package goja import ( "math" "math/bits" ) func (r *Runtime) math_abs(call FunctionCall) Value { return floatToValue(math.Abs(call.Argument(0).ToFloat())) } func (r *Runtime) math_acos(call FunctionCall) Value { return floatToValue(math.Acos(call.Argument(0).ToFloat())) } func (r *Runtime) math_acosh(call FunctionCall) Value { return floatToValue(math.Acosh(call.Argument(0).ToFloat())) } func (r *Runtime) math_asin(call FunctionCall) Value { return floatToValue(math.Asin(call.Argument(0).ToFloat())) } func (r *Runtime) math_asinh(call FunctionCall) Value { return floatToValue(math.Asinh(call.Argument(0).ToFloat())) } func (r *Runtime) math_atan(call FunctionCall) Value { return floatToValue(math.Atan(call.Argument(0).ToFloat())) } func (r *Runtime) math_atanh(call FunctionCall) Value { return floatToValue(math.Atanh(call.Argument(0).ToFloat())) } func (r *Runtime) math_atan2(call FunctionCall) Value { y := call.Argument(0).ToFloat() x := call.Argument(1).ToFloat() return floatToValue(math.Atan2(y, x)) } func (r *Runtime) math_cbrt(call FunctionCall) Value { return floatToValue(math.Cbrt(call.Argument(0).ToFloat())) } func (r *Runtime) math_ceil(call FunctionCall) Value { return floatToValue(math.Ceil(call.Argument(0).ToFloat())) } func (r *Runtime) math_clz32(call FunctionCall) Value { return intToValue(int64(bits.LeadingZeros32(toUint32(call.Argument(0))))) } func (r *Runtime) math_cos(call FunctionCall) Value { return floatToValue(math.Cos(call.Argument(0).ToFloat())) } func (r *Runtime) math_cosh(call FunctionCall) Value { return floatToValue(math.Cosh(call.Argument(0).ToFloat())) } func (r *Runtime) math_exp(call FunctionCall) Value { return floatToValue(math.Exp(call.Argument(0).ToFloat())) } func (r *Runtime) math_expm1(call FunctionCall) Value { return floatToValue(math.Expm1(call.Argument(0).ToFloat())) } func (r *Runtime) math_floor(call FunctionCall) Value { return floatToValue(math.Floor(call.Argument(0).ToFloat())) } func (r *Runtime) math_fround(call FunctionCall) Value { return floatToValue(float64(float32(call.Argument(0).ToFloat()))) } func (r *Runtime) math_hypot(call FunctionCall) Value { var max float64 var hasNaN bool absValues := make([]float64, 0, len(call.Arguments)) for _, v := range call.Arguments { arg := nilSafe(v).ToFloat() if math.IsNaN(arg) { hasNaN = true } else { abs := math.Abs(arg) if abs > max { max = abs } absValues = append(absValues, abs) } } if math.IsInf(max, 1) { return _positiveInf } if hasNaN { return _NaN } if max == 0 { return _positiveZero } // Kahan summation to avoid rounding errors. // Normalize the numbers to the largest one to avoid overflow. var sum, compensation float64 for _, n := range absValues { n /= max summand := n*n - compensation preliminary := sum + summand compensation = (preliminary - sum) - summand sum = preliminary } return floatToValue(math.Sqrt(sum) * max) } func (r *Runtime) math_imul(call FunctionCall) Value { x := toUint32(call.Argument(0)) y := toUint32(call.Argument(1)) return intToValue(int64(int32(x * y))) } func (r *Runtime) math_log(call FunctionCall) Value { return floatToValue(math.Log(call.Argument(0).ToFloat())) } func (r *Runtime) math_log1p(call FunctionCall) Value { return floatToValue(math.Log1p(call.Argument(0).ToFloat())) } func (r *Runtime) math_log10(call FunctionCall) Value { return floatToValue(math.Log10(call.Argument(0).ToFloat())) } func (r *Runtime) math_log2(call FunctionCall) Value { return floatToValue(math.Log2(call.Argument(0).ToFloat())) } func (r *Runtime) math_max(call FunctionCall) Value { result := math.Inf(-1) args := call.Arguments for i, arg := range args { n := nilSafe(arg).ToFloat() if math.IsNaN(n) { args = args[i+1:] goto NaNLoop } result = math.Max(result, n) } return floatToValue(result) NaNLoop: // All arguments still need to be coerced to number according to the specs. for _, arg := range args { nilSafe(arg).ToFloat() } return _NaN } func (r *Runtime) math_min(call FunctionCall) Value { result := math.Inf(1) args := call.Arguments for i, arg := range args { n := nilSafe(arg).ToFloat() if math.IsNaN(n) { args = args[i+1:] goto NaNLoop } result = math.Min(result, n) } return floatToValue(result) NaNLoop: // All arguments still need to be coerced to number according to the specs. for _, arg := range args { nilSafe(arg).ToFloat() } return _NaN } func (r *Runtime) math_pow(call FunctionCall) Value { x := call.Argument(0) y := call.Argument(1) if x, ok := x.(valueInt); ok { if y, ok := y.(valueInt); ok && y >= 0 && y < 64 { if y == 0 { return intToValue(1) } if x == 0 { return intToValue(0) } ip := ipow(int64(x), int64(y)) if ip != 0 { return intToValue(ip) } } } xf := x.ToFloat() yf := y.ToFloat() if math.Abs(xf) == 1 && math.IsInf(yf, 0) { return _NaN } if xf == 1 && math.IsNaN(yf) { return _NaN } return floatToValue(math.Pow(xf, yf)) } func (r *Runtime) math_random(call FunctionCall) Value { return floatToValue(r.rand()) } func (r *Runtime) math_round(call FunctionCall) Value { f := call.Argument(0).ToFloat() if math.IsNaN(f) { return _NaN } if f == 0 && math.Signbit(f) { return _negativeZero } t := math.Trunc(f) if f >= 0 { if f-t >= 0.5 { return floatToValue(t + 1) } } else { if t-f > 0.5 { return floatToValue(t - 1) } } return floatToValue(t) } func (r *Runtime) math_sign(call FunctionCall) Value { arg := call.Argument(0) num := arg.ToFloat() if math.IsNaN(num) || num == 0 { // this will match -0 too return arg } if num > 0 { return intToValue(1) } return intToValue(-1) } func (r *Runtime) math_sin(call FunctionCall) Value { return floatToValue(math.Sin(call.Argument(0).ToFloat())) } func (r *Runtime) math_sinh(call FunctionCall) Value { return floatToValue(math.Sinh(call.Argument(0).ToFloat())) } func (r *Runtime) math_sqrt(call FunctionCall) Value { return floatToValue(math.Sqrt(call.Argument(0).ToFloat())) } func (r *Runtime) math_tan(call FunctionCall) Value { return floatToValue(math.Tan(call.Argument(0).ToFloat())) } func (r *Runtime) math_tanh(call FunctionCall) Value { return floatToValue(math.Tanh(call.Argument(0).ToFloat())) } func (r *Runtime) math_trunc(call FunctionCall) Value { arg := call.Argument(0) if i, ok := arg.(valueInt); ok { return i } return floatToValue(math.Trunc(arg.ToFloat())) } func (r *Runtime) createMath(val *Object) objectImpl { m := &baseObject{ class: classMath, val: val, extensible: true, prototype: r.global.ObjectPrototype, } m.init() m._putProp("E", valueFloat(math.E), false, false, false) m._putProp("LN10", valueFloat(math.Ln10), false, false, false) m._putProp("LN2", valueFloat(math.Ln2), false, false, false) m._putProp("LOG10E", valueFloat(math.Log10E), false, false, false) m._putProp("LOG2E", valueFloat(math.Log2E), false, false, false) m._putProp("PI", valueFloat(math.Pi), false, false, false) m._putProp("SQRT1_2", valueFloat(sqrt1_2), false, false, false) m._putProp("SQRT2", valueFloat(math.Sqrt2), false, false, false) m._putSym(SymToStringTag, valueProp(asciiString(classMath), false, false, true)) m._putProp("abs", r.newNativeFunc(r.math_abs, nil, "abs", nil, 1), true, false, true) m._putProp("acos", r.newNativeFunc(r.math_acos, nil, "acos", nil, 1), true, false, true) m._putProp("acosh", r.newNativeFunc(r.math_acosh, nil, "acosh", nil, 1), true, false, true) m._putProp("asin", r.newNativeFunc(r.math_asin, nil, "asin", nil, 1), true, false, true) m._putProp("asinh", r.newNativeFunc(r.math_asinh, nil, "asinh", nil, 1), true, false, true) m._putProp("atan", r.newNativeFunc(r.math_atan, nil, "atan", nil, 1), true, false, true) m._putProp("atanh", r.newNativeFunc(r.math_atanh, nil, "atanh", nil, 1), true, false, true) m._putProp("atan2", r.newNativeFunc(r.math_atan2, nil, "atan2", nil, 2), true, false, true) m._putProp("cbrt", r.newNativeFunc(r.math_cbrt, nil, "cbrt", nil, 1), true, false, true) m._putProp("ceil", r.newNativeFunc(r.math_ceil, nil, "ceil", nil, 1), true, false, true) m._putProp("clz32", r.newNativeFunc(r.math_clz32, nil, "clz32", nil, 1), true, false, true) m._putProp("cos", r.newNativeFunc(r.math_cos, nil, "cos", nil, 1), true, false, true) m._putProp("cosh", r.newNativeFunc(r.math_cosh, nil, "cosh", nil, 1), true, false, true) m._putProp("exp", r.newNativeFunc(r.math_exp, nil, "exp", nil, 1), true, false, true) m._putProp("expm1", r.newNativeFunc(r.math_expm1, nil, "expm1", nil, 1), true, false, true) m._putProp("floor", r.newNativeFunc(r.math_floor, nil, "floor", nil, 1), true, false, true) m._putProp("fround", r.newNativeFunc(r.math_fround, nil, "fround", nil, 1), true, false, true) m._putProp("hypot", r.newNativeFunc(r.math_hypot, nil, "hypot", nil, 2), true, false, true) m._putProp("imul", r.newNativeFunc(r.math_imul, nil, "imul", nil, 2), true, false, true) m._putProp("log", r.newNativeFunc(r.math_log, nil, "log", nil, 1), true, false, true) m._putProp("log1p", r.newNativeFunc(r.math_log1p, nil, "log1p", nil, 1), true, false, true) m._putProp("log10", r.newNativeFunc(r.math_log10, nil, "log10", nil, 1), true, false, true) m._putProp("log2", r.newNativeFunc(r.math_log2, nil, "log2", nil, 1), true, false, true) m._putProp("max", r.newNativeFunc(r.math_max, nil, "max", nil, 2), true, false, true) m._putProp("min", r.newNativeFunc(r.math_min, nil, "min", nil, 2), true, false, true) m._putProp("pow", r.newNativeFunc(r.math_pow, nil, "pow", nil, 2), true, false, true) m._putProp("random", r.newNativeFunc(r.math_random, nil, "random", nil, 0), true, false, true) m._putProp("round", r.newNativeFunc(r.math_round, nil, "round", nil, 1), true, false, true) m._putProp("sign", r.newNativeFunc(r.math_sign, nil, "sign", nil, 1), true, false, true) m._putProp("sin", r.newNativeFunc(r.math_sin, nil, "sin", nil, 1), true, false, true) m._putProp("sinh", r.newNativeFunc(r.math_sinh, nil, "sinh", nil, 1), true, false, true) m._putProp("sqrt", r.newNativeFunc(r.math_sqrt, nil, "sqrt", nil, 1), true, false, true) m._putProp("tan", r.newNativeFunc(r.math_tan, nil, "tan", nil, 1), true, false, true) m._putProp("tanh", r.newNativeFunc(r.math_tanh, nil, "tanh", nil, 1), true, false, true) m._putProp("trunc", r.newNativeFunc(r.math_trunc, nil, "trunc", nil, 1), true, false, true) return m } func (r *Runtime) initMath() { r.addToGlobal("Math", r.newLazyObject(r.createMath)) }