#nullable disable using System.Diagnostics; using Jint.Runtime; namespace Jint.Native.Number.Dtoa { internal sealed class Bignum { // 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately. // This bignum can encode much bigger numbers, since it contains an // exponent. private const int kMaxSignificantBits = 3584; private const int kChunkSize = sizeof(uint) * 8; private const int kDoubleChunkSize = sizeof(ulong) * 8; // With bigit size of 28 we loose some bits, but a double still fits easily // into two chunks, and more importantly we can use the Comba multiplication. private const int kBigitSize = 28; private const uint kBigitMask = (1 << kBigitSize) - 1; // Every instance allocates kBigitLength chunks on the stack. Bignums cannot // grow. There are no checks if the stack-allocated space is sufficient. private const int kBigitCapacity = kMaxSignificantBits / kBigitSize; private readonly uint[] bigits_ = new uint[kBigitCapacity]; // The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize). private int exponent_; private int used_digits_; private int BigitLength() { return used_digits_ + exponent_; } // Precondition: this/other < 16bit. public uint DivideModuloIntBignum(Bignum other) { Debug.Assert(IsClamped()); Debug.Assert(other.IsClamped()); Debug.Assert(other.used_digits_ > 0); // Easy case: if we have less digits than the divisor than the result is 0. // Note: this handles the case where this == 0, too. if (BigitLength() < other.BigitLength()) return 0; Align(other); uint result = 0; // Start by removing multiples of 'other' until both numbers have the same // number of digits. while (BigitLength() > other.BigitLength()) { // This naive approach is extremely inefficient if the this divided other // might be big. This function is implemented for doubleToString where // the result should be small (less than 10). Debug.Assert(other.bigits_[other.used_digits_ - 1] >= (1 << kBigitSize) / 16); // Remove the multiples of the first digit. // Example this = 23 and other equals 9. -> Remove 2 multiples. result += bigits_[used_digits_ - 1]; SubtractTimes(other, bigits_[used_digits_ - 1]); } Debug.Assert(BigitLength() == other.BigitLength()); // Both bignums are at the same length now. // Since other has more than 0 digits we know that the access to // bigits_[used_digits_ - 1] is safe. var this_bigit = bigits_[used_digits_ - 1]; var other_bigit = other.bigits_[other.used_digits_ - 1]; if (other.used_digits_ == 1) { // Shortcut for easy (and common) case. uint quotient = this_bigit / other_bigit; bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; result += quotient; Clamp(); return result; } uint division_estimate = this_bigit / (other_bigit + 1); result += division_estimate; SubtractTimes(other, division_estimate); if (other_bigit * (division_estimate + 1) > this_bigit) return result; while (LessEqual(other, this)) { SubtractBignum(other); result++; } return result; } void Align(Bignum other) { if (exponent_ > other.exponent_) { // If "X" represents a "hidden" digit (by the exponent) then we are in the // following case (a == this, b == other): // a: aaaaaaXXXX or a: aaaaaXXX // b: bbbbbbX b: bbbbbbbbXX // We replace some of the hidden digits (X) of a with 0 digits. // a: aaaaaa000X or a: aaaaa0XX int zero_digits = exponent_ - other.exponent_; ValidateCapacity(used_digits_ + zero_digits); for (int i = used_digits_ - 1; i >= 0; --i) { bigits_[i + zero_digits] = bigits_[i]; } for (int i = 0; i < zero_digits; ++i) { bigits_[i] = 0; } used_digits_ += zero_digits; exponent_ -= zero_digits; Debug.Assert(used_digits_ >= 0); Debug.Assert(exponent_ >= 0); } } private static void ValidateCapacity(int size) { if (size > kBigitCapacity) { ExceptionHelper.ThrowInvalidOperationException(); } } private void Clamp() { while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) used_digits_--; if (used_digits_ == 0) exponent_ = 0; } private bool IsClamped() { return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; } private void Zero() { for (var i = 0; i < used_digits_; ++i) bigits_[i] = 0; used_digits_ = 0; exponent_ = 0; } // Guaranteed to lie in one Bigit. internal void AssignUInt16(uint value) { Debug.Assert(kBigitSize <= 8 * sizeof(uint)); Zero(); if (value == 0) return; ValidateCapacity(1); bigits_[0] = value; used_digits_ = 1; } internal void AssignUInt64(ulong value) { const int kUInt64Size = 64; Zero(); if (value == 0) return; int needed_bigits = kUInt64Size / kBigitSize + 1; ValidateCapacity(needed_bigits); for (int i = 0; i < needed_bigits; ++i) { bigits_[i] = (uint) (value & kBigitMask); value = value >> kBigitSize; } used_digits_ = needed_bigits; Clamp(); } internal void AssignBignum(Bignum other) { exponent_ = other.exponent_; for (int i = 0; i < other.used_digits_; ++i) { bigits_[i] = other.bigits_[i]; } // Clear the excess digits (if there were any). for (int i = other.used_digits_; i < used_digits_; ++i) { bigits_[i] = 0; } used_digits_ = other.used_digits_; } void SubtractTimes(Bignum other, uint factor) { #if DEBUG var a = new Bignum(); var b = new Bignum(); a.AssignBignum(this); b.AssignBignum(other); b.MultiplyByUInt32(factor); a.SubtractBignum(b); #endif Debug.Assert(exponent_ <= other.exponent_); if (factor < 3) { for (int i = 0; i < factor; ++i) { SubtractBignum(other); } return; } uint borrow = 0; int exponent_diff = other.exponent_ - exponent_; for (int i = 0; i < other.used_digits_; ++i) { ulong product = factor * other.bigits_[i]; ulong remove = borrow + product; uint difference = bigits_[i + exponent_diff] - (uint) (remove & kBigitMask); bigits_[i + exponent_diff] = difference & kBigitMask; borrow = (uint) ((difference >> (kChunkSize - 1)) + (remove >> kBigitSize)); } for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { if (borrow == 0) return; uint difference = bigits_[i] - borrow; bigits_[i] = difference & kBigitMask; borrow = difference >> (kChunkSize - 1); } Clamp(); #if DEBUG Debug.Assert(Equal(a, this)); #endif } void SubtractBignum(Bignum other) { Debug.Assert(IsClamped()); Debug.Assert(other.IsClamped()); // We require this to be bigger than other. Debug.Assert(LessEqual(other, this)); Align(other); int offset = other.exponent_ - exponent_; uint borrow = 0; int i; for (i = 0; i < other.used_digits_; ++i) { Debug.Assert((borrow == 0) || (borrow == 1)); uint difference = bigits_[i + offset] - other.bigits_[i] - borrow; bigits_[i + offset] = difference & kBigitMask; borrow = difference >> (kChunkSize - 1); } while (borrow != 0) { uint difference = bigits_[i + offset] - borrow; bigits_[i + offset] = difference & kBigitMask; borrow = difference >> (kChunkSize - 1); ++i; } Clamp(); } internal static bool Equal(Bignum a, Bignum b) { return Compare(a, b) == 0; } internal static bool LessEqual(Bignum a, Bignum b) { return Compare(a, b) <= 0; } internal static bool Less(Bignum a, Bignum b) { return Compare(a, b) < 0; } // Returns a + b == c static bool PlusEqual(Bignum a, Bignum b, Bignum c) { return PlusCompare(a, b, c) == 0; } // Returns a + b <= c static bool PlusLessEqual(Bignum a, Bignum b, Bignum c) { return PlusCompare(a, b, c) <= 0; } // Returns a + b < c static bool PlusLess(Bignum a, Bignum b, Bignum c) { return PlusCompare(a, b, c) < 0; } uint BigitAt(int index) { if (index >= BigitLength()) return 0; if (index < exponent_) return 0; return bigits_[index - exponent_]; } static int Compare(Bignum a, Bignum b) { Debug.Assert(a.IsClamped()); Debug.Assert(b.IsClamped()); int bigit_length_a = a.BigitLength(); int bigit_length_b = b.BigitLength(); if (bigit_length_a < bigit_length_b) return -1; if (bigit_length_a > bigit_length_b) return +1; for (int i = bigit_length_a - 1; i >= System.Math.Min(a.exponent_, b.exponent_); --i) { uint bigit_a = a.BigitAt(i); uint bigit_b = b.BigitAt(i); if (bigit_a < bigit_b) return -1; if (bigit_a > bigit_b) return +1; // Otherwise they are equal up to this digit. Try the next digit. } return 0; } internal static int PlusCompare(Bignum a, Bignum b, Bignum c) { Debug.Assert(a.IsClamped()); Debug.Assert(b.IsClamped()); Debug.Assert(c.IsClamped()); if (a.BigitLength() < b.BigitLength()) { return PlusCompare(b, a, c); } if (a.BigitLength() + 1 < c.BigitLength()) return -1; if (a.BigitLength() > c.BigitLength()) return +1; // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one // of 'a'. if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { return -1; } uint borrow = 0; // Starting at min_exponent all digits are == 0. So no need to compare them. int min_exponent = System.Math.Min(System.Math.Min(a.exponent_, b.exponent_), c.exponent_); for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { uint chunk_a = a.BigitAt(i); uint chunk_b = b.BigitAt(i); uint chunk_c = c.BigitAt(i); uint sum = chunk_a + chunk_b; if (sum > chunk_c + borrow) { return +1; } else { borrow = chunk_c + borrow - sum; if (borrow > 1) return -1; borrow <<= kBigitSize; } } if (borrow == 0) return 0; return -1; } internal void Times10() { MultiplyByUInt32(10); } internal void MultiplyByUInt32(uint factor) { if (factor == 1) return; if (factor == 0) { Zero(); return; } if (used_digits_ == 0) return; // The product of a bigit with the factor is of size kBigitSize + 32. // Assert that this number + 1 (for the carry) fits into double chunk. Debug.Assert(kDoubleChunkSize >= kBigitSize + 32 + 1); ulong carry = 0; for (int i = 0; i < used_digits_; ++i) { ulong product = ((ulong) factor) * bigits_[i] + carry; bigits_[i] = (uint) (product & kBigitMask); carry = (product >> kBigitSize); } while (carry != 0) { ValidateCapacity(used_digits_ + 1); bigits_[used_digits_] = (uint) (carry & kBigitMask); used_digits_++; carry >>= kBigitSize; } } internal void MultiplyByUInt64(ulong factor) { if (factor == 1) return; if (factor == 0) { Zero(); return; } Debug.Assert(kBigitSize < 32); ulong carry = 0; ulong low = factor & 0xFFFFFFFF; ulong high = factor >> 32; for (int i = 0; i < used_digits_; ++i) { ulong product_low = low * bigits_[i]; ulong product_high = high * bigits_[i]; ulong tmp = (carry & kBigitMask) + product_low; bigits_[i] = (uint) (tmp & kBigitMask); carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + (product_high << (32 - kBigitSize)); } while (carry != 0) { ValidateCapacity(used_digits_ + 1); bigits_[used_digits_] = (uint) (carry & kBigitMask); used_digits_++; carry >>= kBigitSize; } } internal void ShiftLeft(int shift_amount) { if (used_digits_ == 0) return; exponent_ += shift_amount / kBigitSize; int local_shift = shift_amount % kBigitSize; ValidateCapacity(used_digits_ + 1); BigitsShiftLeft(local_shift); } void BigitsShiftLeft(int shift_amount) { Debug.Assert(shift_amount < kBigitSize); Debug.Assert(shift_amount >= 0); uint carry = 0; for (int i = 0; i < used_digits_; ++i) { uint new_carry = bigits_[i] >> (kBigitSize - shift_amount); bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; carry = new_carry; } if (carry != 0) { bigits_[used_digits_] = carry; used_digits_++; } } internal void AssignPowerUInt16(uint baseValue, int power_exponent) { Debug.Assert(baseValue != 0); Debug.Assert(power_exponent >= 0); if (power_exponent == 0) { AssignUInt16(1); return; } Zero(); int shifts = 0; // We expect baseValue to be in range 2-32, and most often to be 10. // It does not make much sense to implement different algorithms for counting // the bits. while ((baseValue & 1) == 0) { baseValue >>= 1; shifts++; } int bit_size = 0; uint tmp_base = baseValue; while (tmp_base != 0) { tmp_base >>= 1; bit_size++; } int final_size = bit_size * power_exponent; // 1 extra bigit for the shifting, and one for rounded final_size. ValidateCapacity(final_size / kBigitSize + 2); // Left to Right exponentiation. int mask = 1; while (power_exponent >= mask) mask <<= 1; // The mask is now pointing to the bit above the most significant 1-bit of // power_exponent. // Get rid of first 1-bit; mask >>= 2; ulong this_value = baseValue; bool delayed_multipliciation = false; const ulong max_32bits = 0xFFFFFFFF; while (mask != 0 && this_value <= max_32bits) { this_value = this_value * this_value; // Verify that there is enough space in this_value to perform the // multiplication. The first bit_size bits must be 0. if ((power_exponent & mask) != 0) { ulong base_bits_mask = ~((((ulong) 1) << (64 - bit_size)) - 1); bool high_bits_zero = (this_value & base_bits_mask) == 0; if (high_bits_zero) { this_value *= baseValue; } else { delayed_multipliciation = true; } } mask >>= 1; } AssignUInt64(this_value); if (delayed_multipliciation) { MultiplyByUInt32(baseValue); } // Now do the same thing as a bignum. while (mask != 0) { Square(); if ((power_exponent & mask) != 0) { MultiplyByUInt32(baseValue); } mask >>= 1; } // And finally add the saved shifts. ShiftLeft(shifts * power_exponent); } void Square() { Debug.Assert(IsClamped()); int product_length = 2 * used_digits_; ValidateCapacity(product_length); // Comba multiplication: compute each column separately. // Example: r = a2a1a0 * b2b1b0. // r = 1 * a0b0 + // 10 * (a1b0 + a0b1) + // 100 * (a2b0 + a1b1 + a0b2) + // 1000 * (a2b1 + a1b2) + // 10000 * a2b2 // // In the worst case we have to accumulate nb-digits products of digit*digit. // // Assert that the additional number of bits in a DoubleChunk are enough to // sum up used_digits of Bigit*Bigit. if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { ExceptionHelper.ThrowNotImplementedException(); } ulong accumulator = 0; // First shift the digits so we don't overwrite them. int copy_offset = used_digits_; for (int i = 0; i < used_digits_; ++i) { bigits_[copy_offset + i] = bigits_[i]; } // We have two loops to avoid some 'if's in the loop. for (int i = 0; i < used_digits_; ++i) { // Process temporary digit i with power i. // The sum of the two indices must be equal to i. int bigit_index1 = i; int bigit_index2 = 0; // Sum all of the sub-products. while (bigit_index1 >= 0) { uint chunk1 = bigits_[copy_offset + bigit_index1]; uint chunk2 = bigits_[copy_offset + bigit_index2]; accumulator += (ulong) chunk1 * chunk2; bigit_index1--; bigit_index2++; } bigits_[i] = (uint) accumulator & kBigitMask; accumulator >>= kBigitSize; } for (int i = used_digits_; i < product_length; ++i) { int bigit_index1 = used_digits_ - 1; int bigit_index2 = i - bigit_index1; // Invariant: sum of both indices is again equal to i. // Inner loop runs 0 times on last iteration, emptying accumulator. while (bigit_index2 < used_digits_) { uint chunk1 = bigits_[copy_offset + bigit_index1]; uint chunk2 = bigits_[copy_offset + bigit_index2]; accumulator += (ulong) chunk1 * chunk2; bigit_index1--; bigit_index2++; } // The overwritten bigits_[i] will never be read in further loop iterations, // because bigit_index1 and bigit_index2 are always greater // than i - used_digits_. bigits_[i] = (uint) accumulator & kBigitMask; accumulator >>= kBigitSize; } // Since the result was guaranteed to lie inside the number the // accumulator must be 0 now. Debug.Assert(accumulator == 0); // Don't forget to update the used_digits and the exponent. used_digits_ = product_length; exponent_ *= 2; Clamp(); } } }