12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- // Copyright 2017 Google Inc. All rights reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- package s2
- // nthDerivativeCoder provides Nth Derivative Coding.
- // (In signal processing disciplines, this is known as N-th Delta Coding.)
- //
- // Good for varint coding integer sequences with polynomial trends.
- //
- // Instead of coding a sequence of values directly, code its nth-order discrete
- // derivative. Overflow in integer addition and subtraction makes this a
- // lossless transform.
- //
- // constant linear quadratic
- // trend trend trend
- // / \ / \ / \_
- // input |0 0 0 0 1 2 3 4 9 16 25 36
- // 0th derivative(identity) |0 0 0 0 1 2 3 4 9 16 25 36
- // 1st derivative(delta coding) | 0 0 0 1 1 1 1 5 7 9 11
- // 2nd derivative(linear prediction) | 0 0 1 0 0 0 4 2 2 2
- // -------------------------------------
- // 0 1 2 3 4 5 6 7 8 9 10 11
- // n in sequence
- //
- // Higher-order codings can break even or be detrimental on other sequences.
- //
- // random oscillating
- // / \ / \_
- // input |5 9 6 1 8 8 2 -2 4 -4 6 -6
- // 0th derivative(identity) |5 9 6 1 8 8 2 -2 4 -4 6 -6
- // 1st derivative(delta coding) | 4 -3 -5 7 0 -6 -4 6 -8 10 -12
- // 2nd derivative(linear prediction) | -7 -2 12 -7 -6 2 10 -14 18 -22
- // ---------------------------------------
- // 0 1 2 3 4 5 6 7 8 9 10 11
- // n in sequence
- //
- // Note that the nth derivative isn't available until sequence item n. Earlier
- // values are coded at lower order. For the above table, read 5 4 -7 -2 12 ...
- type nthDerivativeCoder struct {
- n, m int
- memory [10]int32
- }
- // newNthDerivativeCoder returns a new coder, where n is the derivative order of the encoder (the N in NthDerivative).
- // n must be within [0,10].
- func newNthDerivativeCoder(n int) *nthDerivativeCoder {
- c := &nthDerivativeCoder{n: n}
- if n < 0 || n > len(c.memory) {
- panic("unsupported n. Must be within [0,10].")
- }
- return c
- }
- func (c *nthDerivativeCoder) encode(k int32) int32 {
- for i := 0; i < c.m; i++ {
- delta := k - c.memory[i]
- c.memory[i] = k
- k = delta
- }
- if c.m < c.n {
- c.memory[c.m] = k
- c.m++
- }
- return k
- }
- func (c *nthDerivativeCoder) decode(k int32) int32 {
- if c.m < c.n {
- c.m++
- }
- for i := c.m - 1; i >= 0; i-- {
- c.memory[i] += k
- k = c.memory[i]
- }
- return k
- }
|