyCode != (VK)ConsoleKey.Packet)
{
return keyEvent;
}
var mod = new ConsoleModifiers ();
if (keyEvent.dwControlKeyState.HasFlag (WindowsConsole.ControlKeyState.ShiftPressed))
{
mod |= ConsoleModifiers.Shift;
}
if (keyEvent.dwControlKeyState.HasFlag (WindowsConsole.ControlKeyState.RightAltPressed)
|| keyEvent.dwControlKeyState.HasFlag (WindowsConsole.ControlKeyState.LeftAltPressed))
{
mod |= ConsoleModifiers.Alt;
}
if (keyEvent.dwControlKeyState.HasFlag (WindowsConsole.ControlKeyState.LeftControlPressed)
|| keyEvent.dwControlKeyState.HasFlag (WindowsConsole.ControlKeyState.RightControlPressed))
{
mod |= ConsoleModifiers.Control;
}
var cKeyInfo = new ConsoleKeyInfo (
keyEvent.UnicodeChar,
(ConsoleKey)keyEvent.wVirtualKeyCode,
mod.HasFlag (ConsoleModifiers.Shift),
mod.HasFlag (ConsoleModifiers.Alt),
mod.HasFlag (ConsoleModifiers.Control));
cKeyInfo = DecodeVKPacketToKConsoleKeyInfo (cKeyInfo);
uint scanCode = GetScanCodeFromConsoleKeyInfo (cKeyInfo);
return new WindowsConsole.KeyEventRecord
{
UnicodeChar = cKeyInfo.KeyChar,
bKeyDown = keyEvent.bKeyDown,
dwControlKeyState = keyEvent.dwControlKeyState,
wRepeatCount = keyEvent.wRepeatCount,
wVirtualKeyCode = (VK)cKeyInfo.Key,
wVirtualScanCode = (ushort)scanCode
};
}
public override bool IsRuneSupported (Rune rune) { return base.IsRuneSupported (rune) && rune.IsBmp; }
public override void SendKeys (char keyChar, ConsoleKey key, bool shift, bool alt, bool control)
{
var input = new WindowsConsole.InputRecord
{
EventType = WindowsConsole.EventType.Key
};
var keyEvent = new WindowsConsole.KeyEventRecord
{
bKeyDown = true
};
var controlKey = new WindowsConsole.ControlKeyState ();
if (shift)
{
controlKey |= WindowsConsole.ControlKeyState.ShiftPressed;
keyEvent.UnicodeChar = '\0';
keyEvent.wVirtualKeyCode = VK.SHIFT;
}
if (alt)
{
controlKey |= WindowsConsole.ControlKeyState.LeftAltPressed;
controlKey |= WindowsConsole.ControlKeyState.RightAltPressed;
keyEvent.UnicodeChar = '\0';
keyEvent.wVirtualKeyCode = VK.MENU;
}
if (control)
{
controlKey |= WindowsConsole.ControlKeyState.LeftControlPressed;
controlKey |= WindowsConsole.ControlKeyState.RightControlPressed;
keyEvent.UnicodeChar = '\0';
keyEvent.wVirtualKeyCode = VK.CONTROL;
}
keyEvent.dwControlKeyState = controlKey;
input.KeyEvent = keyEvent;
if (shift || alt || control)
{
ProcessInput (input);
}
keyEvent.UnicodeChar = keyChar;
//if ((uint)key < 255) {
// keyEvent.wVirtualKeyCode = (ushort)key;
//} else {
// keyEvent.wVirtualKeyCode = '\0';
//}
keyEvent.wVirtualKeyCode = (VK)key;
input.KeyEvent = keyEvent;
try
{
ProcessInput (input);
}
catch (OverflowException)
{ }
finally
{
keyEvent.bKeyDown = false;
input.KeyEvent = keyEvent;
ProcessInput (input);
}
}
///
internal override IAnsiResponseParser GetParser () => _parser;
public override void WriteRaw (string str)
{
WinConsole?.WriteANSI (str);
}
#region Not Implemented
public override void Suspend () { throw new NotImplementedException (); }
#endregion
public static WindowsConsole.ConsoleKeyInfoEx ToConsoleKeyInfoEx (WindowsConsole.KeyEventRecord keyEvent)
{
WindowsConsole.ControlKeyState state = keyEvent.dwControlKeyState;
bool shift = (state & WindowsConsole.ControlKeyState.ShiftPressed) != 0;
bool alt = (state & (WindowsConsole.ControlKeyState.LeftAltPressed | WindowsConsole.ControlKeyState.RightAltPressed)) != 0;
bool control = (state & (WindowsConsole.ControlKeyState.LeftControlPressed | WindowsConsole.ControlKeyState.RightControlPressed)) != 0;
bool capslock = (state & WindowsConsole.ControlKeyState.CapslockOn) != 0;
bool numlock = (state & WindowsConsole.ControlKeyState.NumlockOn) != 0;
bool scrolllock = (state & WindowsConsole.ControlKeyState.ScrolllockOn) != 0;
var cki = new ConsoleKeyInfo (keyEvent.UnicodeChar, (ConsoleKey)keyEvent.wVirtualKeyCode, shift, alt, control);
return new WindowsConsole.ConsoleKeyInfoEx (cki, capslock, numlock, scrolllock);
}
#region Cursor Handling
private CursorVisibility? _cachedCursorVisibility;
public override void UpdateCursor ()
{
if (RunningUnitTests)
{
return;
}
if (Col < 0 || Row < 0 || Col >= Cols || Row >= Rows)
{
GetCursorVisibility (out CursorVisibility cursorVisibility);
_cachedCursorVisibility = cursorVisibility;
SetCursorVisibility (CursorVisibility.Invisible);
return;
}
var position = new WindowsConsole.Coord
{
X = (short)Col,
Y = (short)Row
};
if (Force16Colors)
{
WinConsole?.SetCursorPosition (position);
}
else
{
var sb = new StringBuilder ();
sb.Append (EscSeqUtils.CSI_SetCursorPosition (position.Y + 1, position.X + 1));
WinConsole?.WriteANSI (sb.ToString ());
}
if (_cachedCursorVisibility is { })
{
SetCursorVisibility (_cachedCursorVisibility.Value);
}
//EnsureCursorVisibility ();
}
///
public override bool GetCursorVisibility (out CursorVisibility visibility)
{
if (WinConsole is { })
{
bool result = WinConsole.GetCursorVisibility (out visibility);
if (_cachedCursorVisibility is { } && visibility != _cachedCursorVisibility)
{
_cachedCursorVisibility = visibility;
}
return result;
}
visibility = _cachedCursorVisibility ?? CursorVisibility.Default;
return visibility != CursorVisibility.Invisible;
}
///
public override bool SetCursorVisibility (CursorVisibility visibility)
{
_cachedCursorVisibility = visibility;
if (Force16Colors)
{
return WinConsole is null || WinConsole.SetCursorVisibility (visibility);
}
else
{
var sb = new StringBuilder ();
sb.Append (visibility != CursorVisibility.Invisible ? EscSeqUtils.CSI_ShowCursor : EscSeqUtils.CSI_HideCursor);
return WinConsole?.WriteANSI (sb.ToString ()) ?? false;
}
}
#endregion Cursor Handling
public override bool UpdateScreen ()
{
bool updated = false;
Size windowSize = WinConsole?.GetConsoleBufferWindow (out Point _) ?? new Size (Cols, Rows);
if (!windowSize.IsEmpty && (windowSize.Width != Cols || windowSize.Height != Rows))
{
return updated;
}
var bufferCoords = new WindowsConsole.Coord
{
X = (short)Cols, //Clip.Width,
Y = (short)Rows, //Clip.Height
};
for (var row = 0; row < Rows; row++)
{
if (!_dirtyLines! [row])
{
continue;
}
_dirtyLines [row] = false;
updated = true;
for (var col = 0; col < Cols; col++)
{
int position = row * Cols + col;
_outputBuffer [position].Attribute = Contents! [row, col].Attribute.GetValueOrDefault ();
if (Contents [row, col].IsDirty == false)
{
_outputBuffer [position].Empty = true;
_outputBuffer [position].Char = (char)Rune.ReplacementChar.Value;
continue;
}
_outputBuffer [position].Empty = false;
if (Contents [row, col].Rune.IsBmp)
{
_outputBuffer [position].Char = (char)Contents [row, col].Rune.Value;
}
else
{
//_outputBuffer [position].Empty = true;
_outputBuffer [position].Char = (char)Rune.ReplacementChar.Value;
if (Contents [row, col].Rune.GetColumns () > 1 && col + 1 < Cols)
{
// TODO: This is a hack to deal with non-BMP and wide characters.
col++;
position = row * Cols + col;
_outputBuffer [position].Empty = false;
_outputBuffer [position].Char = ' ';
}
}
}
}
_damageRegion = new WindowsConsole.SmallRect
{
Top = 0,
Left = 0,
Bottom = (short)Rows,
Right = (short)Cols
};
if (!RunningUnitTests
&& WinConsole != null
&& !WinConsole.WriteToConsole (new (Cols, Rows), _outputBuffer, bufferCoords, _damageRegion, Force16Colors))
{
int err = Marshal.GetLastWin32Error ();
if (err != 0)
{
throw new Win32Exception (err);
}
}
WindowsConsole.SmallRect.MakeEmpty (ref _damageRegion);
return updated;
}
public override void End ()
{
if (_mainLoopDriver is { })
{
#if HACK_CHECK_WINCHANGED
_mainLoopDriver.WinChanged -= ChangeWin;
#endif
}
_mainLoopDriver = null;
WinConsole?.Cleanup ();
WinConsole = null;
if (!RunningUnitTests && _isWindowsTerminal)
{
// Disable alternative screen buffer.
Console.Out.Write (EscSeqUtils.CSI_RestoreCursorAndRestoreAltBufferWithBackscroll);
}
}
public override MainLoop Init ()
{
_mainLoopDriver = new WindowsMainLoop (this);
if (!RunningUnitTests)
{
try
{
if (WinConsole is { })
{
// BUGBUG: The results from GetConsoleOutputWindow are incorrect when called from Init.
// Our thread in WindowsMainLoop.CheckWin will get the correct results. See #if HACK_CHECK_WINCHANGED
Size winSize = WinConsole.GetConsoleOutputWindow (out Point _);
Cols = winSize.Width;
Rows = winSize.Height;
OnSizeChanged (new SizeChangedEventArgs (new (Cols, Rows)));
}
WindowsConsole.SmallRect.MakeEmpty (ref _damageRegion);
if (_isWindowsTerminal)
{
Console.Out.Write (EscSeqUtils.CSI_SaveCursorAndActivateAltBufferNoBackscroll);
}
}
catch (Win32Exception e)
{
// We are being run in an environment that does not support a console
// such as a unit test, or a pipe.
Debug.WriteLine ($"Likely running unit tests. Setting WinConsole to null so we can test it elsewhere. Exception: {e}");
WinConsole = null;
}
}
CurrentAttribute = new Attribute (Color.White, Color.Black);
_outputBuffer = new WindowsConsole.ExtendedCharInfo [Rows * Cols];
// CONCURRENCY: Unsynchronized access to Clip is not safe.
Clip = new (Screen);
_damageRegion = new WindowsConsole.SmallRect
{
Top = 0,
Left = 0,
Bottom = (short)Rows,
Right = (short)Cols
};
ClearContents ();
#if HACK_CHECK_WINCHANGED
_mainLoopDriver.WinChanged = ChangeWin;
#endif
if (!RunningUnitTests)
{
WinConsole?.SetInitialCursorVisibility ();
}
return new MainLoop (_mainLoopDriver);
}
private AnsiResponseParser _parser = new ();
internal void ProcessInput (WindowsConsole.InputRecord inputEvent)
{
foreach (var e in Parse (inputEvent))
{
ProcessInputAfterParsing (e);
}
}
internal void ProcessInputAfterParsing (WindowsConsole.InputRecord inputEvent)
{
switch (inputEvent.EventType)
{
case WindowsConsole.EventType.Key:
if (inputEvent.KeyEvent.wVirtualKeyCode == (VK)ConsoleKey.Packet)
{
// Used to pass Unicode characters as if they were keystrokes.
// The VK_PACKET key is the low word of a 32-bit
// Virtual Key value used for non-keyboard input methods.
inputEvent.KeyEvent = FromVKPacketToKeyEventRecord (inputEvent.KeyEvent);
}
WindowsConsole.ConsoleKeyInfoEx keyInfo = ToConsoleKeyInfoEx (inputEvent.KeyEvent);
//Debug.WriteLine ($"event: KBD: {GetKeyboardLayoutName()} {inputEvent.ToString ()} {keyInfo.ToString (keyInfo)}");
KeyCode map = MapKey (keyInfo);
if (map == KeyCode.Null)
{
break;
}
// This follows convention in NetDriver
OnKeyDown (new Key (map));
OnKeyUp (new Key (map));
break;
case WindowsConsole.EventType.Mouse:
MouseEventArgs me = ToDriverMouse (inputEvent.MouseEvent);
if (/*me is null ||*/ me.Flags == MouseFlags.None)
{
break;
}
OnMouseEvent (me);
if (_processButtonClick)
{
OnMouseEvent (new ()
{
Position = me.Position,
Flags = ProcessButtonClick (inputEvent.MouseEvent)
});
}
break;
case WindowsConsole.EventType.Focus:
break;
#if !HACK_CHECK_WINCHANGED
case WindowsConsole.EventType.WindowBufferSize:
Cols = inputEvent.WindowBufferSizeEvent._size.X;
Rows = inputEvent.WindowBufferSizeEvent._size.Y;
Application.Screen = new (0, 0, Cols, Rows);
ResizeScreen ();
ClearContents ();
Application.Top?.SetNeedsLayout ();
Application.LayoutAndDraw ();
break;
#endif
}
}
private IEnumerable Parse (WindowsConsole.InputRecord inputEvent)
{
if (inputEvent.EventType != WindowsConsole.EventType.Key)
{
yield return inputEvent;
yield break;
}
// Swallow key up events - they are unreliable
if (!inputEvent.KeyEvent.bKeyDown)
{
yield break;
}
foreach (var i in ShouldReleaseParserHeldKeys ())
{
yield return i;
}
foreach (Tuple output in
_parser.ProcessInput (Tuple.Create (inputEvent.KeyEvent.UnicodeChar, inputEvent)))
{
yield return output.Item2;
}
}
public IEnumerable ShouldReleaseParserHeldKeys ()
{
if (_parser.State == AnsiResponseParserState.ExpectingEscapeSequence &&
DateTime.Now - _parser.StateChangedAt > EscTimeout)
{
return _parser.Release ().Select (o => o.Item2);
}
return [];
}
#if HACK_CHECK_WINCHANGED
private void ChangeWin (object s, SizeChangedEventArgs e)
{
if (e.Size is null)
{
return;
}
int w = e.Size.Value.Width;
if (w == Cols - 3 && e.Size.Value.Height < Rows)
{
w += 3;
}
Left = 0;
Top = 0;
Cols = e.Size.Value.Width;
Rows = e.Size.Value.Height;
if (!RunningUnitTests)
{
Size newSize = WinConsole.SetConsoleWindow (
(short)Math.Max (w, 16),
(short)Math.Max (e.Size.Value.Height, 0));
Cols = newSize.Width;
Rows = newSize.Height;
}
ResizeScreen ();
ClearContents ();
OnSizeChanged (new SizeChangedEventArgs (new (Cols, Rows)));
}
#endif
public static KeyCode MapKey (WindowsConsole.ConsoleKeyInfoEx keyInfoEx)
{
ConsoleKeyInfo keyInfo = keyInfoEx.ConsoleKeyInfo;
switch (keyInfo.Key)
{
case ConsoleKey.D0:
case ConsoleKey.D1:
case ConsoleKey.D2:
case ConsoleKey.D3:
case ConsoleKey.D4:
case ConsoleKey.D5:
case ConsoleKey.D6:
case ConsoleKey.D7:
case ConsoleKey.D8:
case ConsoleKey.D9:
case ConsoleKey.NumPad0:
case ConsoleKey.NumPad1:
case ConsoleKey.NumPad2:
case ConsoleKey.NumPad3:
case ConsoleKey.NumPad4:
case ConsoleKey.NumPad5:
case ConsoleKey.NumPad6:
case ConsoleKey.NumPad7:
case ConsoleKey.NumPad8:
case ConsoleKey.NumPad9:
case ConsoleKey.Oem1:
case ConsoleKey.Oem2:
case ConsoleKey.Oem3:
case ConsoleKey.Oem4:
case ConsoleKey.Oem5:
case ConsoleKey.Oem6:
case ConsoleKey.Oem7:
case ConsoleKey.Oem8:
case ConsoleKey.Oem102:
case ConsoleKey.Multiply:
case ConsoleKey.Add:
case ConsoleKey.Separator:
case ConsoleKey.Subtract:
case ConsoleKey.Decimal:
case ConsoleKey.Divide:
case ConsoleKey.OemPeriod:
case ConsoleKey.OemComma:
case ConsoleKey.OemPlus:
case ConsoleKey.OemMinus:
// These virtual key codes are mapped differently depending on the keyboard layout in use.
// We use the Win32 API to map them to the correct character.
uint mapResult = MapVKtoChar ((VK)keyInfo.Key);
if (mapResult == 0)
{
// There is no mapping - this should not happen
Debug.Assert (true, $@"Unable to map the virtual key code {keyInfo.Key}.");
return KeyCode.Null;
}
// An un-shifted character value is in the low order word of the return value.
var mappedChar = (char)(mapResult & 0x0000FFFF);
if (keyInfo.KeyChar == 0)
{
// If the keyChar is 0, keyInfo.Key value is not a printable character.
// Dead keys (diacritics) are indicated by setting the top bit of the return value.
if ((mapResult & 0x80000000) != 0)
{
// Dead key (e.g. Oem2 '~'/'^' on POR keyboard)
// Option 1: Throw it out.
// - Apps will never see the dead keys
// - If user presses a key that can be combined with the dead key ('a'), the right thing happens (app will see '�').
// - NOTE: With Dead Keys, KeyDown != KeyUp. The KeyUp event will have just the base char ('a').
// - If user presses dead key again, the right thing happens (app will see `~~`)
// - This is what Notepad etc... appear to do
// Option 2: Expand the API to indicate the KeyCode is a dead key
// - Enables apps to do their own dead key processing
// - Adds complexity; no dev has asked for this (yet).
// We choose Option 1 for now.
return KeyCode.Null;
// Note: Ctrl-Deadkey (like Oem3 '`'/'~` on ENG) can't be supported.
// Sadly, the charVal is just the deadkey and subsequent key events do not contain
// any info that the previous event was a deadkey.
// Note WT does not support Ctrl-Deadkey either.
}
if (keyInfo.Modifiers != 0)
{
// These Oem keys have well-defined chars. We ensure the representative char is used.
// If we don't do this, then on some keyboard layouts the wrong char is
// returned (e.g. on ENG OemPlus un-shifted is =, not +). This is important
// for key persistence ("Ctrl++" vs. "Ctrl+=").
mappedChar = keyInfo.Key switch
{
ConsoleKey.OemPeriod => '.',
ConsoleKey.OemComma => ',',
ConsoleKey.OemPlus => '+',
ConsoleKey.OemMinus => '-',
_ => mappedChar
};
}
// Return the mappedChar with modifiers. Because mappedChar is un-shifted, if Shift was down
// we should keep it
return MapToKeyCodeModifiers (keyInfo.Modifiers, (KeyCode)mappedChar);
}
// KeyChar is printable
if (keyInfo.Modifiers.HasFlag (ConsoleModifiers.Alt) && keyInfo.Modifiers.HasFlag (ConsoleModifiers.Control))
{
// AltGr support - AltGr is equivalent to Ctrl+Alt - the correct char is in KeyChar
return (KeyCode)keyInfo.KeyChar;
}
if (keyInfo.Modifiers != ConsoleModifiers.Shift)
{
// If Shift wasn't down we don't need to do anything but return the mappedChar
return MapToKeyCodeModifiers (keyInfo.Modifiers, (KeyCode)mappedChar);
}
// Strip off Shift - We got here because they KeyChar from Windows is the shifted char (e.g. "�")
// and passing on Shift would be redundant.
return MapToKeyCodeModifiers (keyInfo.Modifiers & ~ConsoleModifiers.Shift, (KeyCode)keyInfo.KeyChar);
}
// A..Z are special cased:
// - Alone, they represent lowercase a...z
// - With ShiftMask they are A..Z
// - If CapsLock is on the above is reversed.
// - If Alt and/or Ctrl are present, treat as upper case
if (keyInfo.Key is >= ConsoleKey.A and <= ConsoleKey.Z)
{
if (keyInfo.KeyChar == 0)
{
// KeyChar is not printable - possibly an AltGr key?
// AltGr support - AltGr is equivalent to Ctrl+Alt
if (keyInfo.Modifiers.HasFlag (ConsoleModifiers.Alt) && keyInfo.Modifiers.HasFlag (ConsoleModifiers.Control))
{
return MapToKeyCodeModifiers (keyInfo.Modifiers, (KeyCode)(uint)keyInfo.Key);
}
}
if (keyInfo.Modifiers.HasFlag (ConsoleModifiers.Alt) || keyInfo.Modifiers.HasFlag (ConsoleModifiers.Control))
{
return MapToKeyCodeModifiers (keyInfo.Modifiers, (KeyCode)(uint)keyInfo.Key);
}
if ((keyInfo.Modifiers == ConsoleModifiers.Shift) ^ keyInfoEx.CapsLock)
{
// If (ShiftMask is on and CapsLock is off) or (ShiftMask is off and CapsLock is on) add the ShiftMask
if (char.IsUpper (keyInfo.KeyChar))
{
if (keyInfo.KeyChar <= 'Z')
{
return (KeyCode)keyInfo.Key | KeyCode.ShiftMask;
}
// Always return the KeyChar because it may be an Á, À with Oem1, etc
return (KeyCode)keyInfo.KeyChar;
}
}
if (keyInfo.KeyChar <= 'z')
{
return (KeyCode)keyInfo.Key;
}
// Always return the KeyChar because it may be an á, à with Oem1, etc
return (KeyCode)keyInfo.KeyChar;
}
// Handle control keys whose VK codes match the related ASCII value (those below ASCII 33) like ESC
if (Enum.IsDefined (typeof (KeyCode), (uint)keyInfo.Key))
{
// If the key is JUST a modifier, return it as just that key
if (keyInfo.Key == (ConsoleKey)VK.SHIFT)
{ // Shift 16
return KeyCode.ShiftMask;
}
if (keyInfo.Key == (ConsoleKey)VK.CONTROL)
{ // Ctrl 17
return KeyCode.CtrlMask;
}
if (keyInfo.Key == (ConsoleKey)VK.MENU)
{ // Alt 18
return KeyCode.AltMask;
}
if (keyInfo.KeyChar == 0)
{
return MapToKeyCodeModifiers (keyInfo.Modifiers, (KeyCode)keyInfo.KeyChar);
}
if (keyInfo.Key != ConsoleKey.None)
{
return MapToKeyCodeModifiers (keyInfo.Modifiers, (KeyCode)keyInfo.KeyChar);
}
return MapToKeyCodeModifiers (keyInfo.Modifiers & ~ConsoleModifiers.Shift, (KeyCode)keyInfo.KeyChar);
}
// Handle control keys (e.g. CursorUp)
if (Enum.IsDefined (typeof (KeyCode), (uint)keyInfo.Key + (uint)KeyCode.MaxCodePoint))
{
return MapToKeyCodeModifiers (keyInfo.Modifiers, (KeyCode)((uint)keyInfo.Key + (uint)KeyCode.MaxCodePoint));
}
return MapToKeyCodeModifiers (keyInfo.Modifiers, (KeyCode)keyInfo.KeyChar);
}
private MouseFlags ProcessButtonClick (WindowsConsole.MouseEventRecord mouseEvent)
{
MouseFlags mouseFlag = 0;
switch (_lastMouseButtonPressed)
{
case WindowsConsole.ButtonState.Button1Pressed:
mouseFlag = MouseFlags.Button1Clicked;
break;
case WindowsConsole.ButtonState.Button2Pressed:
mouseFlag = MouseFlags.Button2Clicked;
break;
case WindowsConsole.ButtonState.RightmostButtonPressed:
mouseFlag = MouseFlags.Button3Clicked;
break;
}
_point = new Point
{
X = mouseEvent.MousePosition.X,
Y = mouseEvent.MousePosition.Y
};
_lastMouseButtonPressed = null;
_isButtonReleased = false;
_processButtonClick = false;
_point = null;
return mouseFlag;
}
private async Task ProcessButtonDoubleClickedAsync ()
{
await Task.Delay (200);
_isButtonDoubleClicked = false;
_isOneFingerDoubleClicked = false;
//buttonPressedCount = 0;
}
private async Task ProcessContinuousButtonPressedAsync (MouseFlags mouseFlag)
{
// When a user presses-and-holds, start generating pressed events every `startDelay`
// After `iterationsUntilFast` iterations, speed them up to `fastDelay` ms
const int START_DELAY = 500;
const int ITERATIONS_UNTIL_FAST = 4;
const int FAST_DELAY = 50;
int iterations = 0;
int delay = START_DELAY;
while (_isButtonPressed)
{
// TODO: This makes IConsoleDriver dependent on Application, which is not ideal. This should be moved to Application.
View? view = Application.WantContinuousButtonPressedView;
if (view is null)
{
break;
}
if (iterations++ >= ITERATIONS_UNTIL_FAST)
{
delay = FAST_DELAY;
}
await Task.Delay (delay);
var me = new MouseEventArgs
{
ScreenPosition = _pointMove,
Flags = mouseFlag
};
//Debug.WriteLine($"ProcessContinuousButtonPressedAsync: {view}");
if (_isButtonPressed && (mouseFlag & MouseFlags.ReportMousePosition) == 0)
{
// TODO: This makes IConsoleDriver dependent on Application, which is not ideal. This should be moved to Application.
Application.Invoke (() => OnMouseEvent (me));
}
}
}
private void ResizeScreen ()
{
_outputBuffer = new WindowsConsole.ExtendedCharInfo [Rows * Cols];
// CONCURRENCY: Unsynchronized access to Clip is not safe.
Clip = new (Screen);
_damageRegion = new WindowsConsole.SmallRect
{
Top = 0,
Left = 0,
Bottom = (short)Rows,
Right = (short)Cols
};
_dirtyLines = new bool [Rows];
WinConsole?.ForceRefreshCursorVisibility ();
}
private static MouseFlags SetControlKeyStates (WindowsConsole.MouseEventRecord mouseEvent, MouseFlags mouseFlag)
{
if (mouseEvent.ControlKeyState.HasFlag (WindowsConsole.ControlKeyState.RightControlPressed)
|| mouseEvent.ControlKeyState.HasFlag (WindowsConsole.ControlKeyState.LeftControlPressed))
{
mouseFlag |= MouseFlags.ButtonCtrl;
}
if (mouseEvent.ControlKeyState.HasFlag (WindowsConsole.ControlKeyState.ShiftPressed))
{
mouseFlag |= MouseFlags.ButtonShift;
}
if (mouseEvent.ControlKeyState.HasFlag (WindowsConsole.ControlKeyState.RightAltPressed)
|| mouseEvent.ControlKeyState.HasFlag (WindowsConsole.ControlKeyState.LeftAltPressed))
{
mouseFlag |= MouseFlags.ButtonAlt;
}
return mouseFlag;
}
[CanBeNull]
private MouseEventArgs ToDriverMouse (WindowsConsole.MouseEventRecord mouseEvent)
{
var mouseFlag = MouseFlags.AllEvents;
//Debug.WriteLine ($"ToDriverMouse: {mouseEvent}");
if (_isButtonDoubleClicked || _isOneFingerDoubleClicked)
{
// TODO: This makes IConsoleDriver dependent on Application, which is not ideal. This should be moved to Application.
Application.MainLoop!.AddIdle (
() =>
{
Task.Run (async () => await ProcessButtonDoubleClickedAsync ());
return false;
});
}
// The ButtonState member of the MouseEvent structure has bit corresponding to each mouse button.
// This will tell when a mouse button is pressed. When the button is released this event will
// be fired with its bit set to 0. So when the button is up ButtonState will be 0.
// To map to the correct driver events we save the last pressed mouse button, so we can
// map to the correct clicked event.
if ((_lastMouseButtonPressed is { } || _isButtonReleased) && mouseEvent.ButtonState != 0)
{
_lastMouseButtonPressed = null;
//isButtonPressed = false;
_isButtonReleased = false;
}
var p = new Point
{
X = mouseEvent.MousePosition.X,
Y = mouseEvent.MousePosition.Y
};
if ((mouseEvent.ButtonState != 0 && mouseEvent.EventFlags == 0 && _lastMouseButtonPressed is null && !_isButtonDoubleClicked)
|| (_lastMouseButtonPressed == null
&& mouseEvent.EventFlags.HasFlag (WindowsConsole.EventFlags.MouseMoved)
&& mouseEvent.ButtonState != 0
&& !_isButtonReleased
&& !_isButtonDoubleClicked))
{
switch (mouseEvent.ButtonState)
{
case WindowsConsole.ButtonState.Button1Pressed:
mouseFlag = MouseFlags.Button1Pressed;
break;
case WindowsConsole.ButtonState.Button2Pressed:
mouseFlag = MouseFlags.Button2Pressed;
break;
case WindowsConsole.ButtonState.RightmostButtonPressed:
mouseFlag = MouseFlags.Button3Pressed;
break;
}
if (_point is null)
{
_point = p;
}
if (mouseEvent.EventFlags.HasFlag (WindowsConsole.EventFlags.MouseMoved))
{
_pointMove = p;
mouseFlag |= MouseFlags.ReportMousePosition;
_isButtonReleased = false;
_processButtonClick = false;
}
_lastMouseButtonPressed = mouseEvent.ButtonState;
_isButtonPressed = true;
if ((mouseFlag & MouseFlags.ReportMousePosition) == 0)
{
// TODO: This makes IConsoleDriver dependent on Application, which is not ideal. This should be moved to Application.
Application.MainLoop!.AddIdle (
() =>
{
Task.Run (async () => await ProcessContinuousButtonPressedAsync (mouseFlag));
return false;
});
}
}
else if (_lastMouseButtonPressed != null
&& mouseEvent.EventFlags == 0
&& !_isButtonReleased
&& !_isButtonDoubleClicked
&& !_isOneFingerDoubleClicked)
{
switch (_lastMouseButtonPressed)
{
case WindowsConsole.ButtonState.Button1Pressed:
mouseFlag = MouseFlags.Button1Released;
break;
case WindowsConsole.ButtonState.Button2Pressed:
mouseFlag = MouseFlags.Button2Released;
break;
case WindowsConsole.ButtonState.RightmostButtonPressed:
mouseFlag = MouseFlags.Button3Released;
break;
}
_isButtonPressed = false;
_isButtonReleased = true;
if (_point is { } && ((Point)_point).X == mouseEvent.MousePosition.X && ((Point)_point).Y == mouseEvent.MousePosition.Y)
{
_processButtonClick = true;
}
else
{
_point = null;
}
_processButtonClick = true;
}
else if (mouseEvent.EventFlags == WindowsConsole.EventFlags.MouseMoved
&& !_isOneFingerDoubleClicked
&& _isButtonReleased
&& p == _point)
{
mouseFlag = ProcessButtonClick (mouseEvent);
}
else if (mouseEvent.EventFlags.HasFlag (WindowsConsole.EventFlags.DoubleClick))
{
switch (mouseEvent.ButtonState)
{
case WindowsConsole.ButtonState.Button1Pressed:
mouseFlag = MouseFlags.Button1DoubleClicked;
break;
case WindowsConsole.ButtonState.Button2Pressed:
mouseFlag = MouseFlags.Button2DoubleClicked;
break;
case WindowsConsole.ButtonState.RightmostButtonPressed:
mouseFlag = MouseFlags.Button3DoubleClicked;
break;
}
_isButtonDoubleClicked = true;
}
else if (mouseEvent.EventFlags == 0 && mouseEvent.ButtonState != 0 && _isButtonDoubleClicked)
{
switch (mouseEvent.ButtonState)
{
case WindowsConsole.ButtonState.Button1Pressed:
mouseFlag = MouseFlags.Button1TripleClicked;
break;
case WindowsConsole.ButtonState.Button2Pressed:
mouseFlag = MouseFlags.Button2TripleClicked;
break;
case WindowsConsole.ButtonState.RightmostButtonPressed:
mouseFlag = MouseFlags.Button3TripleClicked;
break;
}
_isButtonDoubleClicked = false;
}
else if (mouseEvent.EventFlags == WindowsConsole.EventFlags.MouseWheeled)
{
switch ((int)mouseEvent.ButtonState)
{
case int v when v > 0:
mouseFlag = MouseFlags.WheeledUp;
break;
case int v when v < 0:
mouseFlag = MouseFlags.WheeledDown;
break;
}
}
else if (mouseEvent.EventFlags == WindowsConsole.EventFlags.MouseWheeled && mouseEvent.ControlKeyState == WindowsConsole.ControlKeyState.ShiftPressed)
{
switch ((int)mouseEvent.ButtonState)
{
case int v when v > 0:
mouseFlag = MouseFlags.WheeledLeft;
break;
case int v when v < 0:
mouseFlag = MouseFlags.WheeledRight;
break;
}
}
else if (mouseEvent.EventFlags == WindowsConsole.EventFlags.MouseHorizontalWheeled)
{
switch ((int)mouseEvent.ButtonState)
{
case int v when v < 0:
mouseFlag = MouseFlags.WheeledLeft;
break;
case int v when v > 0:
mouseFlag = MouseFlags.WheeledRight;
break;
}
}
else if (mouseEvent.EventFlags == WindowsConsole.EventFlags.MouseMoved)
{
mouseFlag = MouseFlags.ReportMousePosition;
if (mouseEvent.MousePosition.X != _pointMove.X || mouseEvent.MousePosition.Y != _pointMove.Y)
{
_pointMove = new Point (mouseEvent.MousePosition.X, mouseEvent.MousePosition.Y);
}
}
else if (mouseEvent is { ButtonState: 0, EventFlags: 0 })
{
// This happens on a double or triple click event.
mouseFlag = MouseFlags.None;
}
mouseFlag = SetControlKeyStates (mouseEvent, mouseFlag);
//System.Diagnostics.Debug.WriteLine (
// $"point.X:{(point is { } ? ((Point)point).X : -1)};point.Y:{(point is { } ? ((Point)point).Y : -1)}");
return new MouseEventArgs
{
Position = new (mouseEvent.MousePosition.X, mouseEvent.MousePosition.Y),
Flags = mouseFlag
};
}
}