ftostr.go 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. package ftoa
  2. import (
  3. "math"
  4. "strconv"
  5. "github.com/dop251/goja/ftoa/internal/fast"
  6. )
  7. type FToStrMode int
  8. const (
  9. // Either fixed or exponential format; round-trip
  10. ModeStandard FToStrMode = iota
  11. // Always exponential format; round-trip
  12. ModeStandardExponential
  13. // Round to <precision> digits after the decimal point; exponential if number is large
  14. ModeFixed
  15. // Always exponential format; <precision> significant digits
  16. ModeExponential
  17. // Either fixed or exponential format; <precision> significant digits
  18. ModePrecision
  19. )
  20. func insert(b []byte, p int, c byte) []byte {
  21. b = append(b, 0)
  22. copy(b[p+1:], b[p:])
  23. b[p] = c
  24. return b
  25. }
  26. func expand(b []byte, delta int) []byte {
  27. newLen := len(b) + delta
  28. if newLen <= cap(b) {
  29. return b[:newLen]
  30. }
  31. b1 := make([]byte, newLen)
  32. copy(b1, b)
  33. return b1
  34. }
  35. func FToStr(d float64, mode FToStrMode, precision int, buffer []byte) []byte {
  36. if math.IsNaN(d) {
  37. buffer = append(buffer, "NaN"...)
  38. return buffer
  39. }
  40. if math.IsInf(d, 0) {
  41. if math.Signbit(d) {
  42. buffer = append(buffer, '-')
  43. }
  44. buffer = append(buffer, "Infinity"...)
  45. return buffer
  46. }
  47. if mode == ModeFixed && (d >= 1e21 || d <= -1e21) {
  48. mode = ModeStandard
  49. }
  50. var decPt int
  51. var ok bool
  52. startPos := len(buffer)
  53. if d != 0 { // also matches -0
  54. if d < 0 {
  55. buffer = append(buffer, '-')
  56. d = -d
  57. startPos++
  58. }
  59. switch mode {
  60. case ModeStandard, ModeStandardExponential:
  61. buffer, decPt, ok = fast.Dtoa(d, fast.ModeShortest, 0, buffer)
  62. case ModeExponential, ModePrecision:
  63. buffer, decPt, ok = fast.Dtoa(d, fast.ModePrecision, precision, buffer)
  64. }
  65. } else {
  66. buffer = append(buffer, '0')
  67. decPt, ok = 1, true
  68. }
  69. if !ok {
  70. buffer, decPt = ftoa(d, dtoaModes[mode], mode >= ModeFixed, precision, buffer)
  71. }
  72. exponentialNotation := false
  73. minNDigits := 0 /* Minimum number of significand digits required by mode and precision */
  74. nDigits := len(buffer) - startPos
  75. switch mode {
  76. case ModeStandard:
  77. if decPt < -5 || decPt > 21 {
  78. exponentialNotation = true
  79. } else {
  80. minNDigits = decPt
  81. }
  82. case ModeFixed:
  83. if precision >= 0 {
  84. minNDigits = decPt + precision
  85. } else {
  86. minNDigits = decPt
  87. }
  88. case ModeExponential:
  89. // JS_ASSERT(precision > 0);
  90. minNDigits = precision
  91. fallthrough
  92. case ModeStandardExponential:
  93. exponentialNotation = true
  94. case ModePrecision:
  95. // JS_ASSERT(precision > 0);
  96. minNDigits = precision
  97. if decPt < -5 || decPt > precision {
  98. exponentialNotation = true
  99. }
  100. }
  101. for nDigits < minNDigits {
  102. buffer = append(buffer, '0')
  103. nDigits++
  104. }
  105. if exponentialNotation {
  106. /* Insert a decimal point if more than one significand digit */
  107. if nDigits != 1 {
  108. buffer = insert(buffer, startPos+1, '.')
  109. }
  110. buffer = append(buffer, 'e')
  111. if decPt-1 >= 0 {
  112. buffer = append(buffer, '+')
  113. }
  114. buffer = strconv.AppendInt(buffer, int64(decPt-1), 10)
  115. } else if decPt != nDigits {
  116. /* Some kind of a fraction in fixed notation */
  117. // JS_ASSERT(decPt <= nDigits);
  118. if decPt > 0 {
  119. /* dd...dd . dd...dd */
  120. buffer = insert(buffer, startPos+decPt, '.')
  121. } else {
  122. /* 0 . 00...00dd...dd */
  123. buffer = expand(buffer, 2-decPt)
  124. copy(buffer[startPos+2-decPt:], buffer[startPos:])
  125. buffer[startPos] = '0'
  126. buffer[startPos+1] = '.'
  127. for i := startPos + 2; i < startPos+2-decPt; i++ {
  128. buffer[i] = '0'
  129. }
  130. }
  131. }
  132. return buffer
  133. }