jmemmgr.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150
  1. /*
  2. * jmemmgr.c
  3. *
  4. * This file was part of the Independent JPEG Group's software:
  5. * Copyright (C) 1991-1997, Thomas G. Lane.
  6. * It was modified by The libjpeg-turbo Project to include only code and
  7. * information relevant to libjpeg-turbo.
  8. * For conditions of distribution and use, see the accompanying README file.
  9. *
  10. * This file contains the JPEG system-independent memory management
  11. * routines. This code is usable across a wide variety of machines; most
  12. * of the system dependencies have been isolated in a separate file.
  13. * The major functions provided here are:
  14. * * pool-based allocation and freeing of memory;
  15. * * policy decisions about how to divide available memory among the
  16. * virtual arrays;
  17. * * control logic for swapping virtual arrays between main memory and
  18. * backing storage.
  19. * The separate system-dependent file provides the actual backing-storage
  20. * access code, and it contains the policy decision about how much total
  21. * main memory to use.
  22. * This file is system-dependent in the sense that some of its functions
  23. * are unnecessary in some systems. For example, if there is enough virtual
  24. * memory so that backing storage will never be used, much of the virtual
  25. * array control logic could be removed. (Of course, if you have that much
  26. * memory then you shouldn't care about a little bit of unused code...)
  27. */
  28. #define JPEG_INTERNALS
  29. #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
  30. #include "jinclude.h"
  31. #include "jpeglib.h"
  32. #include "jmemsys.h" /* import the system-dependent declarations */
  33. #ifndef NO_GETENV
  34. #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
  35. extern char * getenv (const char * name);
  36. #endif
  37. #endif
  38. LOCAL(size_t)
  39. round_up_pow2 (size_t a, size_t b)
  40. /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
  41. /* Assumes a >= 0, b > 0, and b is a power of 2 */
  42. {
  43. return ((a + b - 1) & (~(b - 1)));
  44. }
  45. /*
  46. * Some important notes:
  47. * The allocation routines provided here must never return NULL.
  48. * They should exit to error_exit if unsuccessful.
  49. *
  50. * It's not a good idea to try to merge the sarray and barray routines,
  51. * even though they are textually almost the same, because samples are
  52. * usually stored as bytes while coefficients are shorts or ints. Thus,
  53. * in machines where byte pointers have a different representation from
  54. * word pointers, the resulting machine code could not be the same.
  55. */
  56. /*
  57. * Many machines require storage alignment: longs must start on 4-byte
  58. * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
  59. * always returns pointers that are multiples of the worst-case alignment
  60. * requirement, and we had better do so too.
  61. * There isn't any really portable way to determine the worst-case alignment
  62. * requirement. This module assumes that the alignment requirement is
  63. * multiples of ALIGN_SIZE.
  64. * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on some
  65. * workstations (where doubles really do need 8-byte alignment) and will work
  66. * fine on nearly everything. If your machine has lesser alignment needs,
  67. * you can save a few bytes by making ALIGN_SIZE smaller.
  68. * The only place I know of where this will NOT work is certain Macintosh
  69. * 680x0 compilers that define double as a 10-byte IEEE extended float.
  70. * Doing 10-byte alignment is counterproductive because longwords won't be
  71. * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have
  72. * such a compiler.
  73. */
  74. #ifndef ALIGN_SIZE /* so can override from jconfig.h */
  75. #ifndef WITH_SIMD
  76. #define ALIGN_SIZE sizeof(double)
  77. #else
  78. #define ALIGN_SIZE 16 /* Most SIMD implementations require this */
  79. #endif
  80. #endif
  81. /*
  82. * We allocate objects from "pools", where each pool is gotten with a single
  83. * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
  84. * overhead within a pool, except for alignment padding. Each pool has a
  85. * header with a link to the next pool of the same class.
  86. * Small and large pool headers are identical.
  87. */
  88. typedef struct small_pool_struct * small_pool_ptr;
  89. typedef struct small_pool_struct {
  90. small_pool_ptr next; /* next in list of pools */
  91. size_t bytes_used; /* how many bytes already used within pool */
  92. size_t bytes_left; /* bytes still available in this pool */
  93. } small_pool_hdr;
  94. typedef struct large_pool_struct * large_pool_ptr;
  95. typedef struct large_pool_struct {
  96. large_pool_ptr next; /* next in list of pools */
  97. size_t bytes_used; /* how many bytes already used within pool */
  98. size_t bytes_left; /* bytes still available in this pool */
  99. } large_pool_hdr;
  100. /*
  101. * Here is the full definition of a memory manager object.
  102. */
  103. typedef struct {
  104. struct jpeg_memory_mgr pub; /* public fields */
  105. /* Each pool identifier (lifetime class) names a linked list of pools. */
  106. small_pool_ptr small_list[JPOOL_NUMPOOLS];
  107. large_pool_ptr large_list[JPOOL_NUMPOOLS];
  108. /* Since we only have one lifetime class of virtual arrays, only one
  109. * linked list is necessary (for each datatype). Note that the virtual
  110. * array control blocks being linked together are actually stored somewhere
  111. * in the small-pool list.
  112. */
  113. jvirt_sarray_ptr virt_sarray_list;
  114. jvirt_barray_ptr virt_barray_list;
  115. /* This counts total space obtained from jpeg_get_small/large */
  116. size_t total_space_allocated;
  117. /* alloc_sarray and alloc_barray set this value for use by virtual
  118. * array routines.
  119. */
  120. JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
  121. } my_memory_mgr;
  122. typedef my_memory_mgr * my_mem_ptr;
  123. /*
  124. * The control blocks for virtual arrays.
  125. * Note that these blocks are allocated in the "small" pool area.
  126. * System-dependent info for the associated backing store (if any) is hidden
  127. * inside the backing_store_info struct.
  128. */
  129. struct jvirt_sarray_control {
  130. JSAMPARRAY mem_buffer; /* => the in-memory buffer */
  131. JDIMENSION rows_in_array; /* total virtual array height */
  132. JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
  133. JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
  134. JDIMENSION rows_in_mem; /* height of memory buffer */
  135. JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
  136. JDIMENSION cur_start_row; /* first logical row # in the buffer */
  137. JDIMENSION first_undef_row; /* row # of first uninitialized row */
  138. boolean pre_zero; /* pre-zero mode requested? */
  139. boolean dirty; /* do current buffer contents need written? */
  140. boolean b_s_open; /* is backing-store data valid? */
  141. jvirt_sarray_ptr next; /* link to next virtual sarray control block */
  142. backing_store_info b_s_info; /* System-dependent control info */
  143. };
  144. struct jvirt_barray_control {
  145. JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
  146. JDIMENSION rows_in_array; /* total virtual array height */
  147. JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
  148. JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
  149. JDIMENSION rows_in_mem; /* height of memory buffer */
  150. JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
  151. JDIMENSION cur_start_row; /* first logical row # in the buffer */
  152. JDIMENSION first_undef_row; /* row # of first uninitialized row */
  153. boolean pre_zero; /* pre-zero mode requested? */
  154. boolean dirty; /* do current buffer contents need written? */
  155. boolean b_s_open; /* is backing-store data valid? */
  156. jvirt_barray_ptr next; /* link to next virtual barray control block */
  157. backing_store_info b_s_info; /* System-dependent control info */
  158. };
  159. #ifdef MEM_STATS /* optional extra stuff for statistics */
  160. LOCAL(void)
  161. print_mem_stats (j_common_ptr cinfo, int pool_id)
  162. {
  163. my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  164. small_pool_ptr shdr_ptr;
  165. large_pool_ptr lhdr_ptr;
  166. /* Since this is only a debugging stub, we can cheat a little by using
  167. * fprintf directly rather than going through the trace message code.
  168. * This is helpful because message parm array can't handle longs.
  169. */
  170. fprintf(stderr, "Freeing pool %d, total space = %ld\n",
  171. pool_id, mem->total_space_allocated);
  172. for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
  173. lhdr_ptr = lhdr_ptr->next) {
  174. fprintf(stderr, " Large chunk used %ld\n",
  175. (long) lhdr_ptr->bytes_used);
  176. }
  177. for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
  178. shdr_ptr = shdr_ptr->next) {
  179. fprintf(stderr, " Small chunk used %ld free %ld\n",
  180. (long) shdr_ptr->bytes_used,
  181. (long) shdr_ptr->bytes_left);
  182. }
  183. }
  184. #endif /* MEM_STATS */
  185. LOCAL(void)
  186. out_of_memory (j_common_ptr cinfo, int which)
  187. /* Report an out-of-memory error and stop execution */
  188. /* If we compiled MEM_STATS support, report alloc requests before dying */
  189. {
  190. #ifdef MEM_STATS
  191. cinfo->err->trace_level = 2; /* force self_destruct to report stats */
  192. #endif
  193. ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
  194. }
  195. /*
  196. * Allocation of "small" objects.
  197. *
  198. * For these, we use pooled storage. When a new pool must be created,
  199. * we try to get enough space for the current request plus a "slop" factor,
  200. * where the slop will be the amount of leftover space in the new pool.
  201. * The speed vs. space tradeoff is largely determined by the slop values.
  202. * A different slop value is provided for each pool class (lifetime),
  203. * and we also distinguish the first pool of a class from later ones.
  204. * NOTE: the values given work fairly well on both 16- and 32-bit-int
  205. * machines, but may be too small if longs are 64 bits or more.
  206. *
  207. * Since we do not know what alignment malloc() gives us, we have to
  208. * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
  209. * adjustment.
  210. */
  211. static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
  212. {
  213. 1600, /* first PERMANENT pool */
  214. 16000 /* first IMAGE pool */
  215. };
  216. static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
  217. {
  218. 0, /* additional PERMANENT pools */
  219. 5000 /* additional IMAGE pools */
  220. };
  221. #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
  222. METHODDEF(void *)
  223. alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
  224. /* Allocate a "small" object */
  225. {
  226. my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  227. small_pool_ptr hdr_ptr, prev_hdr_ptr;
  228. char * data_ptr;
  229. size_t min_request, slop;
  230. /*
  231. * Round up the requested size to a multiple of ALIGN_SIZE in order
  232. * to assure alignment for the next object allocated in the same pool
  233. * and so that algorithms can straddle outside the proper area up
  234. * to the next alignment.
  235. */
  236. sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
  237. /* Check for unsatisfiable request (do now to ensure no overflow below) */
  238. if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
  239. out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
  240. /* See if space is available in any existing pool */
  241. if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
  242. ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  243. prev_hdr_ptr = NULL;
  244. hdr_ptr = mem->small_list[pool_id];
  245. while (hdr_ptr != NULL) {
  246. if (hdr_ptr->bytes_left >= sizeofobject)
  247. break; /* found pool with enough space */
  248. prev_hdr_ptr = hdr_ptr;
  249. hdr_ptr = hdr_ptr->next;
  250. }
  251. /* Time to make a new pool? */
  252. if (hdr_ptr == NULL) {
  253. /* min_request is what we need now, slop is what will be leftover */
  254. min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
  255. if (prev_hdr_ptr == NULL) /* first pool in class? */
  256. slop = first_pool_slop[pool_id];
  257. else
  258. slop = extra_pool_slop[pool_id];
  259. /* Don't ask for more than MAX_ALLOC_CHUNK */
  260. if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
  261. slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
  262. /* Try to get space, if fail reduce slop and try again */
  263. for (;;) {
  264. hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
  265. if (hdr_ptr != NULL)
  266. break;
  267. slop /= 2;
  268. if (slop < MIN_SLOP) /* give up when it gets real small */
  269. out_of_memory(cinfo, 2); /* jpeg_get_small failed */
  270. }
  271. mem->total_space_allocated += min_request + slop;
  272. /* Success, initialize the new pool header and add to end of list */
  273. hdr_ptr->next = NULL;
  274. hdr_ptr->bytes_used = 0;
  275. hdr_ptr->bytes_left = sizeofobject + slop;
  276. if (prev_hdr_ptr == NULL) /* first pool in class? */
  277. mem->small_list[pool_id] = hdr_ptr;
  278. else
  279. prev_hdr_ptr->next = hdr_ptr;
  280. }
  281. /* OK, allocate the object from the current pool */
  282. data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
  283. data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
  284. if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
  285. data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
  286. data_ptr += hdr_ptr->bytes_used; /* point to place for object */
  287. hdr_ptr->bytes_used += sizeofobject;
  288. hdr_ptr->bytes_left -= sizeofobject;
  289. return (void *) data_ptr;
  290. }
  291. /*
  292. * Allocation of "large" objects.
  293. *
  294. * The external semantics of these are the same as "small" objects. However,
  295. * the pool management heuristics are quite different. We assume that each
  296. * request is large enough that it may as well be passed directly to
  297. * jpeg_get_large; the pool management just links everything together
  298. * so that we can free it all on demand.
  299. * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
  300. * structures. The routines that create these structures (see below)
  301. * deliberately bunch rows together to ensure a large request size.
  302. */
  303. METHODDEF(void *)
  304. alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
  305. /* Allocate a "large" object */
  306. {
  307. my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  308. large_pool_ptr hdr_ptr;
  309. char * data_ptr;
  310. /*
  311. * Round up the requested size to a multiple of ALIGN_SIZE so that
  312. * algorithms can straddle outside the proper area up to the next
  313. * alignment.
  314. */
  315. sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
  316. /* Check for unsatisfiable request (do now to ensure no overflow below) */
  317. if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
  318. out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
  319. /* Always make a new pool */
  320. if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
  321. ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  322. hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
  323. sizeof(large_pool_hdr) +
  324. ALIGN_SIZE - 1);
  325. if (hdr_ptr == NULL)
  326. out_of_memory(cinfo, 4); /* jpeg_get_large failed */
  327. mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + ALIGN_SIZE - 1;
  328. /* Success, initialize the new pool header and add to list */
  329. hdr_ptr->next = mem->large_list[pool_id];
  330. /* We maintain space counts in each pool header for statistical purposes,
  331. * even though they are not needed for allocation.
  332. */
  333. hdr_ptr->bytes_used = sizeofobject;
  334. hdr_ptr->bytes_left = 0;
  335. mem->large_list[pool_id] = hdr_ptr;
  336. data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
  337. data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
  338. if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
  339. data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
  340. return (void *) data_ptr;
  341. }
  342. /*
  343. * Creation of 2-D sample arrays.
  344. *
  345. * To minimize allocation overhead and to allow I/O of large contiguous
  346. * blocks, we allocate the sample rows in groups of as many rows as possible
  347. * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
  348. * NB: the virtual array control routines, later in this file, know about
  349. * this chunking of rows. The rowsperchunk value is left in the mem manager
  350. * object so that it can be saved away if this sarray is the workspace for
  351. * a virtual array.
  352. *
  353. * Since we are often upsampling with a factor 2, we align the size (not
  354. * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
  355. * to be as careful about size.
  356. */
  357. METHODDEF(JSAMPARRAY)
  358. alloc_sarray (j_common_ptr cinfo, int pool_id,
  359. JDIMENSION samplesperrow, JDIMENSION numrows)
  360. /* Allocate a 2-D sample array */
  361. {
  362. my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  363. JSAMPARRAY result;
  364. JSAMPROW workspace;
  365. JDIMENSION rowsperchunk, currow, i;
  366. long ltemp;
  367. /* Make sure each row is properly aligned */
  368. if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
  369. out_of_memory(cinfo, 5); /* safety check */
  370. samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / sizeof(JSAMPLE));
  371. /* Calculate max # of rows allowed in one allocation chunk */
  372. ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
  373. ((long) samplesperrow * sizeof(JSAMPLE));
  374. if (ltemp <= 0)
  375. ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
  376. if (ltemp < (long) numrows)
  377. rowsperchunk = (JDIMENSION) ltemp;
  378. else
  379. rowsperchunk = numrows;
  380. mem->last_rowsperchunk = rowsperchunk;
  381. /* Get space for row pointers (small object) */
  382. result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
  383. (size_t) (numrows * sizeof(JSAMPROW)));
  384. /* Get the rows themselves (large objects) */
  385. currow = 0;
  386. while (currow < numrows) {
  387. rowsperchunk = MIN(rowsperchunk, numrows - currow);
  388. workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
  389. (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
  390. * sizeof(JSAMPLE)));
  391. for (i = rowsperchunk; i > 0; i--) {
  392. result[currow++] = workspace;
  393. workspace += samplesperrow;
  394. }
  395. }
  396. return result;
  397. }
  398. /*
  399. * Creation of 2-D coefficient-block arrays.
  400. * This is essentially the same as the code for sample arrays, above.
  401. */
  402. METHODDEF(JBLOCKARRAY)
  403. alloc_barray (j_common_ptr cinfo, int pool_id,
  404. JDIMENSION blocksperrow, JDIMENSION numrows)
  405. /* Allocate a 2-D coefficient-block array */
  406. {
  407. my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  408. JBLOCKARRAY result;
  409. JBLOCKROW workspace;
  410. JDIMENSION rowsperchunk, currow, i;
  411. long ltemp;
  412. /* Make sure each row is properly aligned */
  413. if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
  414. out_of_memory(cinfo, 6); /* safety check */
  415. /* Calculate max # of rows allowed in one allocation chunk */
  416. ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
  417. ((long) blocksperrow * sizeof(JBLOCK));
  418. if (ltemp <= 0)
  419. ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
  420. if (ltemp < (long) numrows)
  421. rowsperchunk = (JDIMENSION) ltemp;
  422. else
  423. rowsperchunk = numrows;
  424. mem->last_rowsperchunk = rowsperchunk;
  425. /* Get space for row pointers (small object) */
  426. result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
  427. (size_t) (numrows * sizeof(JBLOCKROW)));
  428. /* Get the rows themselves (large objects) */
  429. currow = 0;
  430. while (currow < numrows) {
  431. rowsperchunk = MIN(rowsperchunk, numrows - currow);
  432. workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
  433. (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
  434. * sizeof(JBLOCK)));
  435. for (i = rowsperchunk; i > 0; i--) {
  436. result[currow++] = workspace;
  437. workspace += blocksperrow;
  438. }
  439. }
  440. return result;
  441. }
  442. /*
  443. * About virtual array management:
  444. *
  445. * The above "normal" array routines are only used to allocate strip buffers
  446. * (as wide as the image, but just a few rows high). Full-image-sized buffers
  447. * are handled as "virtual" arrays. The array is still accessed a strip at a
  448. * time, but the memory manager must save the whole array for repeated
  449. * accesses. The intended implementation is that there is a strip buffer in
  450. * memory (as high as is possible given the desired memory limit), plus a
  451. * backing file that holds the rest of the array.
  452. *
  453. * The request_virt_array routines are told the total size of the image and
  454. * the maximum number of rows that will be accessed at once. The in-memory
  455. * buffer must be at least as large as the maxaccess value.
  456. *
  457. * The request routines create control blocks but not the in-memory buffers.
  458. * That is postponed until realize_virt_arrays is called. At that time the
  459. * total amount of space needed is known (approximately, anyway), so free
  460. * memory can be divided up fairly.
  461. *
  462. * The access_virt_array routines are responsible for making a specific strip
  463. * area accessible (after reading or writing the backing file, if necessary).
  464. * Note that the access routines are told whether the caller intends to modify
  465. * the accessed strip; during a read-only pass this saves having to rewrite
  466. * data to disk. The access routines are also responsible for pre-zeroing
  467. * any newly accessed rows, if pre-zeroing was requested.
  468. *
  469. * In current usage, the access requests are usually for nonoverlapping
  470. * strips; that is, successive access start_row numbers differ by exactly
  471. * num_rows = maxaccess. This means we can get good performance with simple
  472. * buffer dump/reload logic, by making the in-memory buffer be a multiple
  473. * of the access height; then there will never be accesses across bufferload
  474. * boundaries. The code will still work with overlapping access requests,
  475. * but it doesn't handle bufferload overlaps very efficiently.
  476. */
  477. METHODDEF(jvirt_sarray_ptr)
  478. request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
  479. JDIMENSION samplesperrow, JDIMENSION numrows,
  480. JDIMENSION maxaccess)
  481. /* Request a virtual 2-D sample array */
  482. {
  483. my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  484. jvirt_sarray_ptr result;
  485. /* Only IMAGE-lifetime virtual arrays are currently supported */
  486. if (pool_id != JPOOL_IMAGE)
  487. ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  488. /* get control block */
  489. result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
  490. sizeof(struct jvirt_sarray_control));
  491. result->mem_buffer = NULL; /* marks array not yet realized */
  492. result->rows_in_array = numrows;
  493. result->samplesperrow = samplesperrow;
  494. result->maxaccess = maxaccess;
  495. result->pre_zero = pre_zero;
  496. result->b_s_open = FALSE; /* no associated backing-store object */
  497. result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
  498. mem->virt_sarray_list = result;
  499. return result;
  500. }
  501. METHODDEF(jvirt_barray_ptr)
  502. request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
  503. JDIMENSION blocksperrow, JDIMENSION numrows,
  504. JDIMENSION maxaccess)
  505. /* Request a virtual 2-D coefficient-block array */
  506. {
  507. my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  508. jvirt_barray_ptr result;
  509. /* Only IMAGE-lifetime virtual arrays are currently supported */
  510. if (pool_id != JPOOL_IMAGE)
  511. ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  512. /* get control block */
  513. result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
  514. sizeof(struct jvirt_barray_control));
  515. result->mem_buffer = NULL; /* marks array not yet realized */
  516. result->rows_in_array = numrows;
  517. result->blocksperrow = blocksperrow;
  518. result->maxaccess = maxaccess;
  519. result->pre_zero = pre_zero;
  520. result->b_s_open = FALSE; /* no associated backing-store object */
  521. result->next = mem->virt_barray_list; /* add to list of virtual arrays */
  522. mem->virt_barray_list = result;
  523. return result;
  524. }
  525. METHODDEF(void)
  526. realize_virt_arrays (j_common_ptr cinfo)
  527. /* Allocate the in-memory buffers for any unrealized virtual arrays */
  528. {
  529. my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  530. size_t space_per_minheight, maximum_space, avail_mem;
  531. size_t minheights, max_minheights;
  532. jvirt_sarray_ptr sptr;
  533. jvirt_barray_ptr bptr;
  534. /* Compute the minimum space needed (maxaccess rows in each buffer)
  535. * and the maximum space needed (full image height in each buffer).
  536. * These may be of use to the system-dependent jpeg_mem_available routine.
  537. */
  538. space_per_minheight = 0;
  539. maximum_space = 0;
  540. for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
  541. if (sptr->mem_buffer == NULL) { /* if not realized yet */
  542. space_per_minheight += (long) sptr->maxaccess *
  543. (long) sptr->samplesperrow * sizeof(JSAMPLE);
  544. maximum_space += (long) sptr->rows_in_array *
  545. (long) sptr->samplesperrow * sizeof(JSAMPLE);
  546. }
  547. }
  548. for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
  549. if (bptr->mem_buffer == NULL) { /* if not realized yet */
  550. space_per_minheight += (long) bptr->maxaccess *
  551. (long) bptr->blocksperrow * sizeof(JBLOCK);
  552. maximum_space += (long) bptr->rows_in_array *
  553. (long) bptr->blocksperrow * sizeof(JBLOCK);
  554. }
  555. }
  556. if (space_per_minheight <= 0)
  557. return; /* no unrealized arrays, no work */
  558. /* Determine amount of memory to actually use; this is system-dependent. */
  559. avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
  560. mem->total_space_allocated);
  561. /* If the maximum space needed is available, make all the buffers full
  562. * height; otherwise parcel it out with the same number of minheights
  563. * in each buffer.
  564. */
  565. if (avail_mem >= maximum_space)
  566. max_minheights = 1000000000L;
  567. else {
  568. max_minheights = avail_mem / space_per_minheight;
  569. /* If there doesn't seem to be enough space, try to get the minimum
  570. * anyway. This allows a "stub" implementation of jpeg_mem_available().
  571. */
  572. if (max_minheights <= 0)
  573. max_minheights = 1;
  574. }
  575. /* Allocate the in-memory buffers and initialize backing store as needed. */
  576. for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
  577. if (sptr->mem_buffer == NULL) { /* if not realized yet */
  578. minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
  579. if (minheights <= max_minheights) {
  580. /* This buffer fits in memory */
  581. sptr->rows_in_mem = sptr->rows_in_array;
  582. } else {
  583. /* It doesn't fit in memory, create backing store. */
  584. sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
  585. jpeg_open_backing_store(cinfo, & sptr->b_s_info,
  586. (long) sptr->rows_in_array *
  587. (long) sptr->samplesperrow *
  588. (long) sizeof(JSAMPLE));
  589. sptr->b_s_open = TRUE;
  590. }
  591. sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
  592. sptr->samplesperrow, sptr->rows_in_mem);
  593. sptr->rowsperchunk = mem->last_rowsperchunk;
  594. sptr->cur_start_row = 0;
  595. sptr->first_undef_row = 0;
  596. sptr->dirty = FALSE;
  597. }
  598. }
  599. for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
  600. if (bptr->mem_buffer == NULL) { /* if not realized yet */
  601. minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
  602. if (minheights <= max_minheights) {
  603. /* This buffer fits in memory */
  604. bptr->rows_in_mem = bptr->rows_in_array;
  605. } else {
  606. /* It doesn't fit in memory, create backing store. */
  607. bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
  608. jpeg_open_backing_store(cinfo, & bptr->b_s_info,
  609. (long) bptr->rows_in_array *
  610. (long) bptr->blocksperrow *
  611. (long) sizeof(JBLOCK));
  612. bptr->b_s_open = TRUE;
  613. }
  614. bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
  615. bptr->blocksperrow, bptr->rows_in_mem);
  616. bptr->rowsperchunk = mem->last_rowsperchunk;
  617. bptr->cur_start_row = 0;
  618. bptr->first_undef_row = 0;
  619. bptr->dirty = FALSE;
  620. }
  621. }
  622. }
  623. LOCAL(void)
  624. do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
  625. /* Do backing store read or write of a virtual sample array */
  626. {
  627. long bytesperrow, file_offset, byte_count, rows, thisrow, i;
  628. bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE);
  629. file_offset = ptr->cur_start_row * bytesperrow;
  630. /* Loop to read or write each allocation chunk in mem_buffer */
  631. for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
  632. /* One chunk, but check for short chunk at end of buffer */
  633. rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
  634. /* Transfer no more than is currently defined */
  635. thisrow = (long) ptr->cur_start_row + i;
  636. rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
  637. /* Transfer no more than fits in file */
  638. rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
  639. if (rows <= 0) /* this chunk might be past end of file! */
  640. break;
  641. byte_count = rows * bytesperrow;
  642. if (writing)
  643. (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
  644. (void *) ptr->mem_buffer[i],
  645. file_offset, byte_count);
  646. else
  647. (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
  648. (void *) ptr->mem_buffer[i],
  649. file_offset, byte_count);
  650. file_offset += byte_count;
  651. }
  652. }
  653. LOCAL(void)
  654. do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
  655. /* Do backing store read or write of a virtual coefficient-block array */
  656. {
  657. long bytesperrow, file_offset, byte_count, rows, thisrow, i;
  658. bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK);
  659. file_offset = ptr->cur_start_row * bytesperrow;
  660. /* Loop to read or write each allocation chunk in mem_buffer */
  661. for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
  662. /* One chunk, but check for short chunk at end of buffer */
  663. rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
  664. /* Transfer no more than is currently defined */
  665. thisrow = (long) ptr->cur_start_row + i;
  666. rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
  667. /* Transfer no more than fits in file */
  668. rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
  669. if (rows <= 0) /* this chunk might be past end of file! */
  670. break;
  671. byte_count = rows * bytesperrow;
  672. if (writing)
  673. (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
  674. (void *) ptr->mem_buffer[i],
  675. file_offset, byte_count);
  676. else
  677. (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
  678. (void *) ptr->mem_buffer[i],
  679. file_offset, byte_count);
  680. file_offset += byte_count;
  681. }
  682. }
  683. METHODDEF(JSAMPARRAY)
  684. access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
  685. JDIMENSION start_row, JDIMENSION num_rows,
  686. boolean writable)
  687. /* Access the part of a virtual sample array starting at start_row */
  688. /* and extending for num_rows rows. writable is true if */
  689. /* caller intends to modify the accessed area. */
  690. {
  691. JDIMENSION end_row = start_row + num_rows;
  692. JDIMENSION undef_row;
  693. /* debugging check */
  694. if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
  695. ptr->mem_buffer == NULL)
  696. ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  697. /* Make the desired part of the virtual array accessible */
  698. if (start_row < ptr->cur_start_row ||
  699. end_row > ptr->cur_start_row+ptr->rows_in_mem) {
  700. if (! ptr->b_s_open)
  701. ERREXIT(cinfo, JERR_VIRTUAL_BUG);
  702. /* Flush old buffer contents if necessary */
  703. if (ptr->dirty) {
  704. do_sarray_io(cinfo, ptr, TRUE);
  705. ptr->dirty = FALSE;
  706. }
  707. /* Decide what part of virtual array to access.
  708. * Algorithm: if target address > current window, assume forward scan,
  709. * load starting at target address. If target address < current window,
  710. * assume backward scan, load so that target area is top of window.
  711. * Note that when switching from forward write to forward read, will have
  712. * start_row = 0, so the limiting case applies and we load from 0 anyway.
  713. */
  714. if (start_row > ptr->cur_start_row) {
  715. ptr->cur_start_row = start_row;
  716. } else {
  717. /* use long arithmetic here to avoid overflow & unsigned problems */
  718. long ltemp;
  719. ltemp = (long) end_row - (long) ptr->rows_in_mem;
  720. if (ltemp < 0)
  721. ltemp = 0; /* don't fall off front end of file */
  722. ptr->cur_start_row = (JDIMENSION) ltemp;
  723. }
  724. /* Read in the selected part of the array.
  725. * During the initial write pass, we will do no actual read
  726. * because the selected part is all undefined.
  727. */
  728. do_sarray_io(cinfo, ptr, FALSE);
  729. }
  730. /* Ensure the accessed part of the array is defined; prezero if needed.
  731. * To improve locality of access, we only prezero the part of the array
  732. * that the caller is about to access, not the entire in-memory array.
  733. */
  734. if (ptr->first_undef_row < end_row) {
  735. if (ptr->first_undef_row < start_row) {
  736. if (writable) /* writer skipped over a section of array */
  737. ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  738. undef_row = start_row; /* but reader is allowed to read ahead */
  739. } else {
  740. undef_row = ptr->first_undef_row;
  741. }
  742. if (writable)
  743. ptr->first_undef_row = end_row;
  744. if (ptr->pre_zero) {
  745. size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE);
  746. undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
  747. end_row -= ptr->cur_start_row;
  748. while (undef_row < end_row) {
  749. jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
  750. undef_row++;
  751. }
  752. } else {
  753. if (! writable) /* reader looking at undefined data */
  754. ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  755. }
  756. }
  757. /* Flag the buffer dirty if caller will write in it */
  758. if (writable)
  759. ptr->dirty = TRUE;
  760. /* Return address of proper part of the buffer */
  761. return ptr->mem_buffer + (start_row - ptr->cur_start_row);
  762. }
  763. METHODDEF(JBLOCKARRAY)
  764. access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
  765. JDIMENSION start_row, JDIMENSION num_rows,
  766. boolean writable)
  767. /* Access the part of a virtual block array starting at start_row */
  768. /* and extending for num_rows rows. writable is true if */
  769. /* caller intends to modify the accessed area. */
  770. {
  771. JDIMENSION end_row = start_row + num_rows;
  772. JDIMENSION undef_row;
  773. /* debugging check */
  774. if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
  775. ptr->mem_buffer == NULL)
  776. ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  777. /* Make the desired part of the virtual array accessible */
  778. if (start_row < ptr->cur_start_row ||
  779. end_row > ptr->cur_start_row+ptr->rows_in_mem) {
  780. if (! ptr->b_s_open)
  781. ERREXIT(cinfo, JERR_VIRTUAL_BUG);
  782. /* Flush old buffer contents if necessary */
  783. if (ptr->dirty) {
  784. do_barray_io(cinfo, ptr, TRUE);
  785. ptr->dirty = FALSE;
  786. }
  787. /* Decide what part of virtual array to access.
  788. * Algorithm: if target address > current window, assume forward scan,
  789. * load starting at target address. If target address < current window,
  790. * assume backward scan, load so that target area is top of window.
  791. * Note that when switching from forward write to forward read, will have
  792. * start_row = 0, so the limiting case applies and we load from 0 anyway.
  793. */
  794. if (start_row > ptr->cur_start_row) {
  795. ptr->cur_start_row = start_row;
  796. } else {
  797. /* use long arithmetic here to avoid overflow & unsigned problems */
  798. long ltemp;
  799. ltemp = (long) end_row - (long) ptr->rows_in_mem;
  800. if (ltemp < 0)
  801. ltemp = 0; /* don't fall off front end of file */
  802. ptr->cur_start_row = (JDIMENSION) ltemp;
  803. }
  804. /* Read in the selected part of the array.
  805. * During the initial write pass, we will do no actual read
  806. * because the selected part is all undefined.
  807. */
  808. do_barray_io(cinfo, ptr, FALSE);
  809. }
  810. /* Ensure the accessed part of the array is defined; prezero if needed.
  811. * To improve locality of access, we only prezero the part of the array
  812. * that the caller is about to access, not the entire in-memory array.
  813. */
  814. if (ptr->first_undef_row < end_row) {
  815. if (ptr->first_undef_row < start_row) {
  816. if (writable) /* writer skipped over a section of array */
  817. ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  818. undef_row = start_row; /* but reader is allowed to read ahead */
  819. } else {
  820. undef_row = ptr->first_undef_row;
  821. }
  822. if (writable)
  823. ptr->first_undef_row = end_row;
  824. if (ptr->pre_zero) {
  825. size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK);
  826. undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
  827. end_row -= ptr->cur_start_row;
  828. while (undef_row < end_row) {
  829. jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
  830. undef_row++;
  831. }
  832. } else {
  833. if (! writable) /* reader looking at undefined data */
  834. ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
  835. }
  836. }
  837. /* Flag the buffer dirty if caller will write in it */
  838. if (writable)
  839. ptr->dirty = TRUE;
  840. /* Return address of proper part of the buffer */
  841. return ptr->mem_buffer + (start_row - ptr->cur_start_row);
  842. }
  843. /*
  844. * Release all objects belonging to a specified pool.
  845. */
  846. METHODDEF(void)
  847. free_pool (j_common_ptr cinfo, int pool_id)
  848. {
  849. my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  850. small_pool_ptr shdr_ptr;
  851. large_pool_ptr lhdr_ptr;
  852. size_t space_freed;
  853. if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
  854. ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
  855. #ifdef MEM_STATS
  856. if (cinfo->err->trace_level > 1)
  857. print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
  858. #endif
  859. /* If freeing IMAGE pool, close any virtual arrays first */
  860. if (pool_id == JPOOL_IMAGE) {
  861. jvirt_sarray_ptr sptr;
  862. jvirt_barray_ptr bptr;
  863. for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
  864. if (sptr->b_s_open) { /* there may be no backing store */
  865. sptr->b_s_open = FALSE; /* prevent recursive close if error */
  866. (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
  867. }
  868. }
  869. mem->virt_sarray_list = NULL;
  870. for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
  871. if (bptr->b_s_open) { /* there may be no backing store */
  872. bptr->b_s_open = FALSE; /* prevent recursive close if error */
  873. (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
  874. }
  875. }
  876. mem->virt_barray_list = NULL;
  877. }
  878. /* Release large objects */
  879. lhdr_ptr = mem->large_list[pool_id];
  880. mem->large_list[pool_id] = NULL;
  881. while (lhdr_ptr != NULL) {
  882. large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
  883. space_freed = lhdr_ptr->bytes_used +
  884. lhdr_ptr->bytes_left +
  885. sizeof(large_pool_hdr);
  886. jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed);
  887. mem->total_space_allocated -= space_freed;
  888. lhdr_ptr = next_lhdr_ptr;
  889. }
  890. /* Release small objects */
  891. shdr_ptr = mem->small_list[pool_id];
  892. mem->small_list[pool_id] = NULL;
  893. while (shdr_ptr != NULL) {
  894. small_pool_ptr next_shdr_ptr = shdr_ptr->next;
  895. space_freed = shdr_ptr->bytes_used +
  896. shdr_ptr->bytes_left +
  897. sizeof(small_pool_hdr);
  898. jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
  899. mem->total_space_allocated -= space_freed;
  900. shdr_ptr = next_shdr_ptr;
  901. }
  902. }
  903. /*
  904. * Close up shop entirely.
  905. * Note that this cannot be called unless cinfo->mem is non-NULL.
  906. */
  907. METHODDEF(void)
  908. self_destruct (j_common_ptr cinfo)
  909. {
  910. int pool;
  911. /* Close all backing store, release all memory.
  912. * Releasing pools in reverse order might help avoid fragmentation
  913. * with some (brain-damaged) malloc libraries.
  914. */
  915. for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
  916. free_pool(cinfo, pool);
  917. }
  918. /* Release the memory manager control block too. */
  919. jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr));
  920. cinfo->mem = NULL; /* ensures I will be called only once */
  921. jpeg_mem_term(cinfo); /* system-dependent cleanup */
  922. }
  923. /*
  924. * Memory manager initialization.
  925. * When this is called, only the error manager pointer is valid in cinfo!
  926. */
  927. GLOBAL(void)
  928. jinit_memory_mgr (j_common_ptr cinfo)
  929. {
  930. my_mem_ptr mem;
  931. long max_to_use;
  932. int pool;
  933. size_t test_mac;
  934. cinfo->mem = NULL; /* for safety if init fails */
  935. /* Check for configuration errors.
  936. * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
  937. * doesn't reflect any real hardware alignment requirement.
  938. * The test is a little tricky: for X>0, X and X-1 have no one-bits
  939. * in common if and only if X is a power of 2, ie has only one one-bit.
  940. * Some compilers may give an "unreachable code" warning here; ignore it.
  941. */
  942. if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
  943. ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
  944. /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
  945. * a multiple of ALIGN_SIZE.
  946. * Again, an "unreachable code" warning may be ignored here.
  947. * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
  948. */
  949. test_mac = (size_t) MAX_ALLOC_CHUNK;
  950. if ((long) test_mac != MAX_ALLOC_CHUNK ||
  951. (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
  952. ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
  953. max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
  954. /* Attempt to allocate memory manager's control block */
  955. mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr));
  956. if (mem == NULL) {
  957. jpeg_mem_term(cinfo); /* system-dependent cleanup */
  958. ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
  959. }
  960. /* OK, fill in the method pointers */
  961. mem->pub.alloc_small = alloc_small;
  962. mem->pub.alloc_large = alloc_large;
  963. mem->pub.alloc_sarray = alloc_sarray;
  964. mem->pub.alloc_barray = alloc_barray;
  965. mem->pub.request_virt_sarray = request_virt_sarray;
  966. mem->pub.request_virt_barray = request_virt_barray;
  967. mem->pub.realize_virt_arrays = realize_virt_arrays;
  968. mem->pub.access_virt_sarray = access_virt_sarray;
  969. mem->pub.access_virt_barray = access_virt_barray;
  970. mem->pub.free_pool = free_pool;
  971. mem->pub.self_destruct = self_destruct;
  972. /* Make MAX_ALLOC_CHUNK accessible to other modules */
  973. mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
  974. /* Initialize working state */
  975. mem->pub.max_memory_to_use = max_to_use;
  976. for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
  977. mem->small_list[pool] = NULL;
  978. mem->large_list[pool] = NULL;
  979. }
  980. mem->virt_sarray_list = NULL;
  981. mem->virt_barray_list = NULL;
  982. mem->total_space_allocated = sizeof(my_memory_mgr);
  983. /* Declare ourselves open for business */
  984. cinfo->mem = & mem->pub;
  985. /* Check for an environment variable JPEGMEM; if found, override the
  986. * default max_memory setting from jpeg_mem_init. Note that the
  987. * surrounding application may again override this value.
  988. * If your system doesn't support getenv(), define NO_GETENV to disable
  989. * this feature.
  990. */
  991. #ifndef NO_GETENV
  992. { char * memenv;
  993. if ((memenv = getenv("JPEGMEM")) != NULL) {
  994. char ch = 'x';
  995. if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
  996. if (ch == 'm' || ch == 'M')
  997. max_to_use *= 1000L;
  998. mem->pub.max_memory_to_use = max_to_use * 1000L;
  999. }
  1000. }
  1001. }
  1002. #endif
  1003. }