| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- /*
- * Copyright (c) Contributors to the Open 3D Engine Project.
- * For complete copyright and license terms please see the LICENSE at the root of this distribution.
- *
- * SPDX-License-Identifier: Apache-2.0 OR MIT
- *
- */
- #include <algorithm>
- #include <cmath>
- #include <AzCore/std/algorithm.h>
- #include <LinearAlgebra.h>
- #include <Eigenanalysis/Solver3x3.h>
- #include <Eigenanalysis/Utilities.h>
- namespace NumericalMethods::Eigenanalysis
- {
- SolverResult<Real, 3> NonIterativeSymmetricEigensolver3x3(
- double a00, double a01, double a02, double a11, double a12, double a22
- )
- {
- // Using the notation from Eberly:
- // A - the symmetric input matrix
- // a<ij> - the upper elements of the matrix (0 <= i <= j <= 2).
- // B - a matrix derived from A, such that B = (A - q*I)/p where
- // p = sqrt( tr( (A-q*I)^2 ) / 6 )
- // q = tr(A) / 3
- // beta<i> - the eigenvalues of B (0 <= i <= 2)
- // alpha<i> - the eigenvalues of A (not explicit, stored in the result) (0 <= i <= 2)
- double alpha0 = 0.0;
- double alpha1 = 0.0;
- double alpha2 = 0.0;
- VectorVariable vec0 = VectorVariable::CreateFromVector({ 1.0, 0.0, 0.0 });
- VectorVariable vec1 = VectorVariable::CreateFromVector({ 0.0, 1.0, 0.0 });
- VectorVariable vec2 = VectorVariable::CreateFromVector({ 0.0, 0.0, 1.0 });
- // Precondition the matrix by factoring out the element of biggest magnitude. This is to guard against
- // floating-point overflow/underflow.
- double maxAbsElem = std::max({fabs(a00), fabs(a01), fabs(a02), fabs(a11), fabs(a12), fabs(a22)});
- if (maxAbsElem != 0.0)
- {
- // A is not the zero matrix.
- double invMaxAbsElem = 1.0 / maxAbsElem;
- a00 *= invMaxAbsElem;
- a01 *= invMaxAbsElem;
- a02 *= invMaxAbsElem;
- a11 *= invMaxAbsElem;
- a12 *= invMaxAbsElem;
- a22 *= invMaxAbsElem;
- double norm = a01 * a01 + a02 * a02 + a12 * a12;
- if (norm > 0.0)
- {
- // Compute the eigenvalues of A. For a detailed explanation of how the algorithm works, see Eberly.
- double q = (a00 + a11 + a22) / 3.0;
- double b00 = a00 - q;
- double b11 = a11 - q;
- double b22 = a22 - q;
- double p = sqrt((b00 * b00 + b11 * b11 + b22 * b22 + norm * 2.0) / 6.0);
- double c00 = b11 * b22 - a12 * a12;
- double c01 = a01 * b22 - a12 * a02;
- double c02 = a01 * a12 - b11 * a02;
- double det = (b00 * c00 - a01 * c01 + a02 * c02) / (p * p * p);
- double halfDet = AZStd::clamp(det * 0.5, -1.0, 1.0);
- double angle = acos(halfDet) / 3.0;
- static const double twoThirdsPi = 2.09439510239319549;
- // The eigenvalues of B are ordered such that beta0 <= beta1 <= beta2.
- double beta2 = cos(angle) * 2.0;
- double beta0 = cos(angle + twoThirdsPi) * 2.0;
- double beta1 = -(beta0 + beta2);
- // The eigenvalues of A are ordered such that alpha0 <= alpha1 <= alpha2.
- alpha0 = q + p * beta0;
- alpha1 = q + p * beta1;
- alpha2 = q + p * beta2;
- // Compute the eigenvectors. We either have
- // beta0 <= beta1 < 0 < beta2 (if halfDet >= 0); or
- // beta0 < 0 < beta1 <= beta2 (if halfDef < 0).
- // For numerical stability, we use different approaches to compute the eigenvector corresponding to the
- // eigenvalue that is definitely not repeated and the other two.
- if (halfDet >= 0.0)
- {
- vec2 = ComputeEigenvector0(a00, a01, a02, a11, a12, a22, alpha2);
- vec1 = ComputeEigenvector1(a00, a01, a02, a11, a12, a22, alpha1, vec2);
- vec0 = ComputeEigenvector2(vec1, vec2);
- }
- else
- {
- vec0 = ComputeEigenvector0(a00, a01, a02, a11, a12, a22, alpha0);
- vec1 = ComputeEigenvector1(a00, a01, a02, a11, a12, a22, alpha1, vec0);
- vec2 = ComputeEigenvector2(vec0, vec1);
- }
- }
- else
- {
- // A is a diagonal matrix. The eigenvalues in this case are the elements along the main diagonal, and
- // the eigenvectors are the standard Cartesian basis vectors.
- alpha0 = a00;
- alpha1 = a11;
- alpha2 = a22;
- }
- // The scaling applied to A in the precondition scales the eigenvalues by the same amount and must be
- // reverted.
- alpha0 *= maxAbsElem;
- alpha1 *= maxAbsElem;
- alpha2 *= maxAbsElem;
- }
- return SolverResult<Real, 3>{
- SolverOutcome::Success,
- {
- Eigenpair<Real, 3>{alpha0, {{vec0[0], vec0[1], vec0[2]}}},
- Eigenpair<Real, 3>{alpha1, {{vec1[0], vec1[1], vec1[2]}}},
- Eigenpair<Real, 3>{alpha2, {{vec2[0], vec2[1], vec2[2]}}}
- }
- };
- }
- } // namespace NumericalMethods::Eigenanalysis
|