123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- package ftoa
- import (
- "fmt"
- "math"
- "math/big"
- "strconv"
- "strings"
- )
- const (
- digits = "0123456789abcdefghijklmnopqrstuvwxyz"
- )
- func FToBaseStr(num float64, radix int) string {
- var negative bool
- if num < 0 {
- num = -num
- negative = true
- }
- dfloor := math.Floor(num)
- ldfloor := int64(dfloor)
- var intDigits string
- if dfloor == float64(ldfloor) {
- if negative {
- ldfloor = -ldfloor
- }
- intDigits = strconv.FormatInt(ldfloor, radix)
- } else {
- floorBits := math.Float64bits(num)
- exp := int(floorBits>>exp_shiftL) & exp_mask_shifted
- var mantissa int64
- if exp == 0 {
- mantissa = int64((floorBits & frac_maskL) << 1)
- } else {
- mantissa = int64((floorBits & frac_maskL) | exp_msk1L)
- }
- if negative {
- mantissa = -mantissa
- }
- exp -= 1075
- x := big.NewInt(mantissa)
- if exp > 0 {
- x.Lsh(x, uint(exp))
- } else if exp < 0 {
- x.Rsh(x, uint(-exp))
- }
- intDigits = x.Text(radix)
- }
- if num == dfloor {
- // No fraction part
- return intDigits
- } else {
- /* We have a fraction. */
- var buffer strings.Builder
- buffer.WriteString(intDigits)
- buffer.WriteByte('.')
- df := num - dfloor
- dBits := math.Float64bits(num)
- word0 := uint32(dBits >> 32)
- word1 := uint32(dBits)
- dblBits := make([]byte, 0, 8)
- e, _, dblBits := d2b(df, dblBits)
- // JS_ASSERT(e < 0);
- /* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
- s2 := -int((word0 >> exp_shift1) & (exp_mask >> exp_shift1))
- if s2 == 0 {
- s2 = -1
- }
- s2 += bias + p
- /* 1/2^s2 = (nextDouble(d) - d)/2 */
- // JS_ASSERT(-s2 < e);
- if -s2 >= e {
- panic(fmt.Errorf("-s2 >= e: %d, %d", -s2, e))
- }
- mlo := big.NewInt(1)
- mhi := mlo
- if (word1 == 0) && ((word0 & bndry_mask) == 0) && ((word0 & (exp_mask & (exp_mask << 1))) != 0) {
- /* The special case. Here we want to be within a quarter of the last input
- significant digit instead of one half of it when the output string's value is less than d. */
- s2 += log2P
- mhi = big.NewInt(1 << log2P)
- }
- b := new(big.Int).SetBytes(dblBits)
- b.Lsh(b, uint(e+s2))
- s := big.NewInt(1)
- s.Lsh(s, uint(s2))
- /* At this point we have the following:
- * s = 2^s2;
- * 1 > df = b/2^s2 > 0;
- * (d - prevDouble(d))/2 = mlo/2^s2;
- * (nextDouble(d) - d)/2 = mhi/2^s2. */
- bigBase := big.NewInt(int64(radix))
- done := false
- m := &big.Int{}
- delta := &big.Int{}
- for !done {
- b.Mul(b, bigBase)
- b.DivMod(b, s, m)
- digit := byte(b.Int64())
- b, m = m, b
- mlo.Mul(mlo, bigBase)
- if mlo != mhi {
- mhi.Mul(mhi, bigBase)
- }
- /* Do we yet have the shortest string that will round to d? */
- j := b.Cmp(mlo)
- /* j is b/2^s2 compared with mlo/2^s2. */
- delta.Sub(s, mhi)
- var j1 int
- if delta.Sign() <= 0 {
- j1 = 1
- } else {
- j1 = b.Cmp(delta)
- }
- /* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
- if j1 == 0 && (word1&1) == 0 {
- if j > 0 {
- digit++
- }
- done = true
- } else if j < 0 || (j == 0 && ((word1 & 1) == 0)) {
- if j1 > 0 {
- /* Either dig or dig+1 would work here as the least significant digit.
- Use whichever would produce an output value closer to d. */
- b.Lsh(b, 1)
- j1 = b.Cmp(s)
- if j1 > 0 { /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output such as 3.5 in base 3. */
- digit++
- }
- }
- done = true
- } else if j1 > 0 {
- digit++
- done = true
- }
- // JS_ASSERT(digit < (uint32)base);
- buffer.WriteByte(digits[digit])
- }
- return buffer.String()
- }
- }
|