package nebula import ( "encoding/binary" "fmt" "net" "os" "os/signal" "syscall" "github.com/sirupsen/logrus" "github.com/slackhq/nebula/cert" "golang.org/x/net/ipv4" ) // Every interaction here needs to take extra care to copy memory and not return or use arguments "as is" when touching // core. This means copying IP objects, slices, de-referencing pointers and taking the actual value, etc type Control struct { f *Interface l *logrus.Logger } type ControlHostInfo struct { VpnIP net.IP `json:"vpnIp"` LocalIndex uint32 `json:"localIndex"` RemoteIndex uint32 `json:"remoteIndex"` RemoteAddrs []udpAddr `json:"remoteAddrs"` CachedPackets int `json:"cachedPackets"` Cert *cert.NebulaCertificate `json:"cert"` MessageCounter uint64 `json:"messageCounter"` CurrentRemote udpAddr `json:"currentRemote"` } // Start actually runs nebula, this is a nonblocking call. To block use Control.ShutdownBlock() func (c *Control) Start() { c.f.run() } // Stop signals nebula to shutdown, returns after the shutdown is complete func (c *Control) Stop() { //TODO: stop tun and udp routines, the lock on hostMap effectively does that though //TODO: this is probably better as a function in ConnectionManager or HostMap directly c.f.hostMap.Lock() for _, h := range c.f.hostMap.Hosts { if h.ConnectionState.ready { c.f.send(closeTunnel, 0, h.ConnectionState, h, h.remote, []byte{}, make([]byte, 12, 12), make([]byte, mtu)) c.l.WithField("vpnIp", IntIp(h.hostId)).WithField("udpAddr", h.remote). Debug("Sending close tunnel message") } } c.f.hostMap.Unlock() c.l.Info("Goodbye") } // ShutdownBlock will listen for and block on term and interrupt signals, calling Control.Stop() once signalled func (c *Control) ShutdownBlock() { sigChan := make(chan os.Signal) signal.Notify(sigChan, syscall.SIGTERM) signal.Notify(sigChan, syscall.SIGINT) rawSig := <-sigChan sig := rawSig.String() c.l.WithField("signal", sig).Info("Caught signal, shutting down") c.Stop() } // RebindUDPServer asks the UDP listener to rebind it's listener. Mainly used on mobile clients when interfaces change func (c *Control) RebindUDPServer() { _ = c.f.outside.Rebind() } // ListHostmap returns details about the actual or pending (handshaking) hostmap func (c *Control) ListHostmap(pendingMap bool) []ControlHostInfo { var hm *HostMap if pendingMap { hm = c.f.handshakeManager.pendingHostMap } else { hm = c.f.hostMap } hm.RLock() hosts := make([]ControlHostInfo, len(hm.Hosts)) i := 0 for _, v := range hm.Hosts { hosts[i] = copyHostInfo(v) i++ } hm.RUnlock() return hosts } // GetHostInfoByVpnIP returns a single tunnels hostInfo, or nil if not found func (c *Control) GetHostInfoByVpnIP(vpnIP uint32, pending bool) *ControlHostInfo { var hm *HostMap if pending { hm = c.f.handshakeManager.pendingHostMap } else { hm = c.f.hostMap } h, err := hm.QueryVpnIP(vpnIP) if err != nil { return nil } ch := copyHostInfo(h) return &ch } // SetRemoteForTunnel forces a tunnel to use a specific remote func (c *Control) SetRemoteForTunnel(vpnIP uint32, addr udpAddr) *ControlHostInfo { hostInfo, err := c.f.hostMap.QueryVpnIP(vpnIP) if err != nil { return nil } hostInfo.SetRemote(addr.Copy()) ch := copyHostInfo(hostInfo) return &ch } // CloseTunnel closes a fully established tunnel. If localOnly is false it will notify the remote end as well. func (c *Control) CloseTunnel(vpnIP uint32, localOnly bool) bool { hostInfo, err := c.f.hostMap.QueryVpnIP(vpnIP) if err != nil { return false } if !localOnly { c.f.send( closeTunnel, 0, hostInfo.ConnectionState, hostInfo, hostInfo.remote, []byte{}, make([]byte, 12, 12), make([]byte, mtu), ) } c.f.closeTunnel(hostInfo) return true } func copyHostInfo(h *HostInfo) ControlHostInfo { addrs := h.RemoteUDPAddrs() chi := ControlHostInfo{ VpnIP: int2ip(h.hostId), LocalIndex: h.localIndexId, RemoteIndex: h.remoteIndexId, RemoteAddrs: make([]udpAddr, len(addrs), len(addrs)), CachedPackets: len(h.packetStore), MessageCounter: *h.ConnectionState.messageCounter, } if c := h.GetCert(); c != nil { chi.Cert = c.Copy() } if h.remote != nil { chi.CurrentRemote = *h.remote } for i, addr := range addrs { chi.RemoteAddrs[i] = addr.Copy() } return chi } // Hook provides the ability to hook into the network path for a particular // message sub type. Any received message of that subtype that is allowed by // the firewall will be written to the provided write func instead of the // inside interface. // TODO: make this an io.Writer func (c *Control) Hook(t NebulaMessageSubType, w func([]byte) error) error { if t == 0 { return fmt.Errorf("non-default message subtype must be specified") } if _, ok := c.f.handlers[Version][message][t]; ok { return fmt.Errorf("message subtype %d already hooked", t) } c.f.handlers[Version][message][t] = c.f.newHook(w) return nil } // Send provides the ability to send arbitrary message packets to peer nodes. // The provided payload will be encapsulated in a Nebula Firewall packet // (IPv4 plus ports) from the node IP to the provided destination nebula IP. // Any protocol handling above layer 3 (IP) must be managed by the caller. func (c *Control) Send(ip uint32, port uint16, st NebulaMessageSubType, payload []byte) { headerLen := ipv4.HeaderLen + minFwPacketLen length := headerLen + len(payload) packet := make([]byte, length) packet[0] = 0x45 // IPv4 HL=20 packet[9] = 114 // Declare as arbitrary 0-hop protocol binary.BigEndian.PutUint16(packet[2:4], uint16(length)) binary.BigEndian.PutUint32(packet[12:16], ip2int(c.f.inside.CidrNet().IP.To4())) binary.BigEndian.PutUint32(packet[16:20], ip) // Set identical values for src and dst port as they're only // used for nebula firewall rule/conntrack matching. binary.BigEndian.PutUint16(packet[20:22], port) binary.BigEndian.PutUint16(packet[22:24], port) copy(packet[headerLen:], payload) fp := &FirewallPacket{} nb := make([]byte, 12) out := make([]byte, mtu) c.f.consumeInsidePacket(st, packet, fp, nb, out) }