| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- /*
- * Copyright (c) Contributors to the Open 3D Engine Project.
- * For complete copyright and license terms please see the LICENSE at the root of this distribution.
- *
- * SPDX-License-Identifier: Apache-2.0 OR MIT
- *
- */
- #include <cmath>
- #include <AzCore/std/algorithm.h>
- #include <LinearAlgebra.h>
- #include <Eigenanalysis/Utilities.h>
- namespace NumericalMethods::Eigenanalysis
- {
- VectorVariable CrossProduct(const VectorVariable& lhs, const VectorVariable& rhs)
- {
- AZ_Assert(
- lhs.GetDimension() == 3 && rhs.GetDimension() == 3, "VectorVariable dimensions invalid for cross product."
- );
- return VectorVariable::CreateFromVector({
- lhs[1] * rhs[2] - lhs[2] * rhs[1],
- lhs[2] * rhs[0] - lhs[0] * rhs[2],
- lhs[0] * rhs[1] - lhs[1] * rhs[0]
- });
- }
- void ComputeOrthogonalComplement(
- const VectorVariable& vecW, VectorVariable& vecU, VectorVariable& vecV
- )
- {
- // Robustly computes a right-handed orthogonal basis {vecU, vecV, vecW}.
- double invLength = 1.0;
- if (fabs(vecW[0]) > fabs(vecW[1]))
- {
- // The component of maximum absolute value is either vecW[0] or vecW[2].
- invLength /= sqrt(vecW[0] * vecW[0] + vecW[2] * vecW[2]);
- vecU = VectorVariable::CreateFromVector({ -vecW[2] * invLength, 0.0, vecW[0] * invLength });
- }
- else
- {
- // The component of maximum absolute value is either vecW[1] or vecW[2].
- invLength /= sqrt(vecW[1] * vecW[1] + vecW[2] * vecW[2]);
- vecU = VectorVariable::CreateFromVector({ 0.0, vecW[2] * invLength, -vecW[1] * invLength });
- }
- vecV = CrossProduct(vecW, vecU);
- }
- VectorVariable ComputeEigenvector0(
- double a00, double a01, double a02, double a11, double a12, double a22, double val
- )
- {
- // By definition, (A-e*I)v = 0, where e is the eigenvalue and v is the corresponding eigenvector to be found.
- // This condition implies that the rows (A-e*I) must be perpendicular to v. This matrix must have rank 2, so two
- // rows will be linearly dependent. For those two rows, the cross product will be (nearly) zero. So to find v,
- // we can simply take the cross product of the two rows that maximize its magnitude.
- VectorVariable row0 = VectorVariable::CreateFromVector({ a00 - val, a01, a02 });
- VectorVariable row1 = VectorVariable::CreateFromVector({ a01, a11 - val, a12 });
- VectorVariable row2 = VectorVariable::CreateFromVector({ a02, a12, a22 - val });
- VectorVariable r0xr1 = CrossProduct(row0, row1);
- VectorVariable r0xr2 = CrossProduct(row0, row2);
- VectorVariable r1xr2 = CrossProduct(row1, row2);
- double d0 = r0xr1.Dot(r0xr1);
- double d1 = r0xr2.Dot(r0xr2);
- double d2 = r1xr2.Dot(r1xr2);
- return d0 >= d1 && d0 >= d2 ? r0xr1 * (1.0 / sqrt(d0)) :
- d1 >= d0 && d1 >= d2 ? r0xr2 * (1.0 / sqrt(d1)) :
- r1xr2 * (1.0 / sqrt(d2)) ;
- }
- VectorVariable ComputeEigenvector1(
- double a00,
- double a01,
- double a02,
- double a11,
- double a12,
- double a22,
- double val,
- const VectorVariable& vec
- )
- {
- // Real symmetric matrices must have orthogonal eigenvectors. Thus, if we generate two vectors vecU and vecV
- // orthogonal to the eigenvector vec already found, the remaining eigenvectors must be a circular combination
- // of vecU and vecW. This reduces the problem to a 2D system. For details see Eberly.
- VectorVariable vecU(3);
- VectorVariable vecV(3);
- ComputeOrthogonalComplement(vec, vecU, vecV);
- MatrixVariable matA(3, 3);
- matA.Element(0, 0) = a00;
- matA.Element(0, 1) = a01;
- matA.Element(0, 2) = a02;
- matA.Element(1, 0) = a01;
- matA.Element(1, 1) = a11;
- matA.Element(1, 2) = a12;
- matA.Element(2, 0) = a02;
- matA.Element(2, 1) = a12;
- matA.Element(2, 2) = a22;
- double m00 = vecU.Dot(matA * vecU) - val;
- double absM00 = fabs(m00);
- double m01 = vecU.Dot(matA * vecV);
- double absM01 = fabs(m01);
- double m11 = vecV.Dot(matA * vecV) - val;
- double absM11 = fabs(m11);
- auto discardComponentAndNormalize = [](double& factor, double& other) {
- other /= factor;
- factor = 1.0 / sqrt(1.0 + other * other);
- other *= factor;
- };
- if (absM00 > absM11)
- {
- if (AZStd::max(absM00, absM01) > 0.0)
- {
- if (absM00 >= absM01)
- {
- discardComponentAndNormalize(m00, m01);
- }
- else
- {
- discardComponentAndNormalize(m01, m00);
- }
- return vecU * m01 - vecV * m00;
- }
- else
- {
- return vecU;
- }
- }
- else
- {
- if (AZStd::max(absM11, absM01) > 0.0)
- {
- if (absM11 >= absM01)
- {
- discardComponentAndNormalize(m11, m01);
- }
- else
- {
- discardComponentAndNormalize(m01, m11);
- }
- return vecU * m11 - vecV * m01;
- }
- else
- {
- return vecU;
- }
- }
- }
- VectorVariable ComputeEigenvector2(const VectorVariable& vec0, const VectorVariable& vec1)
- {
- return CrossProduct(vec0, vec1);
- }
- } // namespace NumericalMethods::Eigenanalysis
|