123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661 |
- #nullable disable
- using System.Diagnostics;
- using Jint.Runtime;
- namespace Jint.Native.Number.Dtoa
- {
- internal sealed class Bignum
- {
- // 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately.
- // This bignum can encode much bigger numbers, since it contains an
- // exponent.
- private const int kMaxSignificantBits = 3584;
- private const int kChunkSize = sizeof(uint) * 8;
- private const int kDoubleChunkSize = sizeof(ulong) * 8;
- // With bigit size of 28 we loose some bits, but a double still fits easily
- // into two chunks, and more importantly we can use the Comba multiplication.
- private const int kBigitSize = 28;
- private const uint kBigitMask = (1 << kBigitSize) - 1;
- // Every instance allocates kBigitLength chunks on the stack. Bignums cannot
- // grow. There are no checks if the stack-allocated space is sufficient.
- private const int kBigitCapacity = kMaxSignificantBits / kBigitSize;
- private readonly uint[] bigits_ = new uint[kBigitCapacity];
- // The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize).
- private int exponent_;
- private int used_digits_;
- private int BigitLength()
- {
- return used_digits_ + exponent_;
- }
- // Precondition: this/other < 16bit.
- public uint DivideModuloIntBignum(Bignum other)
- {
- Debug.Assert(IsClamped());
- Debug.Assert(other.IsClamped());
- Debug.Assert(other.used_digits_ > 0);
- // Easy case: if we have less digits than the divisor than the result is 0.
- // Note: this handles the case where this == 0, too.
- if (BigitLength() < other.BigitLength()) return 0;
- Align(other);
- uint result = 0;
- // Start by removing multiples of 'other' until both numbers have the same
- // number of digits.
- while (BigitLength() > other.BigitLength())
- {
- // This naive approach is extremely inefficient if the this divided other
- // might be big. This function is implemented for doubleToString where
- // the result should be small (less than 10).
- Debug.Assert(other.bigits_[other.used_digits_ - 1] >= (1 << kBigitSize) / 16);
- // Remove the multiples of the first digit.
- // Example this = 23 and other equals 9. -> Remove 2 multiples.
- result += bigits_[used_digits_ - 1];
- SubtractTimes(other, bigits_[used_digits_ - 1]);
- }
- Debug.Assert(BigitLength() == other.BigitLength());
- // Both bignums are at the same length now.
- // Since other has more than 0 digits we know that the access to
- // bigits_[used_digits_ - 1] is safe.
- var this_bigit = bigits_[used_digits_ - 1];
- var other_bigit = other.bigits_[other.used_digits_ - 1];
- if (other.used_digits_ == 1)
- {
- // Shortcut for easy (and common) case.
- uint quotient = this_bigit / other_bigit;
- bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
- result += quotient;
- Clamp();
- return result;
- }
- uint division_estimate = this_bigit / (other_bigit + 1);
- result += division_estimate;
- SubtractTimes(other, division_estimate);
- if (other_bigit * (division_estimate + 1) > this_bigit) return result;
- while (LessEqual(other, this))
- {
- SubtractBignum(other);
- result++;
- }
- return result;
- }
- void Align(Bignum other)
- {
- if (exponent_ > other.exponent_)
- {
- // If "X" represents a "hidden" digit (by the exponent) then we are in the
- // following case (a == this, b == other):
- // a: aaaaaaXXXX or a: aaaaaXXX
- // b: bbbbbbX b: bbbbbbbbXX
- // We replace some of the hidden digits (X) of a with 0 digits.
- // a: aaaaaa000X or a: aaaaa0XX
- int zero_digits = exponent_ - other.exponent_;
- ValidateCapacity(used_digits_ + zero_digits);
- for (int i = used_digits_ - 1; i >= 0; --i)
- {
- bigits_[i + zero_digits] = bigits_[i];
- }
- for (int i = 0; i < zero_digits; ++i)
- {
- bigits_[i] = 0;
- }
- used_digits_ += zero_digits;
- exponent_ -= zero_digits;
- Debug.Assert(used_digits_ >= 0);
- Debug.Assert(exponent_ >= 0);
- }
- }
- private static void ValidateCapacity(int size)
- {
- if (size > kBigitCapacity)
- {
- ExceptionHelper.ThrowInvalidOperationException();
- }
- }
- private void Clamp()
- {
- while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) used_digits_--;
- if (used_digits_ == 0) exponent_ = 0;
- }
- private bool IsClamped()
- {
- return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
- }
- private void Zero()
- {
- for (var i = 0; i < used_digits_; ++i) bigits_[i] = 0;
- used_digits_ = 0;
- exponent_ = 0;
- }
- // Guaranteed to lie in one Bigit.
- internal void AssignUInt16(uint value)
- {
- Debug.Assert(kBigitSize <= 8 * sizeof(uint));
- Zero();
- if (value == 0) return;
- ValidateCapacity(1);
- bigits_[0] = value;
- used_digits_ = 1;
- }
- internal void AssignUInt64(ulong value)
- {
- const int kUInt64Size = 64;
- Zero();
- if (value == 0) return;
- int needed_bigits = kUInt64Size / kBigitSize + 1;
- ValidateCapacity(needed_bigits);
- for (int i = 0; i < needed_bigits; ++i)
- {
- bigits_[i] = (uint) (value & kBigitMask);
- value = value >> kBigitSize;
- }
- used_digits_ = needed_bigits;
- Clamp();
- }
- internal void AssignBignum(Bignum other)
- {
- exponent_ = other.exponent_;
- for (int i = 0; i < other.used_digits_; ++i)
- {
- bigits_[i] = other.bigits_[i];
- }
- // Clear the excess digits (if there were any).
- for (int i = other.used_digits_; i < used_digits_; ++i)
- {
- bigits_[i] = 0;
- }
- used_digits_ = other.used_digits_;
- }
- void SubtractTimes(Bignum other, uint factor)
- {
- #if DEBUG
- var a = new Bignum();
- var b = new Bignum();
- a.AssignBignum(this);
- b.AssignBignum(other);
- b.MultiplyByUInt32(factor);
- a.SubtractBignum(b);
- #endif
- Debug.Assert(exponent_ <= other.exponent_);
- if (factor < 3)
- {
- for (int i = 0; i < factor; ++i)
- {
- SubtractBignum(other);
- }
- return;
- }
- uint borrow = 0;
- int exponent_diff = other.exponent_ - exponent_;
- for (int i = 0; i < other.used_digits_; ++i)
- {
- ulong product = factor * other.bigits_[i];
- ulong remove = borrow + product;
- uint difference = bigits_[i + exponent_diff] - (uint) (remove & kBigitMask);
- bigits_[i + exponent_diff] = difference & kBigitMask;
- borrow = (uint) ((difference >> (kChunkSize - 1)) + (remove >> kBigitSize));
- }
- for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i)
- {
- if (borrow == 0) return;
- uint difference = bigits_[i] - borrow;
- bigits_[i] = difference & kBigitMask;
- borrow = difference >> (kChunkSize - 1);
- }
- Clamp();
- #if DEBUG
- Debug.Assert(Equal(a, this));
- #endif
- }
- void SubtractBignum(Bignum other)
- {
- Debug.Assert(IsClamped());
- Debug.Assert(other.IsClamped());
- // We require this to be bigger than other.
- Debug.Assert(LessEqual(other, this));
- Align(other);
- int offset = other.exponent_ - exponent_;
- uint borrow = 0;
- int i;
- for (i = 0; i < other.used_digits_; ++i)
- {
- Debug.Assert((borrow == 0) || (borrow == 1));
- uint difference = bigits_[i + offset] - other.bigits_[i] - borrow;
- bigits_[i + offset] = difference & kBigitMask;
- borrow = difference >> (kChunkSize - 1);
- }
- while (borrow != 0)
- {
- uint difference = bigits_[i + offset] - borrow;
- bigits_[i + offset] = difference & kBigitMask;
- borrow = difference >> (kChunkSize - 1);
- ++i;
- }
- Clamp();
- }
- internal static bool Equal(Bignum a, Bignum b)
- {
- return Compare(a, b) == 0;
- }
- internal static bool LessEqual(Bignum a, Bignum b)
- {
- return Compare(a, b) <= 0;
- }
- internal static bool Less(Bignum a, Bignum b)
- {
- return Compare(a, b) < 0;
- }
- // Returns a + b == c
- static bool PlusEqual(Bignum a, Bignum b, Bignum c)
- {
- return PlusCompare(a, b, c) == 0;
- }
- // Returns a + b <= c
- static bool PlusLessEqual(Bignum a, Bignum b, Bignum c)
- {
- return PlusCompare(a, b, c) <= 0;
- }
- // Returns a + b < c
- static bool PlusLess(Bignum a, Bignum b, Bignum c)
- {
- return PlusCompare(a, b, c) < 0;
- }
- uint BigitAt(int index)
- {
- if (index >= BigitLength()) return 0;
- if (index < exponent_) return 0;
- return bigits_[index - exponent_];
- }
- static int Compare(Bignum a, Bignum b)
- {
- Debug.Assert(a.IsClamped());
- Debug.Assert(b.IsClamped());
- int bigit_length_a = a.BigitLength();
- int bigit_length_b = b.BigitLength();
- if (bigit_length_a < bigit_length_b) return -1;
- if (bigit_length_a > bigit_length_b) return +1;
- for (int i = bigit_length_a - 1; i >= System.Math.Min(a.exponent_, b.exponent_); --i)
- {
- uint bigit_a = a.BigitAt(i);
- uint bigit_b = b.BigitAt(i);
- if (bigit_a < bigit_b) return -1;
- if (bigit_a > bigit_b) return +1;
- // Otherwise they are equal up to this digit. Try the next digit.
- }
- return 0;
- }
- internal static int PlusCompare(Bignum a, Bignum b, Bignum c)
- {
- Debug.Assert(a.IsClamped());
- Debug.Assert(b.IsClamped());
- Debug.Assert(c.IsClamped());
- if (a.BigitLength() < b.BigitLength())
- {
- return PlusCompare(b, a, c);
- }
- if (a.BigitLength() + 1 < c.BigitLength()) return -1;
- if (a.BigitLength() > c.BigitLength()) return +1;
- // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
- // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
- // of 'a'.
- if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength())
- {
- return -1;
- }
- uint borrow = 0;
- // Starting at min_exponent all digits are == 0. So no need to compare them.
- int min_exponent = System.Math.Min(System.Math.Min(a.exponent_, b.exponent_), c.exponent_);
- for (int i = c.BigitLength() - 1; i >= min_exponent; --i)
- {
- uint chunk_a = a.BigitAt(i);
- uint chunk_b = b.BigitAt(i);
- uint chunk_c = c.BigitAt(i);
- uint sum = chunk_a + chunk_b;
- if (sum > chunk_c + borrow)
- {
- return +1;
- }
- else
- {
- borrow = chunk_c + borrow - sum;
- if (borrow > 1) return -1;
- borrow <<= kBigitSize;
- }
- }
- if (borrow == 0) return 0;
- return -1;
- }
- internal void Times10()
- {
- MultiplyByUInt32(10);
- }
- internal void MultiplyByUInt32(uint factor)
- {
- if (factor == 1) return;
- if (factor == 0)
- {
- Zero();
- return;
- }
- if (used_digits_ == 0) return;
- // The product of a bigit with the factor is of size kBigitSize + 32.
- // Assert that this number + 1 (for the carry) fits into double chunk.
- Debug.Assert(kDoubleChunkSize >= kBigitSize + 32 + 1);
- ulong carry = 0;
- for (int i = 0; i < used_digits_; ++i)
- {
- ulong product = ((ulong) factor) * bigits_[i] + carry;
- bigits_[i] = (uint) (product & kBigitMask);
- carry = (product >> kBigitSize);
- }
- while (carry != 0)
- {
- ValidateCapacity(used_digits_ + 1);
- bigits_[used_digits_] = (uint) (carry & kBigitMask);
- used_digits_++;
- carry >>= kBigitSize;
- }
- }
- internal void MultiplyByUInt64(ulong factor)
- {
- if (factor == 1) return;
- if (factor == 0)
- {
- Zero();
- return;
- }
- Debug.Assert(kBigitSize < 32);
- ulong carry = 0;
- ulong low = factor & 0xFFFFFFFF;
- ulong high = factor >> 32;
- for (int i = 0; i < used_digits_; ++i)
- {
- ulong product_low = low * bigits_[i];
- ulong product_high = high * bigits_[i];
- ulong tmp = (carry & kBigitMask) + product_low;
- bigits_[i] = (uint) (tmp & kBigitMask);
- carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
- (product_high << (32 - kBigitSize));
- }
- while (carry != 0)
- {
- ValidateCapacity(used_digits_ + 1);
- bigits_[used_digits_] = (uint) (carry & kBigitMask);
- used_digits_++;
- carry >>= kBigitSize;
- }
- }
- internal void ShiftLeft(int shift_amount)
- {
- if (used_digits_ == 0) return;
- exponent_ += shift_amount / kBigitSize;
- int local_shift = shift_amount % kBigitSize;
- ValidateCapacity(used_digits_ + 1);
- BigitsShiftLeft(local_shift);
- }
- void BigitsShiftLeft(int shift_amount)
- {
- Debug.Assert(shift_amount < kBigitSize);
- Debug.Assert(shift_amount >= 0);
- uint carry = 0;
- for (int i = 0; i < used_digits_; ++i)
- {
- uint new_carry = bigits_[i] >> (kBigitSize - shift_amount);
- bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
- carry = new_carry;
- }
- if (carry != 0)
- {
- bigits_[used_digits_] = carry;
- used_digits_++;
- }
- }
- internal void AssignPowerUInt16(uint baseValue, int power_exponent)
- {
- Debug.Assert(baseValue != 0);
- Debug.Assert(power_exponent >= 0);
- if (power_exponent == 0)
- {
- AssignUInt16(1);
- return;
- }
- Zero();
- int shifts = 0;
- // We expect baseValue to be in range 2-32, and most often to be 10.
- // It does not make much sense to implement different algorithms for counting
- // the bits.
- while ((baseValue & 1) == 0)
- {
- baseValue >>= 1;
- shifts++;
- }
- int bit_size = 0;
- uint tmp_base = baseValue;
- while (tmp_base != 0)
- {
- tmp_base >>= 1;
- bit_size++;
- }
- int final_size = bit_size * power_exponent;
- // 1 extra bigit for the shifting, and one for rounded final_size.
- ValidateCapacity(final_size / kBigitSize + 2);
- // Left to Right exponentiation.
- int mask = 1;
- while (power_exponent >= mask) mask <<= 1;
- // The mask is now pointing to the bit above the most significant 1-bit of
- // power_exponent.
- // Get rid of first 1-bit;
- mask >>= 2;
- ulong this_value = baseValue;
- bool delayed_multipliciation = false;
- const ulong max_32bits = 0xFFFFFFFF;
- while (mask != 0 && this_value <= max_32bits)
- {
- this_value = this_value * this_value;
- // Verify that there is enough space in this_value to perform the
- // multiplication. The first bit_size bits must be 0.
- if ((power_exponent & mask) != 0)
- {
- ulong base_bits_mask = ~((((ulong) 1) << (64 - bit_size)) - 1);
- bool high_bits_zero = (this_value & base_bits_mask) == 0;
- if (high_bits_zero)
- {
- this_value *= baseValue;
- }
- else
- {
- delayed_multipliciation = true;
- }
- }
- mask >>= 1;
- }
- AssignUInt64(this_value);
- if (delayed_multipliciation)
- {
- MultiplyByUInt32(baseValue);
- }
- // Now do the same thing as a bignum.
- while (mask != 0)
- {
- Square();
- if ((power_exponent & mask) != 0)
- {
- MultiplyByUInt32(baseValue);
- }
- mask >>= 1;
- }
- // And finally add the saved shifts.
- ShiftLeft(shifts * power_exponent);
- }
- void Square()
- {
- Debug.Assert(IsClamped());
- int product_length = 2 * used_digits_;
- ValidateCapacity(product_length);
- // Comba multiplication: compute each column separately.
- // Example: r = a2a1a0 * b2b1b0.
- // r = 1 * a0b0 +
- // 10 * (a1b0 + a0b1) +
- // 100 * (a2b0 + a1b1 + a0b2) +
- // 1000 * (a2b1 + a1b2) +
- // 10000 * a2b2
- //
- // In the worst case we have to accumulate nb-digits products of digit*digit.
- //
- // Assert that the additional number of bits in a DoubleChunk are enough to
- // sum up used_digits of Bigit*Bigit.
- if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_)
- {
- ExceptionHelper.ThrowNotImplementedException();
- }
- ulong accumulator = 0;
- // First shift the digits so we don't overwrite them.
- int copy_offset = used_digits_;
- for (int i = 0; i < used_digits_; ++i)
- {
- bigits_[copy_offset + i] = bigits_[i];
- }
- // We have two loops to avoid some 'if's in the loop.
- for (int i = 0; i < used_digits_; ++i)
- {
- // Process temporary digit i with power i.
- // The sum of the two indices must be equal to i.
- int bigit_index1 = i;
- int bigit_index2 = 0;
- // Sum all of the sub-products.
- while (bigit_index1 >= 0)
- {
- uint chunk1 = bigits_[copy_offset + bigit_index1];
- uint chunk2 = bigits_[copy_offset + bigit_index2];
- accumulator += (ulong) chunk1 * chunk2;
- bigit_index1--;
- bigit_index2++;
- }
- bigits_[i] = (uint) accumulator & kBigitMask;
- accumulator >>= kBigitSize;
- }
- for (int i = used_digits_; i < product_length; ++i)
- {
- int bigit_index1 = used_digits_ - 1;
- int bigit_index2 = i - bigit_index1;
- // Invariant: sum of both indices is again equal to i.
- // Inner loop runs 0 times on last iteration, emptying accumulator.
- while (bigit_index2 < used_digits_)
- {
- uint chunk1 = bigits_[copy_offset + bigit_index1];
- uint chunk2 = bigits_[copy_offset + bigit_index2];
- accumulator += (ulong) chunk1 * chunk2;
- bigit_index1--;
- bigit_index2++;
- }
- // The overwritten bigits_[i] will never be read in further loop iterations,
- // because bigit_index1 and bigit_index2 are always greater
- // than i - used_digits_.
- bigits_[i] = (uint) accumulator & kBigitMask;
- accumulator >>= kBigitSize;
- }
- // Since the result was guaranteed to lie inside the number the
- // accumulator must be 0 now.
- Debug.Assert(accumulator == 0);
- // Don't forget to update the used_digits and the exponent.
- used_digits_ = product_length;
- exponent_ *= 2;
- Clamp();
- }
- }
- }
|