using System;
using System.Globalization;
using Jint.Native;
using Jint.Native.Object;
namespace Jint.Runtime
{
public enum Types
{
None,
Undefined,
Null,
Boolean,
String,
Number,
Object
}
public class TypeConverter
{
///
/// http://www.ecma-international.org/ecma-262/5.1/#sec-9.1
///
///
///
///
public static object ToPrimitive(object input, Types preferredType = Types.None)
{
if (input == Null.Instance || input == Undefined.Instance)
{
return input;
}
var primitive = input as IPrimitiveType;
if (primitive != null)
{
return primitive.PrimitiveValue;
}
var o = input as ObjectInstance;
if (o == null)
{
return input;
}
return o.DefaultValue(preferredType);
}
public static bool IsPrimitiveValue(object o)
{
return o is string
|| o is double
|| o is bool
|| o is Undefined
|| o is Null;
}
///
/// http://www.ecma-international.org/ecma-262/5.1/#sec-9.2
///
///
///
public static bool ToBoolean(object o)
{
if (o is bool)
{
return (bool)o;
}
if (o == Undefined.Instance || o == Null.Instance)
{
return false;
}
var p = o as IPrimitiveType;
if (p != null)
{
o = ToBoolean(p.PrimitiveValue);
}
if (o is double)
{
var n = (double) o;
if (n == 0 || double.IsNaN(n))
{
return false;
}
else
{
return true;
}
}
var s = o as string;
if (s != null)
{
if (String.IsNullOrEmpty(s))
{
return false;
}
else
{
return true;
}
}
if (o is int)
{
return ToBoolean((double)(int)o);
}
if (o is uint)
{
return ToBoolean((double)(uint)o);
}
return true;
}
///
/// http://www.ecma-international.org/ecma-262/5.1/#sec-9.3
///
///
///
public static double ToNumber(object o)
{
if (o is double)
{
return (double)o;
}
if (o is int)
{
return (int) o;
}
if (o is uint)
{
return (uint)o;
}
if (o is DateTime)
{
return ((DateTime)o).Ticks;
}
if (o == Undefined.Instance)
{
return double.NaN;
}
if (o == Null.Instance)
{
return 0;
}
if (o is bool)
{
return (bool)o ? 1 : 0;
}
var s = o as string;
if (s != null)
{
double n;
s = s.Trim();
if (String.IsNullOrEmpty(s))
{
return 0;
}
if ("+Infinity".Equals(s) || "Infinity".Equals(s))
{
return double.PositiveInfinity;
}
if ("-Infinity".Equals(s))
{
return double.NegativeInfinity;
}
// todo: use a common implementation with JavascriptParser
try
{
if (!s.StartsWith("0x", StringComparison.OrdinalIgnoreCase))
{
var start = s[0];
if (start != '+' && start != '-' && start != '.' && !char.IsDigit(start))
{
return double.NaN;
}
n = Double.Parse(s,
NumberStyles.AllowDecimalPoint | NumberStyles.AllowLeadingSign |
NumberStyles.AllowLeadingWhite | NumberStyles.AllowTrailingWhite |
NumberStyles.AllowExponent, CultureInfo.InvariantCulture);
if (s.StartsWith("-") && n == 0)
{
return -0.0;
}
return n;
}
int i = int.Parse(s.Substring(2), NumberStyles.HexNumber, CultureInfo.InvariantCulture);
return i;
}
catch (OverflowException)
{
return s.StartsWith("-") ? double.NegativeInfinity : double.PositiveInfinity;
}
catch
{
return double.NaN;
}
return double.NaN;
}
return ToNumber(ToPrimitive(o, Types.Number));
}
///
/// http://www.ecma-international.org/ecma-262/5.1/#sec-9.4
///
///
///
public static double ToInteger(object o)
{
var number = ToNumber(o);
if (double.IsNaN(number))
{
return 0;
}
if (number == 0 || number == double.NegativeInfinity || number == double.PositiveInfinity)
{
return number;
}
return (long)number;
}
///
/// http://www.ecma-international.org/ecma-262/5.1/#sec-9.5
///
///
///
public static int ToInt32(object o)
{
if (o is int)
{
return (int)o;
}
return (int)(uint)ToNumber(o);
}
///
/// http://www.ecma-international.org/ecma-262/5.1/#sec-9.6
///
///
///
public static uint ToUint32(object o)
{
if (o is uint)
{
return (uint)o;
}
return (uint)ToNumber(o);
}
///
/// http://www.ecma-international.org/ecma-262/5.1/#sec-9.7
///
///
///
public static ushort ToUint16(object o)
{
return (ushort)(uint)ToNumber(o);
}
///
/// http://www.ecma-international.org/ecma-262/5.1/#sec-9.8
///
///
///
public static string ToString(object o)
{
var str = o as string;
if (str != null)
{
return str;
}
if (o == Undefined.Instance)
{
return "undefined";
}
if (o == Null.Instance)
{
return "null";
}
var p = o as IPrimitiveType;
if (p != null)
{
o = p.PrimitiveValue;
}
if (o is bool)
{
return (bool) o ? "true" : "false";
}
if (o is double)
{
var m = (double) o;
if (double.IsNaN(m))
{
return "NaN";
}
if (m == 0)
{
return "0";
}
if (m < 0)
{
return "-" + ToString(-m);
}
if (m == double.PositiveInfinity)
{
return "Infinity";
}
if (m == double.NegativeInfinity)
{
return "-Infinity";
}
// s is all digits (significand or mantissa)
// k number of digits of s
// n total of digits in fraction s*10^n-k=m
// 123.4 s=1234, k=4, n=3
// 1234000 s = 1234, k=4, n=7
var d = (Decimal) m;
var significants = GetSignificantDigitCount(d);
var s = significants.Item1;
var k = (int)Math.Floor(Math.Log10((double) s)+1);
var n = k - significants.Item2;
if (m < 1 && m > -1)
{
n++;
}
while (s%10 == 0)
{
s = s/10;
k--;
}
if (k <= n && n <= 21)
{
return s + new string('0', (int)(n - k));
}
if (0 < n && n <= 21)
{
return s.ToString().Substring(0, (int)n) + '.' + s.ToString().Substring((int)n);
}
if (-6 < n && n <= 0)
{
return "0." + new string('0', -n) + s;
}
if (k == 1)
{
return s + "e" + (n - 1 < 0 ? "-" : "+") + Math.Abs(n - 1);
}
return s.ToString().Substring(0, 1) + "." + s.ToString().Substring(1) + "e" + (n - 1 < 0 ? "-" : "+") +
Math.Abs(n - 1);
}
if (o is int)
{
return ToString((double)(int)o);
}
if (o is uint)
{
return ToString((double)(uint)o);
}
if (o is DateTime)
{
return o.ToString();
}
return ToString(ToPrimitive(o, Types.String));
}
public static ObjectInstance ToObject(Engine engine, object value)
{
var o = value as ObjectInstance;
if (o != null)
{
return o;
}
if (value == Undefined.Instance)
{
throw new JavaScriptException(engine.TypeError);
}
if (value == Null.Instance)
{
throw new JavaScriptException(engine.TypeError);
}
if (value is bool)
{
return engine.Boolean.Construct((bool) value);
}
if (value is int)
{
return engine.Number.Construct((int) value);
}
if (value is uint)
{
return engine.Number.Construct((uint) value);
}
if (value is DateTime)
{
return engine.Date.Construct((DateTime)value);
}
if (value is double)
{
return engine.Number.Construct((double) value);
}
var s = value as string;
if (s != null)
{
return engine.String.Construct(s);
}
throw new JavaScriptException(engine.TypeError);
}
public static Types GetType(object value)
{
if (value == null || value == Null.Instance)
{
return Types.Null;
}
if (value == Undefined.Instance)
{
return Types.Undefined;
}
if (value is string)
{
return Types.String;
}
if (value is double || value is int || value is uint || value is ushort)
{
return Types.Number;
}
if (value is bool)
{
return Types.Boolean;
}
return Types.Object;
}
public static void CheckObjectCoercible(Engine engine, object o)
{
if (o == Undefined.Instance || o == Null.Instance)
{
throw new JavaScriptException(engine.TypeError);
}
}
public static Tuple GetSignificantDigitCount(decimal value)
{
/* So, the decimal type is basically represented as a fraction of two
* integers: a numerator that can be anything, and a denominator that is
* some power of 10.
*
* For example, the following numbers are represented by
* the corresponding fractions:
*
* VALUE NUMERATOR DENOMINATOR
* 1 1 1
* 1.0 10 10
* 1.012 1012 1000
* 0.04 4 100
* 12.01 1201 100
*
* So basically, if the magnitude is greater than or equal to one,
* the number of digits is the number of digits in the numerator.
* If it's less than one, the number of digits is the number of digits
* in the denominator.
*/
int[] bits = decimal.GetBits(value);
int scalePart = bits[3];
int highPart = bits[2];
int middlePart = bits[1];
int lowPart = bits[0];
if (value >= 1M || value <= -1M)
{
var num = new decimal(lowPart, middlePart, highPart, false, 0);
return new Tuple(num, (scalePart >> 16) & 0x7fff);
}
else
{
// Accoring to MSDN, the exponent is represented by
// bits 16-23 (the 2nd word):
// http://msdn.microsoft.com/en-us/library/system.decimal.getbits.aspx
int exponent = (scalePart & 0x00FF0000) >> 16;
return new Tuple(lowPart, exponent + 1);
}
}
}
}