#nullable disable // Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Ported to Java from Mozilla's version of V8-dtoa by Hannes Wallnoefer. // The original revision was 67d1049b0bf9 from the mozilla-central tree. using System.Diagnostics; using System.Runtime.InteropServices; namespace Jint.Native.Number.Dtoa { /// /// Helper functions for doubles. /// internal sealed class DoubleHelper { internal const ulong KExponentMask = 0x7FF0000000000000L; internal const ulong KSignificandMask = 0x000FFFFFFFFFFFFFL; private const ulong KHiddenBit = 0x0010000000000000L; private static DiyFp AsDiyFp(ulong d64) { Debug.Assert(!IsSpecial(d64)); return new DiyFp(Significand(d64), Exponent(d64)); } // this->Significand() must not be 0. internal static DiyFp AsNormalizedDiyFp(ulong d64) { ulong f = Significand(d64); int e = Exponent(d64); Debug.Assert(f != 0); // The current double could be a denormal. while ((f & KHiddenBit) == 0) { f <<= 1; e--; } // Do the final shifts in one go. Don't forget the hidden bit (the '-1'). f <<= DiyFp.KSignificandSize - KSignificandSize - 1; e -= DiyFp.KSignificandSize - KSignificandSize - 1; return new DiyFp(f, e); } internal static int Exponent(ulong d64) { if (IsDenormal(d64)) return KDenormalExponent; int biasedE = (int) ((d64 & KExponentMask).UnsignedShift(KSignificandSize) & 0xffffffffL); return biasedE - KExponentBias; } internal static int NormalizedExponent(ulong significand, int exponent) { Debug.Assert(significand != 0); while ((significand & KHiddenBit) == 0) { significand = significand << 1; exponent = exponent - 1; } return exponent; } internal static ulong Significand(ulong d64) { ulong significand = d64 & KSignificandMask; if (!IsDenormal(d64)) { return significand + KHiddenBit; } return significand; } // Returns true if the double is a denormal. private static bool IsDenormal(ulong d64) { return (d64 & KExponentMask) == 0L; } // We consider denormals not to be special. // Hence only Infinity and NaN are special. private static bool IsSpecial(ulong d64) { return (d64 & KExponentMask) == KExponentMask; } [StructLayout(LayoutKind.Auto)] internal readonly struct NormalizedBoundariesResult { public NormalizedBoundariesResult(DiyFp minus, DiyFp plus) { Minus = minus; Plus = plus; } internal readonly DiyFp Minus; internal readonly DiyFp Plus; } // Returns the two boundaries of first argument. // The bigger boundary (m_plus) is normalized. The lower boundary has the same // exponent as m_plus. internal static NormalizedBoundariesResult NormalizedBoundaries(ulong d64) { DiyFp v = AsDiyFp(d64); bool significandIsZero = (v.F == KHiddenBit); var mPlus = DiyFp.Normalize((v.F << 1) + 1, v.E - 1); DiyFp mMinus; if (significandIsZero && v.E != KDenormalExponent) { // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but // at a distance of 1e8. // The only exception is for the smallest normal: the largest denormal is // at the same distance as its successor. // Note: denormals have the same exponent as the smallest normals. mMinus = new DiyFp((v.F << 2) - 1, v.E - 2); } else { mMinus = new DiyFp((v.F << 1) - 1, v.E - 1); } mMinus = new DiyFp(mMinus.F << (mMinus.E - mPlus.E), mPlus.E); return new NormalizedBoundariesResult(mMinus, mPlus); } private const int KSignificandSize = 52; // Excludes the hidden bit. private const int KExponentBias = 0x3FF + KSignificandSize; private const int KDenormalExponent = -KExponentBias + 1; } }