package goja import ( "fmt" "math" "reflect" "runtime" "sort" "unsafe" ) const ( classObject = "Object" classArray = "Array" classWeakSet = "WeakSet" classWeakMap = "WeakMap" classMap = "Map" classSet = "Set" classFunction = "Function" classNumber = "Number" classString = "String" classBoolean = "Boolean" classError = "Error" classRegExp = "RegExp" classDate = "Date" classArrayIterator = "Array Iterator" classMapIterator = "Map Iterator" classSetIterator = "Set Iterator" ) type weakCollection interface { removePtr(uintptr) } type weakCollections struct { colls []weakCollection } func (r *weakCollections) add(c weakCollection) { for _, ec := range r.colls { if ec == c { return } } r.colls = append(r.colls, c) } func (r *weakCollections) id() uintptr { return uintptr(unsafe.Pointer(r)) } func (r *weakCollections) remove(c weakCollection) { if cap(r.colls) > 16 && cap(r.colls)>>2 > len(r.colls) { // shrink colls := make([]weakCollection, 0, len(r.colls)) for _, coll := range r.colls { if coll != c { colls = append(colls, coll) } } r.colls = colls } else { for i, coll := range r.colls { if coll == c { l := len(r.colls) - 1 r.colls[i] = r.colls[l] r.colls[l] = nil r.colls = r.colls[:l] break } } } } func finalizeObjectWeakRefs(r *weakCollections) { id := r.id() for _, c := range r.colls { c.removePtr(id) } r.colls = nil } type Object struct { runtime *Runtime self objectImpl // Contains references to all weak collections that contain this Object. // weakColls has a finalizer that removes the Object's id from all weak collections. // The id is the weakColls pointer value converted to uintptr. // Note, cannot set the finalizer on the *Object itself because it's a part of a // reference cycle. weakColls *weakCollections } type iterNextFunc func() (propIterItem, iterNextFunc) type PropertyDescriptor struct { jsDescriptor *Object Value Value Writable, Configurable, Enumerable Flag Getter, Setter Value } func (p *PropertyDescriptor) Empty() bool { var empty PropertyDescriptor return *p == empty } func (p *PropertyDescriptor) toValue(r *Runtime) Value { if p.jsDescriptor != nil { return p.jsDescriptor } o := r.NewObject() s := o.self if p.Value != nil { s._putProp("value", p.Value, true, true, true) } if p.Writable != FLAG_NOT_SET { s._putProp("writable", valueBool(p.Writable.Bool()), true, true, true) } if p.Enumerable != FLAG_NOT_SET { s._putProp("enumerable", valueBool(p.Enumerable.Bool()), true, true, true) } if p.Configurable != FLAG_NOT_SET { s._putProp("configurable", valueBool(p.Configurable.Bool()), true, true, true) } if p.Getter != nil { s._putProp("get", p.Getter, true, true, true) } if p.Setter != nil { s._putProp("set", p.Setter, true, true, true) } return o } func (p *PropertyDescriptor) complete() { if p.Getter == nil && p.Setter == nil { if p.Value == nil { p.Value = _undefined } if p.Writable == FLAG_NOT_SET { p.Writable = FLAG_FALSE } } else { if p.Getter == nil { p.Getter = _undefined } if p.Setter == nil { p.Setter = _undefined } } if p.Enumerable == FLAG_NOT_SET { p.Enumerable = FLAG_FALSE } if p.Configurable == FLAG_NOT_SET { p.Configurable = FLAG_FALSE } } type objectImpl interface { sortable className() string getStr(p string, receiver Value) Value getIdx(p valueInt, receiver Value) Value getSym(p *valueSymbol, receiver Value) Value getOwnPropStr(string) Value getOwnPropIdx(valueInt) Value getOwnPropSym(*valueSymbol) Value setOwnStr(p string, v Value, throw bool) bool setOwnIdx(p valueInt, v Value, throw bool) bool setOwnSym(p *valueSymbol, v Value, throw bool) bool setForeignStr(p string, v, receiver Value, throw bool) (res bool, handled bool) setForeignIdx(p valueInt, v, receiver Value, throw bool) (res bool, handled bool) setForeignSym(p *valueSymbol, v, receiver Value, throw bool) (res bool, handled bool) hasPropertyStr(string) bool hasPropertyIdx(idx valueInt) bool hasPropertySym(s *valueSymbol) bool hasOwnPropertyStr(string) bool hasOwnPropertyIdx(valueInt) bool hasOwnPropertySym(s *valueSymbol) bool defineOwnPropertyStr(name string, desc PropertyDescriptor, throw bool) bool defineOwnPropertyIdx(name valueInt, desc PropertyDescriptor, throw bool) bool defineOwnPropertySym(name *valueSymbol, desc PropertyDescriptor, throw bool) bool deleteStr(name string, throw bool) bool deleteIdx(idx valueInt, throw bool) bool deleteSym(s *valueSymbol, throw bool) bool toPrimitiveNumber() Value toPrimitiveString() Value toPrimitive() Value assertCallable() (call func(FunctionCall) Value, ok bool) assertConstructor() func(args []Value, newTarget *Object) *Object proto() *Object setProto(proto *Object, throw bool) bool hasInstance(v Value) bool isExtensible() bool preventExtensions(throw bool) bool enumerate() iterNextFunc enumerateUnfiltered() iterNextFunc export() interface{} exportType() reflect.Type equal(objectImpl) bool ownKeys(all bool, accum []Value) []Value ownSymbols() []Value ownPropertyKeys(all bool, accum []Value) []Value _putProp(name string, value Value, writable, enumerable, configurable bool) Value _putSym(s *valueSymbol, prop Value) } type baseObject struct { class string val *Object prototype *Object extensible bool values map[string]Value propNames []string lastSortedPropLen, idxPropCount int symValues *orderedMap } type primitiveValueObject struct { baseObject pValue Value } func (o *primitiveValueObject) export() interface{} { return o.pValue.Export() } func (o *primitiveValueObject) exportType() reflect.Type { return o.pValue.ExportType() } type FunctionCall struct { This Value Arguments []Value } type ConstructorCall struct { This *Object Arguments []Value } func (f FunctionCall) Argument(idx int) Value { if idx < len(f.Arguments) { return f.Arguments[idx] } return _undefined } func (f ConstructorCall) Argument(idx int) Value { if idx < len(f.Arguments) { return f.Arguments[idx] } return _undefined } func (o *baseObject) init() { o.values = make(map[string]Value) } func (o *baseObject) className() string { return o.class } func (o *baseObject) hasPropertyStr(name string) bool { if o.val.self.hasOwnPropertyStr(name) { return true } if o.prototype != nil { return o.prototype.self.hasPropertyStr(name) } return false } func (o *baseObject) hasPropertyIdx(idx valueInt) bool { return o.val.self.hasPropertyStr(idx.String()) } func (o *baseObject) hasPropertySym(s *valueSymbol) bool { if o.hasOwnPropertySym(s) { return true } if o.prototype != nil { return o.prototype.self.hasPropertySym(s) } return false } func (o *baseObject) getWithOwnProp(prop, p, receiver Value) Value { if prop == nil && o.prototype != nil { if receiver == nil { return o.prototype.get(p, o.val) } return o.prototype.get(p, receiver) } if prop, ok := prop.(*valueProperty); ok { if receiver == nil { return prop.get(o.val) } return prop.get(receiver) } return prop } func (o *baseObject) getStrWithOwnProp(prop Value, name string, receiver Value) Value { if prop == nil && o.prototype != nil { if receiver == nil { return o.prototype.self.getStr(name, o.val) } return o.prototype.self.getStr(name, receiver) } if prop, ok := prop.(*valueProperty); ok { if receiver == nil { return prop.get(o.val) } return prop.get(receiver) } return prop } func (o *baseObject) getIdx(idx valueInt, receiver Value) Value { return o.val.self.getStr(idx.String(), receiver) } func (o *baseObject) getSym(s *valueSymbol, receiver Value) Value { return o.getWithOwnProp(o.getOwnPropSym(s), s, receiver) } func (o *baseObject) getStr(name string, receiver Value) Value { prop := o.values[name] if prop == nil { if o.prototype != nil { if receiver == nil { return o.prototype.self.getStr(name, o.val) } return o.prototype.self.getStr(name, receiver) } } if prop, ok := prop.(*valueProperty); ok { if receiver == nil { return prop.get(o.val) } return prop.get(receiver) } return prop } func (o *baseObject) getOwnPropIdx(idx valueInt) Value { return o.val.self.getOwnPropStr(idx.String()) } func (o *baseObject) getOwnPropSym(s *valueSymbol) Value { if o.symValues != nil { return o.symValues.get(s) } return nil } func (o *baseObject) getOwnPropStr(name string) Value { return o.values[name] } func (o *baseObject) checkDeleteProp(name string, prop *valueProperty, throw bool) bool { if !prop.configurable { o.val.runtime.typeErrorResult(throw, "Cannot delete property '%s' of %s", name, o.val.toString()) return false } return true } func (o *baseObject) checkDelete(name string, val Value, throw bool) bool { if val, ok := val.(*valueProperty); ok { return o.checkDeleteProp(name, val, throw) } return true } func (o *baseObject) _delete(name string) { delete(o.values, name) for i, n := range o.propNames { if n == name { copy(o.propNames[i:], o.propNames[i+1:]) o.propNames = o.propNames[:len(o.propNames)-1] if i < o.lastSortedPropLen { o.lastSortedPropLen-- if i < o.idxPropCount { o.idxPropCount-- } } break } } } func (o *baseObject) deleteIdx(idx valueInt, throw bool) bool { return o.val.self.deleteStr(idx.String(), throw) } func (o *baseObject) deleteSym(s *valueSymbol, throw bool) bool { if o.symValues != nil { if val := o.symValues.get(s); val != nil { if !o.checkDelete(s.String(), val, throw) { return false } o.symValues.remove(s) } } return true } func (o *baseObject) deleteStr(name string, throw bool) bool { if val, exists := o.values[name]; exists { if !o.checkDelete(name, val, throw) { return false } o._delete(name) } return true } func (o *baseObject) setProto(proto *Object, throw bool) bool { current := o.prototype if current.SameAs(proto) { return true } if !o.extensible { o.val.runtime.typeErrorResult(throw, "%s is not extensible", o.val) return false } for p := proto; p != nil; { if p.SameAs(o.val) { o.val.runtime.typeErrorResult(throw, "Cyclic __proto__ value") return false } p = p.self.proto() } o.prototype = proto return true } func (o *baseObject) _setProto(val Value) { var proto *Object if val != _null { if obj, ok := val.(*Object); ok { proto = obj } else { return } } o.setProto(proto, true) } func (o *baseObject) setOwnStr(name string, val Value, throw bool) bool { ownDesc := o.values[name] if ownDesc == nil { if proto := o.prototype; proto != nil { // we know it's foreign because prototype loops are not allowed if res, handled := proto.self.setForeignStr(name, val, o.val, throw); handled { return res } } // new property if !o.extensible { o.val.runtime.typeErrorResult(throw, "Cannot add property %s, object is not extensible", name) return false } else { o.values[name] = val o.propNames = append(o.propNames, name) } return true } if prop, ok := ownDesc.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } else { prop.set(o.val, val) } } else { o.values[name] = val } return true } func (o *baseObject) setOwnIdx(idx valueInt, val Value, throw bool) bool { return o.val.self.setOwnStr(idx.String(), val, throw) } func (o *baseObject) setOwnSym(name *valueSymbol, val Value, throw bool) bool { var ownDesc Value if o.symValues != nil { ownDesc = o.symValues.get(name) } if ownDesc == nil { if proto := o.prototype; proto != nil { // we know it's foreign because prototype loops are not allowed if res, handled := proto.self.setForeignSym(name, val, o.val, throw); handled { return res } } // new property if !o.extensible { o.val.runtime.typeErrorResult(throw, "Cannot add property %s, object is not extensible", name) return false } else { if o.symValues == nil { o.symValues = newOrderedMap(&o.val.runtime.hash) } o.symValues.set(name, val) } return true } if prop, ok := ownDesc.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } else { prop.set(o.val, val) } } else { o.symValues.set(name, val) } return true } func (o *baseObject) _setForeignStr(name string, prop, val, receiver Value, throw bool) (bool, bool) { if prop != nil { if prop, ok := prop.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false, true } if prop.setterFunc != nil { prop.set(receiver, val) return true, true } } } else { if proto := o.prototype; proto != nil { if receiver != proto { return proto.self.setForeignStr(name, val, receiver, throw) } return proto.self.setOwnStr(name, val, throw), true } } return false, false } func (o *baseObject) _setForeignIdx(idx valueInt, prop, val, receiver Value, throw bool) (bool, bool) { if prop != nil { if prop, ok := prop.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%d'", idx) return false, true } if prop.setterFunc != nil { prop.set(receiver, val) return true, true } } } else { if proto := o.prototype; proto != nil { if receiver != proto { return proto.self.setForeignIdx(idx, val, receiver, throw) } return proto.self.setOwnIdx(idx, val, throw), true } } return false, false } func (o *baseObject) setForeignStr(name string, val, receiver Value, throw bool) (bool, bool) { return o._setForeignStr(name, o.values[name], val, receiver, throw) } func (o *baseObject) setForeignIdx(name valueInt, val, receiver Value, throw bool) (bool, bool) { return o.val.self.setForeignStr(name.String(), val, receiver, throw) } func (o *baseObject) setForeignSym(name *valueSymbol, val, receiver Value, throw bool) (bool, bool) { var prop Value if o.symValues != nil { prop = o.symValues.get(name) } if prop != nil { if prop, ok := prop.(*valueProperty); ok { if !prop.isWritable() { o.val.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false, true } if prop.setterFunc != nil { prop.set(receiver, val) return true, true } } } else { if proto := o.prototype; proto != nil { if receiver != o.val { return proto.self.setForeignSym(name, val, receiver, throw) } return proto.self.setOwnSym(name, val, throw), true } } return false, false } func (o *baseObject) hasOwnPropertySym(s *valueSymbol) bool { if o.symValues != nil { return o.symValues.has(s) } return false } func (o *baseObject) hasOwnPropertyStr(name string) bool { _, exists := o.values[name] return exists } func (o *baseObject) hasOwnPropertyIdx(idx valueInt) bool { return o.val.self.hasOwnPropertyStr(idx.String()) } func (o *baseObject) _defineOwnProperty(name string, existingValue Value, descr PropertyDescriptor, throw bool) (val Value, ok bool) { getterObj, _ := descr.Getter.(*Object) setterObj, _ := descr.Setter.(*Object) var existing *valueProperty if existingValue == nil { if !o.extensible { o.val.runtime.typeErrorResult(throw, "Cannot define property %s, object is not extensible", name) return nil, false } existing = &valueProperty{} } else { if existing, ok = existingValue.(*valueProperty); !ok { existing = &valueProperty{ writable: true, enumerable: true, configurable: true, value: existingValue, } } if !existing.configurable { if descr.Configurable == FLAG_TRUE { goto Reject } if descr.Enumerable != FLAG_NOT_SET && descr.Enumerable.Bool() != existing.enumerable { goto Reject } } if existing.accessor && descr.Value != nil || !existing.accessor && (getterObj != nil || setterObj != nil) { if !existing.configurable { goto Reject } } else if !existing.accessor { if !existing.configurable { if !existing.writable { if descr.Writable == FLAG_TRUE { goto Reject } if descr.Value != nil && !descr.Value.SameAs(existing.value) { goto Reject } } } } else { if !existing.configurable { if descr.Getter != nil && existing.getterFunc != getterObj || descr.Setter != nil && existing.setterFunc != setterObj { goto Reject } } } } if descr.Writable == FLAG_TRUE && descr.Enumerable == FLAG_TRUE && descr.Configurable == FLAG_TRUE && descr.Value != nil { return descr.Value, true } if descr.Writable != FLAG_NOT_SET { existing.writable = descr.Writable.Bool() } if descr.Enumerable != FLAG_NOT_SET { existing.enumerable = descr.Enumerable.Bool() } if descr.Configurable != FLAG_NOT_SET { existing.configurable = descr.Configurable.Bool() } if descr.Value != nil { existing.value = descr.Value existing.getterFunc = nil existing.setterFunc = nil } if descr.Value != nil || descr.Writable != FLAG_NOT_SET { existing.accessor = false } if descr.Getter != nil { existing.getterFunc = propGetter(o.val, descr.Getter, o.val.runtime) existing.value = nil existing.accessor = true } if descr.Setter != nil { existing.setterFunc = propSetter(o.val, descr.Setter, o.val.runtime) existing.value = nil existing.accessor = true } if !existing.accessor && existing.value == nil { existing.value = _undefined } return existing, true Reject: o.val.runtime.typeErrorResult(throw, "Cannot redefine property: %s", name) return nil, false } func (o *baseObject) defineOwnPropertyStr(name string, descr PropertyDescriptor, throw bool) bool { existingVal := o.values[name] if v, ok := o._defineOwnProperty(name, existingVal, descr, throw); ok { o.values[name] = v if existingVal == nil { o.propNames = append(o.propNames, name) } return true } return false } func (o *baseObject) defineOwnPropertyIdx(idx valueInt, desc PropertyDescriptor, throw bool) bool { return o.val.self.defineOwnPropertyStr(idx.String(), desc, throw) } func (o *baseObject) defineOwnPropertySym(s *valueSymbol, descr PropertyDescriptor, throw bool) bool { var existingVal Value if o.symValues != nil { existingVal = o.symValues.get(s) } if v, ok := o._defineOwnProperty(s.String(), existingVal, descr, throw); ok { if o.symValues == nil { o.symValues = newOrderedMap(&o.val.runtime.hash) } o.symValues.set(s, v) return true } return false } func (o *baseObject) _put(name string, v Value) { if _, exists := o.values[name]; !exists { o.propNames = append(o.propNames, name) } o.values[name] = v } func valueProp(value Value, writable, enumerable, configurable bool) Value { if writable && enumerable && configurable { return value } return &valueProperty{ value: value, writable: writable, enumerable: enumerable, configurable: configurable, } } func (o *baseObject) _putProp(name string, value Value, writable, enumerable, configurable bool) Value { prop := valueProp(value, writable, enumerable, configurable) o._put(name, prop) return prop } func (o *baseObject) _putSym(s *valueSymbol, prop Value) { if o.symValues == nil { o.symValues = newOrderedMap(&o.val.runtime.hash) } o.symValues.set(s, prop) } func (o *baseObject) tryExoticToPrimitive(hint string) Value { exoticToPrimitive := toMethod(o.getSym(symToPrimitive, nil)) if exoticToPrimitive != nil { return exoticToPrimitive(FunctionCall{ This: o.val, Arguments: []Value{newStringValue(hint)}, }) } return nil } func (o *baseObject) tryPrimitive(methodName string) Value { if method, ok := o.val.self.getStr(methodName, nil).(*Object); ok { if call, ok := method.self.assertCallable(); ok { v := call(FunctionCall{ This: o.val, }) if _, fail := v.(*Object); !fail { return v } } } return nil } func (o *baseObject) toPrimitiveNumber() Value { if v := o.tryExoticToPrimitive("number"); v != nil { return v } if v := o.tryPrimitive("valueOf"); v != nil { return v } if v := o.tryPrimitive("toString"); v != nil { return v } o.val.runtime.typeErrorResult(true, "Could not convert %v to primitive", o) return nil } func (o *baseObject) toPrimitiveString() Value { if v := o.tryExoticToPrimitive("string"); v != nil { return v } if v := o.tryPrimitive("toString"); v != nil { return v } if v := o.tryPrimitive("valueOf"); v != nil { return v } o.val.runtime.typeErrorResult(true, "Could not convert %v to primitive", o) return nil } func (o *baseObject) toPrimitive() Value { return o.toPrimitiveNumber() } func (o *baseObject) assertCallable() (func(FunctionCall) Value, bool) { return nil, false } func (o *baseObject) assertConstructor() func(args []Value, newTarget *Object) *Object { return nil } func (o *baseObject) proto() *Object { return o.prototype } func (o *baseObject) isExtensible() bool { return o.extensible } func (o *baseObject) preventExtensions(bool) bool { o.extensible = false return true } func (o *baseObject) sortLen() int64 { return toLength(o.val.self.getStr("length", nil)) } func (o *baseObject) sortGet(i int64) Value { return o.val.self.getIdx(valueInt(i), nil) } func (o *baseObject) swap(i, j int64) { ii := valueInt(i) jj := valueInt(j) x := o.val.self.getIdx(ii, nil) y := o.val.self.getIdx(jj, nil) o.val.self.setOwnIdx(ii, y, false) o.val.self.setOwnIdx(jj, x, false) } func (o *baseObject) export() interface{} { m := make(map[string]interface{}) for _, itemName := range o.ownKeys(false, nil) { itemNameStr := itemName.String() v := o.val.self.getStr(itemNameStr, nil) if v != nil { m[itemNameStr] = v.Export() } else { m[itemNameStr] = nil } } return m } func (o *baseObject) exportType() reflect.Type { return reflectTypeMap } type enumerableFlag int const ( _ENUM_UNKNOWN enumerableFlag = iota _ENUM_FALSE _ENUM_TRUE ) type propIterItem struct { name string value Value // set only when enumerable == _ENUM_UNKNOWN enumerable enumerableFlag } type objectPropIter struct { o *baseObject propNames []string idx int } type propFilterIter struct { wrapped iterNextFunc all bool seen map[string]bool } func (i *propFilterIter) next() (propIterItem, iterNextFunc) { for { var item propIterItem item, i.wrapped = i.wrapped() if i.wrapped == nil { return propIterItem{}, nil } if !i.seen[item.name] { i.seen[item.name] = true if !i.all { if item.enumerable == _ENUM_FALSE { continue } if item.enumerable == _ENUM_UNKNOWN { if prop, ok := item.value.(*valueProperty); ok { if !prop.enumerable { continue } } } } return item, i.next } } } func (i *objectPropIter) next() (propIterItem, iterNextFunc) { for i.idx < len(i.propNames) { name := i.propNames[i.idx] i.idx++ prop := i.o.values[name] if prop != nil { return propIterItem{name: name, value: prop}, i.next } } return propIterItem{}, nil } func (o *baseObject) enumerate() iterNextFunc { return (&propFilterIter{ wrapped: o.val.self.enumerateUnfiltered(), seen: make(map[string]bool), }).next } func (o *baseObject) ownIter() iterNextFunc { if len(o.propNames) > o.lastSortedPropLen { o.fixPropOrder() } propNames := make([]string, len(o.propNames)) copy(propNames, o.propNames) return (&objectPropIter{ o: o, propNames: propNames, }).next } func (o *baseObject) recursiveIter(iter iterNextFunc) iterNextFunc { return (&recursiveIter{ o: o, wrapped: iter, }).next } func (o *baseObject) enumerateUnfiltered() iterNextFunc { return o.recursiveIter(o.ownIter()) } type recursiveIter struct { o *baseObject wrapped iterNextFunc } func (iter *recursiveIter) next() (propIterItem, iterNextFunc) { item, next := iter.wrapped() if next != nil { iter.wrapped = next return item, iter.next } if proto := iter.o.prototype; proto != nil { return proto.self.enumerateUnfiltered()() } return propIterItem{}, nil } func (o *baseObject) equal(objectImpl) bool { // Rely on parent reference comparison return false } // Reorder property names so that any integer properties are shifted to the beginning of the list // in ascending order. This is to conform to ES6 9.1.12. // Personally I think this requirement is strange. I can sort of understand where they are coming from, // this way arrays can be specified just as objects with a 'magic' length property. However, I think // it's safe to assume most devs don't use Objects to store integer properties. Therefore, performing // property type checks when adding (and potentially looking up) properties would be unreasonable. // Instead, we keep insertion order and only change it when (if) the properties get enumerated. func (o *baseObject) fixPropOrder() { names := o.propNames for i := o.lastSortedPropLen; i < len(names); i++ { name := names[i] if idx := strToIdx(name); idx != math.MaxUint32 { k := sort.Search(o.idxPropCount, func(j int) bool { return strToIdx(names[j]) >= idx }) if k < i { copy(names[k+1:i+1], names[k:i]) names[k] = name } o.idxPropCount++ } } o.lastSortedPropLen = len(names) } func (o *baseObject) ownKeys(all bool, keys []Value) []Value { if len(o.propNames) > o.lastSortedPropLen { o.fixPropOrder() } if all { for _, k := range o.propNames { keys = append(keys, newStringValue(k)) } } else { for _, k := range o.propNames { prop := o.values[k] if prop, ok := prop.(*valueProperty); ok && !prop.enumerable { continue } keys = append(keys, newStringValue(k)) } } return keys } func (o *baseObject) ownSymbols() (res []Value) { if o.symValues != nil { iter := o.symValues.newIter() for { entry := iter.next() if entry == nil { break } res = append(res, entry.key) } } return } func (o *baseObject) ownPropertyKeys(all bool, accum []Value) []Value { accum = o.val.self.ownKeys(all, accum) if all { accum = append(accum, o.ownSymbols()...) } return accum } func (o *baseObject) hasInstance(Value) bool { panic(o.val.runtime.NewTypeError("Expecting a function in instanceof check, but got %s", o.val.toString())) } func toMethod(v Value) func(FunctionCall) Value { if v == nil || IsUndefined(v) || IsNull(v) { return nil } if obj, ok := v.(*Object); ok { if call, ok := obj.self.assertCallable(); ok { return call } } panic(typeError(fmt.Sprintf("%s is not a method", v.String()))) } func instanceOfOperator(o Value, c *Object) bool { if instOfHandler := toMethod(c.self.getSym(symHasInstance, c)); instOfHandler != nil { return instOfHandler(FunctionCall{ This: c, Arguments: []Value{o}, }).ToBoolean() } return c.self.hasInstance(o) } func (o *Object) get(p Value, receiver Value) Value { switch p := p.(type) { case valueString: return o.self.getStr(p.String(), receiver) case valueInt: return o.self.getIdx(p, receiver) case *valueSymbol: return o.self.getSym(p, receiver) default: return o.self.getStr(p.String(), receiver) } } func (o *Object) getOwnProp(p Value) Value { switch p := p.(type) { case valueString: return o.self.getOwnPropStr(p.String()) case valueInt: return o.self.getOwnPropIdx(p) case *valueSymbol: return o.self.getOwnPropSym(p) default: return o.self.getOwnPropStr(p.String()) } } func (o *Object) hasOwnProperty(p Value) bool { switch p := p.(type) { case valueString: return o.self.hasOwnPropertyStr(p.String()) case valueInt: return o.self.hasOwnPropertyIdx(p) case *valueSymbol: return o.self.hasOwnPropertySym(p) default: return o.self.hasOwnPropertyStr(p.String()) } } func (o *Object) hasProperty(p Value) bool { switch p := p.(type) { case valueString: return o.self.hasPropertyStr(p.String()) case valueInt: return o.self.hasPropertyIdx(p) case *valueSymbol: return o.self.hasPropertySym(p) default: return o.self.hasPropertyStr(p.String()) } } func (o *Object) setStr(name string, val, receiver Value, throw bool) bool { if receiver == o { return o.self.setOwnStr(name, val, throw) } else { if res, ok := o.self.setForeignStr(name, val, receiver, throw); !ok { if robj, ok := receiver.(*Object); ok { if prop := robj.self.getOwnPropStr(name); prop != nil { if desc, ok := prop.(*valueProperty); ok { if desc.accessor { o.runtime.typeErrorResult(throw, "Receiver property %s is an accessor", name) return false } if !desc.writable { o.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } } robj.self.defineOwnPropertyStr(name, PropertyDescriptor{Value: val}, throw) } else { robj.self.defineOwnPropertyStr(name, PropertyDescriptor{ Value: val, Writable: FLAG_TRUE, Configurable: FLAG_TRUE, Enumerable: FLAG_TRUE, }, throw) } } else { o.runtime.typeErrorResult(throw, "Receiver is not an object: %v", receiver) return false } } else { return res } } return true } func (o *Object) set(name Value, val, receiver Value, throw bool) bool { switch name := name.(type) { case valueString: return o.setStr(name.String(), val, receiver, throw) case valueInt: return o.setIdx(name, val, receiver, throw) case *valueSymbol: return o.setSym(name, val, receiver, throw) default: return o.setStr(name.String(), val, receiver, throw) } } func (o *Object) setOwn(name Value, val Value, throw bool) bool { switch name := name.(type) { case valueInt: return o.self.setOwnIdx(name, val, throw) case *valueSymbol: return o.self.setOwnSym(name, val, throw) default: return o.self.setOwnStr(name.String(), val, throw) } } func (o *Object) setIdx(name valueInt, val, receiver Value, throw bool) bool { if receiver == o { return o.self.setOwnIdx(name, val, throw) } else { if res, ok := o.self.setForeignIdx(name, val, receiver, throw); !ok { if robj, ok := receiver.(*Object); ok { if prop := robj.self.getOwnPropIdx(name); prop != nil { if desc, ok := prop.(*valueProperty); ok { if desc.accessor { o.runtime.typeErrorResult(throw, "Receiver property %s is an accessor", name) return false } if !desc.writable { o.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } } robj.self.defineOwnPropertyIdx(name, PropertyDescriptor{Value: val}, throw) } else { robj.self.defineOwnPropertyIdx(name, PropertyDescriptor{ Value: val, Writable: FLAG_TRUE, Configurable: FLAG_TRUE, Enumerable: FLAG_TRUE, }, throw) } } else { o.runtime.typeErrorResult(throw, "Receiver is not an object: %v", receiver) return false } } else { return res } } return true } func (o *Object) setSym(name *valueSymbol, val, receiver Value, throw bool) bool { if receiver == o { return o.self.setOwnSym(name, val, throw) } else { if res, ok := o.self.setForeignSym(name, val, receiver, throw); !ok { if robj, ok := receiver.(*Object); ok { if prop := robj.self.getOwnPropSym(name); prop != nil { if desc, ok := prop.(*valueProperty); ok { if desc.accessor { o.runtime.typeErrorResult(throw, "Receiver property %s is an accessor", name) return false } if !desc.writable { o.runtime.typeErrorResult(throw, "Cannot assign to read only property '%s'", name) return false } } robj.self.defineOwnPropertySym(name, PropertyDescriptor{Value: val}, throw) } else { robj.self.defineOwnPropertySym(name, PropertyDescriptor{ Value: val, Writable: FLAG_TRUE, Configurable: FLAG_TRUE, Enumerable: FLAG_TRUE, }, throw) } } else { o.runtime.typeErrorResult(throw, "Receiver is not an object: %v", receiver) return false } } else { return res } } return true } func (o *Object) delete(n Value, throw bool) bool { switch n := n.(type) { case valueString: return o.self.deleteStr(n.String(), throw) case valueInt: return o.self.deleteIdx(n, throw) case *valueSymbol: return o.self.deleteSym(n, throw) default: return o.self.deleteStr(n.String(), throw) } } func (o *Object) defineOwnProperty(n Value, desc PropertyDescriptor, throw bool) bool { switch n := n.(type) { case valueString: return o.self.defineOwnPropertyStr(n.String(), desc, throw) case valueInt: return o.self.defineOwnPropertyIdx(n, desc, throw) case *valueSymbol: return o.self.defineOwnPropertySym(n, desc, throw) default: return o.self.defineOwnPropertyStr(n.String(), desc, throw) } } func (o *Object) getWeakCollRefs() *weakCollections { if o.weakColls == nil { o.weakColls = &weakCollections{} runtime.SetFinalizer(o.weakColls, finalizeObjectWeakRefs) } return o.weakColls }