namespace Urho
{
internal static class SplineMath
{
// CatmullRom Spline formula:
///
/// See http://en.wikipedia.org/wiki/Cubic_Hermite_spline#Cardinal_spline
///
/// Control point 1
/// Control point 2
/// Control point 3
/// Control point 4
/// The parameter c is a tension parameter that must be in the interval (0,1). In some sense, this can be interpreted as the "length" of the tangent. c=1 will yield all zero tangents, and c=0 yields a Catmull–Rom spline.
/// Time along the spline
/// The point along the spline for the given time (t)
internal static Vector2 CardinalSplineAt(Vector2 p0, Vector2 p1, Vector2 p2, Vector2 p3, float tension, float t)
{
if (tension < 0f)
{
tension = 0f;
}
if (tension > 1f)
{
tension = 1f;
}
float t2 = t * t;
float t3 = t2 * t;
/*
* Formula: s(-ttt + 2tt - t)P1 + s(-ttt + tt)P2 + (2ttt - 3tt + 1)P2 + s(ttt - 2tt + t)P3 + (-2ttt + 3tt)P3 + s(ttt - tt)P4
*/
float s = (1 - tension) / 2;
float b1 = s * ((-t3 + (2 * t2)) - t); // s(-t3 + 2 t2 - t)P1
float b2 = s * (-t3 + t2) + (2 * t3 - 3 * t2 + 1); // s(-t3 + t2)P2 + (2 t3 - 3 t2 + 1)P2
float b3 = s * (t3 - 2 * t2 + t) + (-2 * t3 + 3 * t2); // s(t3 - 2 t2 + t)P3 + (-2 t3 + 3 t2)P3
float b4 = s * (t3 - t2); // s(t3 - t2)P4
float x = (p0.X * b1 + p1.X * b2 + p2.X * b3 + p3.X * b4);
float y = (p0.Y * b1 + p1.Y * b2 + p2.Y * b3 + p3.Y * b4);
return new Vector2(x, y);
}
// Bezier cubic formula:
// ((1 - t) + t)3 = 1
// Expands to
// (1 - t)3 + 3t(1-t)2 + 3t2(1 - t) + t3 = 1
internal static float CubicBezier(float a, float b, float c, float d, float t)
{
float t1 = 1f - t;
return ((t1 * t1 * t1) * a + 3f * t * (t1 * t1) * b + 3f * (t * t) * (t1) * c + (t * t * t) * d);
}
internal static float QuadBezier(float a, float b, float c, float t)
{
float t1 = 1f - t;
return (t1 * t1) * a + 2.0f * (t1) * t * b + (t * t) * c;
}
}
}