123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487 |
- /*
- * Multi-precision integer library
- *
- * Copyright The Mbed TLS Contributors
- * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
- */
- /*
- * The following sources were referenced in the design of this Multi-precision
- * Integer library:
- *
- * [1] Handbook of Applied Cryptography - 1997
- * Menezes, van Oorschot and Vanstone
- *
- * [2] Multi-Precision Math
- * Tom St Denis
- * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
- *
- * [3] GNU Multi-Precision Arithmetic Library
- * https://gmplib.org/manual/index.html
- *
- */
- #include "common.h"
- #if defined(MBEDTLS_BIGNUM_C)
- #include "mbedtls/bignum.h"
- #include "bignum_core.h"
- #include "bignum_internal.h"
- #include "bn_mul.h"
- #include "mbedtls/platform_util.h"
- #include "mbedtls/error.h"
- #include "constant_time_internal.h"
- #include <limits.h>
- #include <string.h>
- #include "mbedtls/platform.h"
- /*
- * Conditionally select an MPI sign in constant time.
- * (MPI sign is the field s in mbedtls_mpi. It is unsigned short and only 1 and -1 are valid
- * values.)
- */
- static inline signed short mbedtls_ct_mpi_sign_if(mbedtls_ct_condition_t cond,
- signed short sign1, signed short sign2)
- {
- return (signed short) mbedtls_ct_uint_if(cond, sign1 + 1, sign2 + 1) - 1;
- }
- /*
- * Compare signed values in constant time
- */
- int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
- const mbedtls_mpi *Y,
- unsigned *ret)
- {
- mbedtls_ct_condition_t different_sign, X_is_negative, Y_is_negative, result;
- if (X->n != Y->n) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- /*
- * Set N_is_negative to MBEDTLS_CT_FALSE if N >= 0, MBEDTLS_CT_TRUE if N < 0.
- * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
- */
- X_is_negative = mbedtls_ct_bool((X->s & 2) >> 1);
- Y_is_negative = mbedtls_ct_bool((Y->s & 2) >> 1);
- /*
- * If the signs are different, then the positive operand is the bigger.
- * That is if X is negative (X_is_negative == 1), then X < Y is true and it
- * is false if X is positive (X_is_negative == 0).
- */
- different_sign = mbedtls_ct_bool_ne(X_is_negative, Y_is_negative); // true if different sign
- result = mbedtls_ct_bool_and(different_sign, X_is_negative);
- /*
- * Assuming signs are the same, compare X and Y. We switch the comparison
- * order if they are negative so that we get the right result, regardles of
- * sign.
- */
- /* This array is used to conditionally swap the pointers in const time */
- void * const p[2] = { X->p, Y->p };
- size_t i = mbedtls_ct_size_if_else_0(X_is_negative, 1);
- mbedtls_ct_condition_t lt = mbedtls_mpi_core_lt_ct(p[i], p[i ^ 1], X->n);
- /*
- * Store in result iff the signs are the same (i.e., iff different_sign == false). If
- * the signs differ, result has already been set, so we don't change it.
- */
- result = mbedtls_ct_bool_or(result,
- mbedtls_ct_bool_and(mbedtls_ct_bool_not(different_sign), lt));
- *ret = mbedtls_ct_uint_if_else_0(result, 1);
- return 0;
- }
- /*
- * Conditionally assign X = Y, without leaking information
- * about whether the assignment was made or not.
- * (Leaking information about the respective sizes of X and Y is ok however.)
- */
- #if defined(_MSC_VER) && defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64) && \
- (_MSC_FULL_VER < 193131103)
- /*
- * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
- * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
- */
- __declspec(noinline)
- #endif
- int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
- const mbedtls_mpi *Y,
- unsigned char assign)
- {
- int ret = 0;
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
- {
- mbedtls_ct_condition_t do_assign = mbedtls_ct_bool(assign);
- X->s = mbedtls_ct_mpi_sign_if(do_assign, Y->s, X->s);
- mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, do_assign);
- mbedtls_ct_condition_t do_not_assign = mbedtls_ct_bool_not(do_assign);
- for (size_t i = Y->n; i < X->n; i++) {
- X->p[i] = mbedtls_ct_mpi_uint_if_else_0(do_not_assign, X->p[i]);
- }
- }
- cleanup:
- return ret;
- }
- /*
- * Conditionally swap X and Y, without leaking information
- * about whether the swap was made or not.
- * Here it is not ok to simply swap the pointers, which would lead to
- * different memory access patterns when X and Y are used afterwards.
- */
- int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
- mbedtls_mpi *Y,
- unsigned char swap)
- {
- int ret = 0;
- int s;
- if (X == Y) {
- return 0;
- }
- mbedtls_ct_condition_t do_swap = mbedtls_ct_bool(swap);
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
- s = X->s;
- X->s = mbedtls_ct_mpi_sign_if(do_swap, Y->s, X->s);
- Y->s = mbedtls_ct_mpi_sign_if(do_swap, s, Y->s);
- mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, do_swap);
- cleanup:
- return ret;
- }
- /* Implementation that should never be optimized out by the compiler */
- #define mbedtls_mpi_zeroize_and_free(v, n) mbedtls_zeroize_and_free(v, ciL * (n))
- /*
- * Initialize one MPI
- */
- void mbedtls_mpi_init(mbedtls_mpi *X)
- {
- X->s = 1;
- X->n = 0;
- X->p = NULL;
- }
- /*
- * Unallocate one MPI
- */
- void mbedtls_mpi_free(mbedtls_mpi *X)
- {
- if (X == NULL) {
- return;
- }
- if (X->p != NULL) {
- mbedtls_mpi_zeroize_and_free(X->p, X->n);
- }
- X->s = 1;
- X->n = 0;
- X->p = NULL;
- }
- /*
- * Enlarge to the specified number of limbs
- */
- int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
- {
- mbedtls_mpi_uint *p;
- if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
- return MBEDTLS_ERR_MPI_ALLOC_FAILED;
- }
- if (X->n < nblimbs) {
- if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
- return MBEDTLS_ERR_MPI_ALLOC_FAILED;
- }
- if (X->p != NULL) {
- memcpy(p, X->p, X->n * ciL);
- mbedtls_mpi_zeroize_and_free(X->p, X->n);
- }
- /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
- * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
- X->n = (unsigned short) nblimbs;
- X->p = p;
- }
- return 0;
- }
- /*
- * Resize down as much as possible,
- * while keeping at least the specified number of limbs
- */
- int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
- {
- mbedtls_mpi_uint *p;
- size_t i;
- if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
- return MBEDTLS_ERR_MPI_ALLOC_FAILED;
- }
- /* Actually resize up if there are currently fewer than nblimbs limbs. */
- if (X->n <= nblimbs) {
- return mbedtls_mpi_grow(X, nblimbs);
- }
- /* After this point, then X->n > nblimbs and in particular X->n > 0. */
- for (i = X->n - 1; i > 0; i--) {
- if (X->p[i] != 0) {
- break;
- }
- }
- i++;
- if (i < nblimbs) {
- i = nblimbs;
- }
- if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
- return MBEDTLS_ERR_MPI_ALLOC_FAILED;
- }
- if (X->p != NULL) {
- memcpy(p, X->p, i * ciL);
- mbedtls_mpi_zeroize_and_free(X->p, X->n);
- }
- /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
- * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
- X->n = (unsigned short) i;
- X->p = p;
- return 0;
- }
- /* Resize X to have exactly n limbs and set it to 0. */
- static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
- {
- if (limbs == 0) {
- mbedtls_mpi_free(X);
- return 0;
- } else if (X->n == limbs) {
- memset(X->p, 0, limbs * ciL);
- X->s = 1;
- return 0;
- } else {
- mbedtls_mpi_free(X);
- return mbedtls_mpi_grow(X, limbs);
- }
- }
- /*
- * Copy the contents of Y into X.
- *
- * This function is not constant-time. Leading zeros in Y may be removed.
- *
- * Ensure that X does not shrink. This is not guaranteed by the public API,
- * but some code in the bignum module might still rely on this property.
- */
- int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
- {
- int ret = 0;
- size_t i;
- if (X == Y) {
- return 0;
- }
- if (Y->n == 0) {
- if (X->n != 0) {
- X->s = 1;
- memset(X->p, 0, X->n * ciL);
- }
- return 0;
- }
- for (i = Y->n - 1; i > 0; i--) {
- if (Y->p[i] != 0) {
- break;
- }
- }
- i++;
- X->s = Y->s;
- if (X->n < i) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
- } else {
- memset(X->p + i, 0, (X->n - i) * ciL);
- }
- memcpy(X->p, Y->p, i * ciL);
- cleanup:
- return ret;
- }
- /*
- * Swap the contents of X and Y
- */
- void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
- {
- mbedtls_mpi T;
- memcpy(&T, X, sizeof(mbedtls_mpi));
- memcpy(X, Y, sizeof(mbedtls_mpi));
- memcpy(Y, &T, sizeof(mbedtls_mpi));
- }
- static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
- {
- if (z >= 0) {
- return z;
- }
- /* Take care to handle the most negative value (-2^(biL-1)) correctly.
- * A naive -z would have undefined behavior.
- * Write this in a way that makes popular compilers happy (GCC, Clang,
- * MSVC). */
- return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
- }
- /* Convert x to a sign, i.e. to 1, if x is positive, or -1, if x is negative.
- * This looks awkward but generates smaller code than (x < 0 ? -1 : 1) */
- #define TO_SIGN(x) ((mbedtls_mpi_sint) (((mbedtls_mpi_uint) x) >> (biL - 1)) * -2 + 1)
- /*
- * Set value from integer
- */
- int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
- memset(X->p, 0, X->n * ciL);
- X->p[0] = mpi_sint_abs(z);
- X->s = TO_SIGN(z);
- cleanup:
- return ret;
- }
- /*
- * Get a specific bit
- */
- int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
- {
- if (X->n * biL <= pos) {
- return 0;
- }
- return (X->p[pos / biL] >> (pos % biL)) & 0x01;
- }
- /*
- * Set a bit to a specific value of 0 or 1
- */
- int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
- {
- int ret = 0;
- size_t off = pos / biL;
- size_t idx = pos % biL;
- if (val != 0 && val != 1) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- if (X->n * biL <= pos) {
- if (val == 0) {
- return 0;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
- }
- X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
- X->p[off] |= (mbedtls_mpi_uint) val << idx;
- cleanup:
- return ret;
- }
- /*
- * Return the number of less significant zero-bits
- */
- size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
- {
- size_t i;
- #if defined(__has_builtin)
- #if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_ctz)
- #define mbedtls_mpi_uint_ctz __builtin_ctz
- #elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_ctzl)
- #define mbedtls_mpi_uint_ctz __builtin_ctzl
- #elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_ctzll)
- #define mbedtls_mpi_uint_ctz __builtin_ctzll
- #endif
- #endif
- #if defined(mbedtls_mpi_uint_ctz)
- for (i = 0; i < X->n; i++) {
- if (X->p[i] != 0) {
- return i * biL + mbedtls_mpi_uint_ctz(X->p[i]);
- }
- }
- #else
- size_t count = 0;
- for (i = 0; i < X->n; i++) {
- for (size_t j = 0; j < biL; j++, count++) {
- if (((X->p[i] >> j) & 1) != 0) {
- return count;
- }
- }
- }
- #endif
- return 0;
- }
- /*
- * Return the number of bits
- */
- size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
- {
- return mbedtls_mpi_core_bitlen(X->p, X->n);
- }
- /*
- * Return the total size in bytes
- */
- size_t mbedtls_mpi_size(const mbedtls_mpi *X)
- {
- return (mbedtls_mpi_bitlen(X) + 7) >> 3;
- }
- /*
- * Convert an ASCII character to digit value
- */
- static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
- {
- *d = 255;
- if (c >= 0x30 && c <= 0x39) {
- *d = c - 0x30;
- }
- if (c >= 0x41 && c <= 0x46) {
- *d = c - 0x37;
- }
- if (c >= 0x61 && c <= 0x66) {
- *d = c - 0x57;
- }
- if (*d >= (mbedtls_mpi_uint) radix) {
- return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
- }
- return 0;
- }
- /*
- * Import from an ASCII string
- */
- int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, j, slen, n;
- int sign = 1;
- mbedtls_mpi_uint d;
- mbedtls_mpi T;
- if (radix < 2 || radix > 16) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- mbedtls_mpi_init(&T);
- if (s[0] == 0) {
- mbedtls_mpi_free(X);
- return 0;
- }
- if (s[0] == '-') {
- ++s;
- sign = -1;
- }
- slen = strlen(s);
- if (radix == 16) {
- if (slen > SIZE_MAX >> 2) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- n = BITS_TO_LIMBS(slen << 2);
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
- for (i = slen, j = 0; i > 0; i--, j++) {
- MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
- X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
- }
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
- for (i = 0; i < slen; i++) {
- MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
- }
- }
- if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
- X->s = -1;
- }
- cleanup:
- mbedtls_mpi_free(&T);
- return ret;
- }
- /*
- * Helper to write the digits high-order first.
- */
- static int mpi_write_hlp(mbedtls_mpi *X, int radix,
- char **p, const size_t buflen)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_mpi_uint r;
- size_t length = 0;
- char *p_end = *p + buflen;
- do {
- if (length >= buflen) {
- return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
- MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
- /*
- * Write the residue in the current position, as an ASCII character.
- */
- if (r < 0xA) {
- *(--p_end) = (char) ('0' + r);
- } else {
- *(--p_end) = (char) ('A' + (r - 0xA));
- }
- length++;
- } while (mbedtls_mpi_cmp_int(X, 0) != 0);
- memmove(*p, p_end, length);
- *p += length;
- cleanup:
- return ret;
- }
- /*
- * Export into an ASCII string
- */
- int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
- char *buf, size_t buflen, size_t *olen)
- {
- int ret = 0;
- size_t n;
- char *p;
- mbedtls_mpi T;
- if (radix < 2 || radix > 16) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
- if (radix >= 4) {
- n >>= 1; /* Number of 4-adic digits necessary to present
- * `n`. If radix > 4, this might be a strict
- * overapproximation of the number of
- * radix-adic digits needed to present `n`. */
- }
- if (radix >= 16) {
- n >>= 1; /* Number of hexadecimal digits necessary to
- * present `n`. */
- }
- n += 1; /* Terminating null byte */
- n += 1; /* Compensate for the divisions above, which round down `n`
- * in case it's not even. */
- n += 1; /* Potential '-'-sign. */
- n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
- * which always uses an even number of hex-digits. */
- if (buflen < n) {
- *olen = n;
- return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
- }
- p = buf;
- mbedtls_mpi_init(&T);
- if (X->s == -1) {
- *p++ = '-';
- buflen--;
- }
- if (radix == 16) {
- int c;
- size_t i, j, k;
- for (i = X->n, k = 0; i > 0; i--) {
- for (j = ciL; j > 0; j--) {
- c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
- if (c == 0 && k == 0 && (i + j) != 2) {
- continue;
- }
- *(p++) = "0123456789ABCDEF" [c / 16];
- *(p++) = "0123456789ABCDEF" [c % 16];
- k = 1;
- }
- }
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
- if (T.s == -1) {
- T.s = 1;
- }
- MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
- }
- *p++ = '\0';
- *olen = (size_t) (p - buf);
- cleanup:
- mbedtls_mpi_free(&T);
- return ret;
- }
- #if defined(MBEDTLS_FS_IO)
- /*
- * Read X from an opened file
- */
- int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
- {
- mbedtls_mpi_uint d;
- size_t slen;
- char *p;
- /*
- * Buffer should have space for (short) label and decimal formatted MPI,
- * newline characters and '\0'
- */
- char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
- if (radix < 2 || radix > 16) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- memset(s, 0, sizeof(s));
- if (fgets(s, sizeof(s) - 1, fin) == NULL) {
- return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
- }
- slen = strlen(s);
- if (slen == sizeof(s) - 2) {
- return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
- }
- if (slen > 0 && s[slen - 1] == '\n') {
- slen--; s[slen] = '\0';
- }
- if (slen > 0 && s[slen - 1] == '\r') {
- slen--; s[slen] = '\0';
- }
- p = s + slen;
- while (p-- > s) {
- if (mpi_get_digit(&d, radix, *p) != 0) {
- break;
- }
- }
- return mbedtls_mpi_read_string(X, radix, p + 1);
- }
- /*
- * Write X into an opened file (or stdout if fout == NULL)
- */
- int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t n, slen, plen;
- /*
- * Buffer should have space for (short) label and decimal formatted MPI,
- * newline characters and '\0'
- */
- char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
- if (radix < 2 || radix > 16) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- memset(s, 0, sizeof(s));
- MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
- if (p == NULL) {
- p = "";
- }
- plen = strlen(p);
- slen = strlen(s);
- s[slen++] = '\r';
- s[slen++] = '\n';
- if (fout != NULL) {
- if (fwrite(p, 1, plen, fout) != plen ||
- fwrite(s, 1, slen, fout) != slen) {
- return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
- }
- } else {
- mbedtls_printf("%s%s", p, s);
- }
- cleanup:
- return ret;
- }
- #endif /* MBEDTLS_FS_IO */
- /*
- * Import X from unsigned binary data, little endian
- *
- * This function is guaranteed to return an MPI with exactly the necessary
- * number of limbs (in particular, it does not skip 0s in the input).
- */
- int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
- const unsigned char *buf, size_t buflen)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- const size_t limbs = CHARS_TO_LIMBS(buflen);
- /* Ensure that target MPI has exactly the necessary number of limbs */
- MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
- MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
- cleanup:
- /*
- * This function is also used to import keys. However, wiping the buffers
- * upon failure is not necessary because failure only can happen before any
- * input is copied.
- */
- return ret;
- }
- /*
- * Import X from unsigned binary data, big endian
- *
- * This function is guaranteed to return an MPI with exactly the necessary
- * number of limbs (in particular, it does not skip 0s in the input).
- */
- int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- const size_t limbs = CHARS_TO_LIMBS(buflen);
- /* Ensure that target MPI has exactly the necessary number of limbs */
- MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
- MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
- cleanup:
- /*
- * This function is also used to import keys. However, wiping the buffers
- * upon failure is not necessary because failure only can happen before any
- * input is copied.
- */
- return ret;
- }
- /*
- * Export X into unsigned binary data, little endian
- */
- int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
- unsigned char *buf, size_t buflen)
- {
- return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
- }
- /*
- * Export X into unsigned binary data, big endian
- */
- int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
- unsigned char *buf, size_t buflen)
- {
- return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
- }
- /*
- * Left-shift: X <<= count
- */
- int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i;
- i = mbedtls_mpi_bitlen(X) + count;
- if (X->n * biL < i) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
- }
- ret = 0;
- mbedtls_mpi_core_shift_l(X->p, X->n, count);
- cleanup:
- return ret;
- }
- /*
- * Right-shift: X >>= count
- */
- int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
- {
- if (X->n != 0) {
- mbedtls_mpi_core_shift_r(X->p, X->n, count);
- }
- return 0;
- }
- /*
- * Compare unsigned values
- */
- int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
- {
- size_t i, j;
- for (i = X->n; i > 0; i--) {
- if (X->p[i - 1] != 0) {
- break;
- }
- }
- for (j = Y->n; j > 0; j--) {
- if (Y->p[j - 1] != 0) {
- break;
- }
- }
- /* If i == j == 0, i.e. abs(X) == abs(Y),
- * we end up returning 0 at the end of the function. */
- if (i > j) {
- return 1;
- }
- if (j > i) {
- return -1;
- }
- for (; i > 0; i--) {
- if (X->p[i - 1] > Y->p[i - 1]) {
- return 1;
- }
- if (X->p[i - 1] < Y->p[i - 1]) {
- return -1;
- }
- }
- return 0;
- }
- /*
- * Compare signed values
- */
- int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
- {
- size_t i, j;
- for (i = X->n; i > 0; i--) {
- if (X->p[i - 1] != 0) {
- break;
- }
- }
- for (j = Y->n; j > 0; j--) {
- if (Y->p[j - 1] != 0) {
- break;
- }
- }
- if (i == 0 && j == 0) {
- return 0;
- }
- if (i > j) {
- return X->s;
- }
- if (j > i) {
- return -Y->s;
- }
- if (X->s > 0 && Y->s < 0) {
- return 1;
- }
- if (Y->s > 0 && X->s < 0) {
- return -1;
- }
- for (; i > 0; i--) {
- if (X->p[i - 1] > Y->p[i - 1]) {
- return X->s;
- }
- if (X->p[i - 1] < Y->p[i - 1]) {
- return -X->s;
- }
- }
- return 0;
- }
- /*
- * Compare signed values
- */
- int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
- {
- mbedtls_mpi Y;
- mbedtls_mpi_uint p[1];
- *p = mpi_sint_abs(z);
- Y.s = TO_SIGN(z);
- Y.n = 1;
- Y.p = p;
- return mbedtls_mpi_cmp_mpi(X, &Y);
- }
- /*
- * Unsigned addition: X = |A| + |B| (HAC 14.7)
- */
- int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t j;
- mbedtls_mpi_uint *p;
- mbedtls_mpi_uint c;
- if (X == B) {
- const mbedtls_mpi *T = A; A = X; B = T;
- }
- if (X != A) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
- }
- /*
- * X must always be positive as a result of unsigned additions.
- */
- X->s = 1;
- for (j = B->n; j > 0; j--) {
- if (B->p[j - 1] != 0) {
- break;
- }
- }
- /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
- * and B is 0 (of any size). */
- if (j == 0) {
- return 0;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
- /* j is the number of non-zero limbs of B. Add those to X. */
- p = X->p;
- c = mbedtls_mpi_core_add(p, p, B->p, j);
- p += j;
- /* Now propagate any carry */
- while (c != 0) {
- if (j >= X->n) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
- p = X->p + j;
- }
- *p += c; c = (*p < c); j++; p++;
- }
- cleanup:
- return ret;
- }
- /*
- * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
- */
- int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t n;
- mbedtls_mpi_uint carry;
- for (n = B->n; n > 0; n--) {
- if (B->p[n - 1] != 0) {
- break;
- }
- }
- if (n > A->n) {
- /* B >= (2^ciL)^n > A */
- ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
- /* Set the high limbs of X to match A. Don't touch the lower limbs
- * because X might be aliased to B, and we must not overwrite the
- * significant digits of B. */
- if (A->n > n && A != X) {
- memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
- }
- if (X->n > A->n) {
- memset(X->p + A->n, 0, (X->n - A->n) * ciL);
- }
- carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
- if (carry != 0) {
- /* Propagate the carry through the rest of X. */
- carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
- /* If we have further carry/borrow, the result is negative. */
- if (carry != 0) {
- ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- goto cleanup;
- }
- }
- /* X should always be positive as a result of unsigned subtractions. */
- X->s = 1;
- cleanup:
- return ret;
- }
- /* Common function for signed addition and subtraction.
- * Calculate A + B * flip_B where flip_B is 1 or -1.
- */
- static int add_sub_mpi(mbedtls_mpi *X,
- const mbedtls_mpi *A, const mbedtls_mpi *B,
- int flip_B)
- {
- int ret, s;
- s = A->s;
- if (A->s * B->s * flip_B < 0) {
- int cmp = mbedtls_mpi_cmp_abs(A, B);
- if (cmp >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
- /* If |A| = |B|, the result is 0 and we must set the sign bit
- * to +1 regardless of which of A or B was negative. Otherwise,
- * since |A| > |B|, the sign is the sign of A. */
- X->s = cmp == 0 ? 1 : s;
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
- /* Since |A| < |B|, the sign is the opposite of A. */
- X->s = -s;
- }
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
- X->s = s;
- }
- cleanup:
- return ret;
- }
- /*
- * Signed addition: X = A + B
- */
- int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- return add_sub_mpi(X, A, B, 1);
- }
- /*
- * Signed subtraction: X = A - B
- */
- int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- return add_sub_mpi(X, A, B, -1);
- }
- /*
- * Signed addition: X = A + b
- */
- int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
- {
- mbedtls_mpi B;
- mbedtls_mpi_uint p[1];
- p[0] = mpi_sint_abs(b);
- B.s = TO_SIGN(b);
- B.n = 1;
- B.p = p;
- return mbedtls_mpi_add_mpi(X, A, &B);
- }
- /*
- * Signed subtraction: X = A - b
- */
- int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
- {
- mbedtls_mpi B;
- mbedtls_mpi_uint p[1];
- p[0] = mpi_sint_abs(b);
- B.s = TO_SIGN(b);
- B.n = 1;
- B.p = p;
- return mbedtls_mpi_sub_mpi(X, A, &B);
- }
- /*
- * Baseline multiplication: X = A * B (HAC 14.12)
- */
- int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, j;
- mbedtls_mpi TA, TB;
- int result_is_zero = 0;
- mbedtls_mpi_init(&TA);
- mbedtls_mpi_init(&TB);
- if (X == A) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
- }
- if (X == B) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
- }
- for (i = A->n; i > 0; i--) {
- if (A->p[i - 1] != 0) {
- break;
- }
- }
- if (i == 0) {
- result_is_zero = 1;
- }
- for (j = B->n; j > 0; j--) {
- if (B->p[j - 1] != 0) {
- break;
- }
- }
- if (j == 0) {
- result_is_zero = 1;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
- mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
- /* If the result is 0, we don't shortcut the operation, which reduces
- * but does not eliminate side channels leaking the zero-ness. We do
- * need to take care to set the sign bit properly since the library does
- * not fully support an MPI object with a value of 0 and s == -1. */
- if (result_is_zero) {
- X->s = 1;
- } else {
- X->s = A->s * B->s;
- }
- cleanup:
- mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
- return ret;
- }
- /*
- * Baseline multiplication: X = A * b
- */
- int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
- {
- size_t n = A->n;
- while (n > 0 && A->p[n - 1] == 0) {
- --n;
- }
- /* The general method below doesn't work if b==0. */
- if (b == 0 || n == 0) {
- return mbedtls_mpi_lset(X, 0);
- }
- /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- /* In general, A * b requires 1 limb more than b. If
- * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
- * number of limbs as A and the call to grow() is not required since
- * copy() will take care of the growth if needed. However, experimentally,
- * making the call to grow() unconditional causes slightly fewer
- * calls to calloc() in ECP code, presumably because it reuses the
- * same mpi for a while and this way the mpi is more likely to directly
- * grow to its final size.
- *
- * Note that calculating A*b as 0 + A*b doesn't work as-is because
- * A,X can be the same. */
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
- mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
- cleanup:
- return ret;
- }
- /*
- * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
- * mbedtls_mpi_uint divisor, d
- */
- static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
- mbedtls_mpi_uint u0,
- mbedtls_mpi_uint d,
- mbedtls_mpi_uint *r)
- {
- #if defined(MBEDTLS_HAVE_UDBL)
- mbedtls_t_udbl dividend, quotient;
- #else
- const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
- const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
- mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
- mbedtls_mpi_uint u0_msw, u0_lsw;
- size_t s;
- #endif
- /*
- * Check for overflow
- */
- if (0 == d || u1 >= d) {
- if (r != NULL) {
- *r = ~(mbedtls_mpi_uint) 0u;
- }
- return ~(mbedtls_mpi_uint) 0u;
- }
- #if defined(MBEDTLS_HAVE_UDBL)
- dividend = (mbedtls_t_udbl) u1 << biL;
- dividend |= (mbedtls_t_udbl) u0;
- quotient = dividend / d;
- if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
- quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
- }
- if (r != NULL) {
- *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
- }
- return (mbedtls_mpi_uint) quotient;
- #else
- /*
- * Algorithm D, Section 4.3.1 - The Art of Computer Programming
- * Vol. 2 - Seminumerical Algorithms, Knuth
- */
- /*
- * Normalize the divisor, d, and dividend, u0, u1
- */
- s = mbedtls_mpi_core_clz(d);
- d = d << s;
- u1 = u1 << s;
- u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
- u0 = u0 << s;
- d1 = d >> biH;
- d0 = d & uint_halfword_mask;
- u0_msw = u0 >> biH;
- u0_lsw = u0 & uint_halfword_mask;
- /*
- * Find the first quotient and remainder
- */
- q1 = u1 / d1;
- r0 = u1 - d1 * q1;
- while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
- q1 -= 1;
- r0 += d1;
- if (r0 >= radix) {
- break;
- }
- }
- rAX = (u1 * radix) + (u0_msw - q1 * d);
- q0 = rAX / d1;
- r0 = rAX - q0 * d1;
- while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
- q0 -= 1;
- r0 += d1;
- if (r0 >= radix) {
- break;
- }
- }
- if (r != NULL) {
- *r = (rAX * radix + u0_lsw - q0 * d) >> s;
- }
- quotient = q1 * radix + q0;
- return quotient;
- #endif
- }
- /*
- * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
- */
- int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
- const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, n, t, k;
- mbedtls_mpi X, Y, Z, T1, T2;
- mbedtls_mpi_uint TP2[3];
- if (mbedtls_mpi_cmp_int(B, 0) == 0) {
- return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
- }
- mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
- mbedtls_mpi_init(&T1);
- /*
- * Avoid dynamic memory allocations for constant-size T2.
- *
- * T2 is used for comparison only and the 3 limbs are assigned explicitly,
- * so nobody increase the size of the MPI and we're safe to use an on-stack
- * buffer.
- */
- T2.s = 1;
- T2.n = sizeof(TP2) / sizeof(*TP2);
- T2.p = TP2;
- if (mbedtls_mpi_cmp_abs(A, B) < 0) {
- if (Q != NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
- }
- if (R != NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
- }
- return 0;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
- X.s = Y.s = 1;
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
- k = mbedtls_mpi_bitlen(&Y) % biL;
- if (k < biL - 1) {
- k = biL - 1 - k;
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
- } else {
- k = 0;
- }
- n = X.n - 1;
- t = Y.n - 1;
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
- while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
- Z.p[n - t]++;
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
- for (i = n; i > t; i--) {
- if (X.p[i] >= Y.p[t]) {
- Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
- } else {
- Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
- Y.p[t], NULL);
- }
- T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
- T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
- T2.p[2] = X.p[i];
- Z.p[i - t - 1]++;
- do {
- Z.p[i - t - 1]--;
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
- T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
- T1.p[1] = Y.p[t];
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
- } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
- if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
- Z.p[i - t - 1]--;
- }
- }
- if (Q != NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
- Q->s = A->s * B->s;
- }
- if (R != NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
- X.s = A->s;
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
- if (mbedtls_mpi_cmp_int(R, 0) == 0) {
- R->s = 1;
- }
- }
- cleanup:
- mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
- mbedtls_mpi_free(&T1);
- mbedtls_platform_zeroize(TP2, sizeof(TP2));
- return ret;
- }
- /*
- * Division by int: A = Q * b + R
- */
- int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
- const mbedtls_mpi *A,
- mbedtls_mpi_sint b)
- {
- mbedtls_mpi B;
- mbedtls_mpi_uint p[1];
- p[0] = mpi_sint_abs(b);
- B.s = TO_SIGN(b);
- B.n = 1;
- B.p = p;
- return mbedtls_mpi_div_mpi(Q, R, A, &B);
- }
- /*
- * Modulo: R = A mod B
- */
- int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- if (mbedtls_mpi_cmp_int(B, 0) < 0) {
- return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
- while (mbedtls_mpi_cmp_int(R, 0) < 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
- }
- while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
- }
- cleanup:
- return ret;
- }
- /*
- * Modulo: r = A mod b
- */
- int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
- {
- size_t i;
- mbedtls_mpi_uint x, y, z;
- if (b == 0) {
- return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
- }
- if (b < 0) {
- return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- }
- /*
- * handle trivial cases
- */
- if (b == 1 || A->n == 0) {
- *r = 0;
- return 0;
- }
- if (b == 2) {
- *r = A->p[0] & 1;
- return 0;
- }
- /*
- * general case
- */
- for (i = A->n, y = 0; i > 0; i--) {
- x = A->p[i - 1];
- y = (y << biH) | (x >> biH);
- z = y / b;
- y -= z * b;
- x <<= biH;
- y = (y << biH) | (x >> biH);
- z = y / b;
- y -= z * b;
- }
- /*
- * If A is negative, then the current y represents a negative value.
- * Flipping it to the positive side.
- */
- if (A->s < 0 && y != 0) {
- y = b - y;
- }
- *r = y;
- return 0;
- }
- /*
- * Warning! If the parameter E_public has MBEDTLS_MPI_IS_PUBLIC as its value,
- * this function is not constant time with respect to the exponent (parameter E).
- */
- static int mbedtls_mpi_exp_mod_optionally_safe(mbedtls_mpi *X, const mbedtls_mpi *A,
- const mbedtls_mpi *E, int E_public,
- const mbedtls_mpi *N, mbedtls_mpi *prec_RR)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- if (mbedtls_mpi_cmp_int(E, 0) < 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
- mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- /*
- * Ensure that the exponent that we are passing to the core is not NULL.
- */
- if (E->n == 0) {
- ret = mbedtls_mpi_lset(X, 1);
- return ret;
- }
- /*
- * Allocate working memory for mbedtls_mpi_core_exp_mod()
- */
- size_t T_limbs = mbedtls_mpi_core_exp_mod_working_limbs(N->n, E->n);
- mbedtls_mpi_uint *T = (mbedtls_mpi_uint *) mbedtls_calloc(T_limbs, sizeof(mbedtls_mpi_uint));
- if (T == NULL) {
- return MBEDTLS_ERR_MPI_ALLOC_FAILED;
- }
- mbedtls_mpi RR;
- mbedtls_mpi_init(&RR);
- /*
- * If 1st call, pre-compute R^2 mod N
- */
- if (prec_RR == NULL || prec_RR->p == NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
- if (prec_RR != NULL) {
- *prec_RR = RR;
- }
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(prec_RR, N->n));
- RR = *prec_RR;
- }
- /*
- * To preserve constness we need to make a copy of A. Using X for this to
- * save memory.
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
- /*
- * Compensate for negative A (and correct at the end).
- */
- X->s = 1;
- /*
- * Make sure that X is in a form that is safe for consumption by
- * the core functions.
- *
- * - The core functions will not touch the limbs of X above N->n. The
- * result will be correct if those limbs are 0, which the mod call
- * ensures.
- * - Also, X must have at least as many limbs as N for the calls to the
- * core functions.
- */
- if (mbedtls_mpi_cmp_mpi(X, N) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, N->n));
- /*
- * Convert to and from Montgomery around mbedtls_mpi_core_exp_mod().
- */
- {
- mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
- mbedtls_mpi_core_to_mont_rep(X->p, X->p, N->p, N->n, mm, RR.p, T);
- if (E_public == MBEDTLS_MPI_IS_PUBLIC) {
- mbedtls_mpi_core_exp_mod_unsafe(X->p, X->p, N->p, N->n, E->p, E->n, RR.p, T);
- } else {
- mbedtls_mpi_core_exp_mod(X->p, X->p, N->p, N->n, E->p, E->n, RR.p, T);
- }
- mbedtls_mpi_core_from_mont_rep(X->p, X->p, N->p, N->n, mm, T);
- }
- /*
- * Correct for negative A.
- */
- if (A->s == -1 && (E->p[0] & 1) != 0) {
- mbedtls_ct_condition_t is_x_non_zero = mbedtls_mpi_core_check_zero_ct(X->p, X->n);
- X->s = mbedtls_ct_mpi_sign_if(is_x_non_zero, -1, 1);
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, N, X));
- }
- cleanup:
- mbedtls_mpi_zeroize_and_free(T, T_limbs);
- if (prec_RR == NULL || prec_RR->p == NULL) {
- mbedtls_mpi_free(&RR);
- }
- return ret;
- }
- int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
- const mbedtls_mpi *E, const mbedtls_mpi *N,
- mbedtls_mpi *prec_RR)
- {
- return mbedtls_mpi_exp_mod_optionally_safe(X, A, E, MBEDTLS_MPI_IS_SECRET, N, prec_RR);
- }
- int mbedtls_mpi_exp_mod_unsafe(mbedtls_mpi *X, const mbedtls_mpi *A,
- const mbedtls_mpi *E, const mbedtls_mpi *N,
- mbedtls_mpi *prec_RR)
- {
- return mbedtls_mpi_exp_mod_optionally_safe(X, A, E, MBEDTLS_MPI_IS_PUBLIC, N, prec_RR);
- }
- /*
- * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
- */
- int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t lz, lzt;
- mbedtls_mpi TA, TB;
- mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
- lz = mbedtls_mpi_lsb(&TA);
- lzt = mbedtls_mpi_lsb(&TB);
- /* The loop below gives the correct result when A==0 but not when B==0.
- * So have a special case for B==0. Leverage the fact that we just
- * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
- * slightly more efficient than cmp_int(). */
- if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
- ret = mbedtls_mpi_copy(G, A);
- goto cleanup;
- }
- if (lzt < lz) {
- lz = lzt;
- }
- TA.s = TB.s = 1;
- /* We mostly follow the procedure described in HAC 14.54, but with some
- * minor differences:
- * - Sequences of multiplications or divisions by 2 are grouped into a
- * single shift operation.
- * - The procedure in HAC assumes that 0 < TB <= TA.
- * - The condition TB <= TA is not actually necessary for correctness.
- * TA and TB have symmetric roles except for the loop termination
- * condition, and the shifts at the beginning of the loop body
- * remove any significance from the ordering of TA vs TB before
- * the shifts.
- * - If TA = 0, the loop goes through 0 iterations and the result is
- * correctly TB.
- * - The case TB = 0 was short-circuited above.
- *
- * For the correctness proof below, decompose the original values of
- * A and B as
- * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
- * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
- * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
- * and gcd(A',B') is odd or 0.
- *
- * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
- * The code maintains the following invariant:
- * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
- */
- /* Proof that the loop terminates:
- * At each iteration, either the right-shift by 1 is made on a nonzero
- * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
- * by at least 1, or the right-shift by 1 is made on zero and then
- * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
- * since in that case TB is calculated from TB-TA with the condition TB>TA).
- */
- while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
- /* Divisions by 2 preserve the invariant (I). */
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
- /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
- * TA-TB is even so the division by 2 has an integer result.
- * Invariant (I) is preserved since any odd divisor of both TA and TB
- * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
- * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
- * divides TA.
- */
- if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
- }
- /* Note that one of TA or TB is still odd. */
- }
- /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
- * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
- * - If there was at least one loop iteration, then one of TA or TB is odd,
- * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
- * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
- * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
- * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
- cleanup:
- mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
- return ret;
- }
- /*
- * Fill X with size bytes of random.
- * The bytes returned from the RNG are used in a specific order which
- * is suitable for deterministic ECDSA (see the specification of
- * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
- */
- int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- const size_t limbs = CHARS_TO_LIMBS(size);
- /* Ensure that target MPI has exactly the necessary number of limbs */
- MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
- if (size == 0) {
- return 0;
- }
- ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
- cleanup:
- return ret;
- }
- int mbedtls_mpi_random(mbedtls_mpi *X,
- mbedtls_mpi_sint min,
- const mbedtls_mpi *N,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- if (min < 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- if (mbedtls_mpi_cmp_int(N, min) <= 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- /* Ensure that target MPI has exactly the same number of limbs
- * as the upper bound, even if the upper bound has leading zeros.
- * This is necessary for mbedtls_mpi_core_random. */
- int ret = mbedtls_mpi_resize_clear(X, N->n);
- if (ret != 0) {
- return ret;
- }
- return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
- }
- /*
- * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
- */
- int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
- if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
- mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
- mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
- MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
- if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
- do {
- while ((TU.p[0] & 1) == 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
- if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
- }
- while ((TV.p[0] & 1) == 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
- if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
- }
- if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
- }
- } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
- while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
- }
- while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
- cleanup:
- mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
- mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
- mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
- return ret;
- }
- #if defined(MBEDTLS_GENPRIME)
- /* Gaps between primes, starting at 3. https://oeis.org/A001223 */
- static const unsigned char small_prime_gaps[] = {
- 2, 2, 4, 2, 4, 2, 4, 6,
- 2, 6, 4, 2, 4, 6, 6, 2,
- 6, 4, 2, 6, 4, 6, 8, 4,
- 2, 4, 2, 4, 14, 4, 6, 2,
- 10, 2, 6, 6, 4, 6, 6, 2,
- 10, 2, 4, 2, 12, 12, 4, 2,
- 4, 6, 2, 10, 6, 6, 6, 2,
- 6, 4, 2, 10, 14, 4, 2, 4,
- 14, 6, 10, 2, 4, 6, 8, 6,
- 6, 4, 6, 8, 4, 8, 10, 2,
- 10, 2, 6, 4, 6, 8, 4, 2,
- 4, 12, 8, 4, 8, 4, 6, 12,
- 2, 18, 6, 10, 6, 6, 2, 6,
- 10, 6, 6, 2, 6, 6, 4, 2,
- 12, 10, 2, 4, 6, 6, 2, 12,
- 4, 6, 8, 10, 8, 10, 8, 6,
- 6, 4, 8, 6, 4, 8, 4, 14,
- 10, 12, 2, 10, 2, 4, 2, 10,
- 14, 4, 2, 4, 14, 4, 2, 4,
- 20, 4, 8, 10, 8, 4, 6, 6,
- 14, 4, 6, 6, 8, 6, /*reaches 997*/
- 0 /* the last entry is effectively unused */
- };
- /*
- * Small divisors test (X must be positive)
- *
- * Return values:
- * 0: no small factor (possible prime, more tests needed)
- * 1: certain prime
- * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
- * other negative: error
- */
- static int mpi_check_small_factors(const mbedtls_mpi *X)
- {
- int ret = 0;
- size_t i;
- mbedtls_mpi_uint r;
- unsigned p = 3; /* The first odd prime */
- if ((X->p[0] & 1) == 0) {
- return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- }
- for (i = 0; i < sizeof(small_prime_gaps); p += small_prime_gaps[i], i++) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, p));
- if (r == 0) {
- if (mbedtls_mpi_cmp_int(X, p) == 0) {
- return 1;
- } else {
- return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- }
- }
- }
- cleanup:
- return ret;
- }
- /*
- * Miller-Rabin pseudo-primality test (HAC 4.24)
- */
- static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- int ret, count;
- size_t i, j, k, s;
- mbedtls_mpi W, R, T, A, RR;
- mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
- mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
- mbedtls_mpi_init(&RR);
- /*
- * W = |X| - 1
- * R = W >> lsb( W )
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
- s = mbedtls_mpi_lsb(&W);
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
- for (i = 0; i < rounds; i++) {
- /*
- * pick a random A, 1 < A < |X| - 1
- */
- count = 0;
- do {
- MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
- j = mbedtls_mpi_bitlen(&A);
- k = mbedtls_mpi_bitlen(&W);
- if (j > k) {
- A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
- }
- if (count++ > 30) {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- goto cleanup;
- }
- } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
- mbedtls_mpi_cmp_int(&A, 1) <= 0);
- /*
- * A = A^R mod |X|
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
- if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
- mbedtls_mpi_cmp_int(&A, 1) == 0) {
- continue;
- }
- j = 1;
- while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
- /*
- * A = A * A mod |X|
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
- if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
- break;
- }
- j++;
- }
- /*
- * not prime if A != |X| - 1 or A == 1
- */
- if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
- mbedtls_mpi_cmp_int(&A, 1) == 0) {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- break;
- }
- }
- cleanup:
- mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
- mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
- mbedtls_mpi_free(&RR);
- return ret;
- }
- /*
- * Pseudo-primality test: small factors, then Miller-Rabin
- */
- int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_mpi XX;
- XX.s = 1;
- XX.n = X->n;
- XX.p = X->p;
- if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
- mbedtls_mpi_cmp_int(&XX, 1) == 0) {
- return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- }
- if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
- return 0;
- }
- if ((ret = mpi_check_small_factors(&XX)) != 0) {
- if (ret == 1) {
- return 0;
- }
- return ret;
- }
- return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
- }
- /*
- * Prime number generation
- *
- * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
- * be either 1024 bits or 1536 bits long, and flags must contain
- * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
- */
- int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- #ifdef MBEDTLS_HAVE_INT64
- // ceil(2^63.5)
- #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
- #else
- // ceil(2^31.5)
- #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
- #endif
- int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- size_t k, n;
- int rounds;
- mbedtls_mpi_uint r;
- mbedtls_mpi Y;
- if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- mbedtls_mpi_init(&Y);
- n = BITS_TO_LIMBS(nbits);
- if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
- /*
- * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
- */
- rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
- (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
- (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
- } else {
- /*
- * 2^-100 error probability, number of rounds computed based on HAC,
- * fact 4.48
- */
- rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
- (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
- (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
- (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
- }
- while (1) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
- /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
- if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
- continue;
- }
- k = n * biL;
- if (k > nbits) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
- }
- X->p[0] |= 1;
- if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
- ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
- if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
- goto cleanup;
- }
- } else {
- /*
- * A necessary condition for Y and X = 2Y + 1 to be prime
- * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
- * Make sure it is satisfied, while keeping X = 3 mod 4
- */
- X->p[0] |= 2;
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
- if (r == 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
- } else if (r == 1) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
- }
- /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
- while (1) {
- /*
- * First, check small factors for X and Y
- * before doing Miller-Rabin on any of them
- */
- if ((ret = mpi_check_small_factors(X)) == 0 &&
- (ret = mpi_check_small_factors(&Y)) == 0 &&
- (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
- == 0 &&
- (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
- == 0) {
- goto cleanup;
- }
- if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
- goto cleanup;
- }
- /*
- * Next candidates. We want to preserve Y = (X-1) / 2 and
- * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
- * so up Y by 6 and X by 12.
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
- }
- }
- }
- cleanup:
- mbedtls_mpi_free(&Y);
- return ret;
- }
- #endif /* MBEDTLS_GENPRIME */
- #if defined(MBEDTLS_SELF_TEST)
- #define GCD_PAIR_COUNT 3
- static const int gcd_pairs[GCD_PAIR_COUNT][3] =
- {
- { 693, 609, 21 },
- { 1764, 868, 28 },
- { 768454923, 542167814, 1 }
- };
- /*
- * Checkup routine
- */
- int mbedtls_mpi_self_test(int verbose)
- {
- int ret, i;
- mbedtls_mpi A, E, N, X, Y, U, V;
- mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
- mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
- "EFE021C2645FD1DC586E69184AF4A31E" \
- "D5F53E93B5F123FA41680867BA110131" \
- "944FE7952E2517337780CB0DB80E61AA" \
- "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
- "B2E7EFD37075B9F03FF989C7C5051C20" \
- "34D2A323810251127E7BF8625A4F49A5" \
- "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
- "5B5C25763222FEFCCFC38B832366C29E"));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
- "0066A198186C18C10B2F5ED9B522752A" \
- "9830B69916E535C8F047518A889A43A5" \
- "94B6BED27A168D31D4A52F88925AA8F5"));
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
- "602AB7ECA597A3D6B56FF9829A5E8B85" \
- "9E857EA95A03512E2BAE7391688D264A" \
- "A5663B0341DB9CCFD2C4C5F421FEC814" \
- "8001B72E848A38CAE1C65F78E56ABDEF" \
- "E12D3C039B8A02D6BE593F0BBBDA56F1" \
- "ECF677152EF804370C1A305CAF3B5BF1" \
- "30879B56C61DE584A0F53A2447A51E"));
- if (verbose != 0) {
- mbedtls_printf(" MPI test #1 (mul_mpi): ");
- }
- if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed\n");
- }
- ret = 1;
- goto cleanup;
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
- "256567336059E52CAE22925474705F39A94"));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
- "6613F26162223DF488E9CD48CC132C7A" \
- "0AC93C701B001B092E4E5B9F73BCD27B" \
- "9EE50D0657C77F374E903CDFA4C642"));
- if (verbose != 0) {
- mbedtls_printf(" MPI test #2 (div_mpi): ");
- }
- if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
- mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed\n");
- }
- ret = 1;
- goto cleanup;
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
- "36E139AEA55215609D2816998ED020BB" \
- "BD96C37890F65171D948E9BC7CBAA4D9" \
- "325D24D6A3C12710F10A09FA08AB87"));
- if (verbose != 0) {
- mbedtls_printf(" MPI test #3 (exp_mod): ");
- }
- if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed\n");
- }
- ret = 1;
- goto cleanup;
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
- "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
- "C3DBA76456363A10869622EAC2DD84EC" \
- "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
- if (verbose != 0) {
- mbedtls_printf(" MPI test #4 (inv_mod): ");
- }
- if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed\n");
- }
- ret = 1;
- goto cleanup;
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- if (verbose != 0) {
- mbedtls_printf(" MPI test #5 (simple gcd): ");
- }
- for (i = 0; i < GCD_PAIR_COUNT; i++) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
- MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
- if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed at %d\n", i);
- }
- ret = 1;
- goto cleanup;
- }
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- cleanup:
- if (ret != 0 && verbose != 0) {
- mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
- }
- mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
- mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
- if (verbose != 0) {
- mbedtls_printf("\n");
- }
- return ret;
- }
- #endif /* MBEDTLS_SELF_TEST */
- #endif /* MBEDTLS_BIGNUM_C */
|