jidctflt.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. /*
  2. * jidctflt.c
  3. *
  4. * This file was part of the Independent JPEG Group's software:
  5. * Copyright (C) 1994-1998, Thomas G. Lane.
  6. * Modified 2010 by Guido Vollbeding.
  7. * libjpeg-turbo Modifications:
  8. * Copyright (C) 2014, D. R. Commander.
  9. * For conditions of distribution and use, see the accompanying README file.
  10. *
  11. * This file contains a floating-point implementation of the
  12. * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
  13. * must also perform dequantization of the input coefficients.
  14. *
  15. * This implementation should be more accurate than either of the integer
  16. * IDCT implementations. However, it may not give the same results on all
  17. * machines because of differences in roundoff behavior. Speed will depend
  18. * on the hardware's floating point capacity.
  19. *
  20. * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
  21. * on each row (or vice versa, but it's more convenient to emit a row at
  22. * a time). Direct algorithms are also available, but they are much more
  23. * complex and seem not to be any faster when reduced to code.
  24. *
  25. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  26. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  27. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  28. * JPEG textbook (see REFERENCES section in file README). The following code
  29. * is based directly on figure 4-8 in P&M.
  30. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  31. * possible to arrange the computation so that many of the multiplies are
  32. * simple scalings of the final outputs. These multiplies can then be
  33. * folded into the multiplications or divisions by the JPEG quantization
  34. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  35. * to be done in the DCT itself.
  36. * The primary disadvantage of this method is that with a fixed-point
  37. * implementation, accuracy is lost due to imprecise representation of the
  38. * scaled quantization values. However, that problem does not arise if
  39. * we use floating point arithmetic.
  40. */
  41. #define JPEG_INTERNALS
  42. #include "jinclude.h"
  43. #include "jpeglib.h"
  44. #include "jdct.h" /* Private declarations for DCT subsystem */
  45. #ifdef DCT_FLOAT_SUPPORTED
  46. /*
  47. * This module is specialized to the case DCTSIZE = 8.
  48. */
  49. #if DCTSIZE != 8
  50. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  51. #endif
  52. /* Dequantize a coefficient by multiplying it by the multiplier-table
  53. * entry; produce a float result.
  54. */
  55. #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
  56. /*
  57. * Perform dequantization and inverse DCT on one block of coefficients.
  58. */
  59. GLOBAL(void)
  60. jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
  61. JCOEFPTR coef_block,
  62. JSAMPARRAY output_buf, JDIMENSION output_col)
  63. {
  64. FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  65. FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  66. FAST_FLOAT z5, z10, z11, z12, z13;
  67. JCOEFPTR inptr;
  68. FLOAT_MULT_TYPE * quantptr;
  69. FAST_FLOAT * wsptr;
  70. JSAMPROW outptr;
  71. JSAMPLE *range_limit = cinfo->sample_range_limit;
  72. int ctr;
  73. FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
  74. #define _0_125 ((FLOAT_MULT_TYPE)0.125)
  75. /* Pass 1: process columns from input, store into work array. */
  76. inptr = coef_block;
  77. quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
  78. wsptr = workspace;
  79. for (ctr = DCTSIZE; ctr > 0; ctr--) {
  80. /* Due to quantization, we will usually find that many of the input
  81. * coefficients are zero, especially the AC terms. We can exploit this
  82. * by short-circuiting the IDCT calculation for any column in which all
  83. * the AC terms are zero. In that case each output is equal to the
  84. * DC coefficient (with scale factor as needed).
  85. * With typical images and quantization tables, half or more of the
  86. * column DCT calculations can be simplified this way.
  87. */
  88. if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
  89. inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
  90. inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
  91. inptr[DCTSIZE*7] == 0) {
  92. /* AC terms all zero */
  93. FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0],
  94. quantptr[DCTSIZE*0] * _0_125);
  95. wsptr[DCTSIZE*0] = dcval;
  96. wsptr[DCTSIZE*1] = dcval;
  97. wsptr[DCTSIZE*2] = dcval;
  98. wsptr[DCTSIZE*3] = dcval;
  99. wsptr[DCTSIZE*4] = dcval;
  100. wsptr[DCTSIZE*5] = dcval;
  101. wsptr[DCTSIZE*6] = dcval;
  102. wsptr[DCTSIZE*7] = dcval;
  103. inptr++; /* advance pointers to next column */
  104. quantptr++;
  105. wsptr++;
  106. continue;
  107. }
  108. /* Even part */
  109. tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125);
  110. tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125);
  111. tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125);
  112. tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125);
  113. tmp10 = tmp0 + tmp2; /* phase 3 */
  114. tmp11 = tmp0 - tmp2;
  115. tmp13 = tmp1 + tmp3; /* phases 5-3 */
  116. tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
  117. tmp0 = tmp10 + tmp13; /* phase 2 */
  118. tmp3 = tmp10 - tmp13;
  119. tmp1 = tmp11 + tmp12;
  120. tmp2 = tmp11 - tmp12;
  121. /* Odd part */
  122. tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125);
  123. tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125);
  124. tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125);
  125. tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125);
  126. z13 = tmp6 + tmp5; /* phase 6 */
  127. z10 = tmp6 - tmp5;
  128. z11 = tmp4 + tmp7;
  129. z12 = tmp4 - tmp7;
  130. tmp7 = z11 + z13; /* phase 5 */
  131. tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
  132. z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
  133. tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
  134. tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
  135. tmp6 = tmp12 - tmp7; /* phase 2 */
  136. tmp5 = tmp11 - tmp6;
  137. tmp4 = tmp10 - tmp5;
  138. wsptr[DCTSIZE*0] = tmp0 + tmp7;
  139. wsptr[DCTSIZE*7] = tmp0 - tmp7;
  140. wsptr[DCTSIZE*1] = tmp1 + tmp6;
  141. wsptr[DCTSIZE*6] = tmp1 - tmp6;
  142. wsptr[DCTSIZE*2] = tmp2 + tmp5;
  143. wsptr[DCTSIZE*5] = tmp2 - tmp5;
  144. wsptr[DCTSIZE*3] = tmp3 + tmp4;
  145. wsptr[DCTSIZE*4] = tmp3 - tmp4;
  146. inptr++; /* advance pointers to next column */
  147. quantptr++;
  148. wsptr++;
  149. }
  150. /* Pass 2: process rows from work array, store into output array. */
  151. wsptr = workspace;
  152. for (ctr = 0; ctr < DCTSIZE; ctr++) {
  153. outptr = output_buf[ctr] + output_col;
  154. /* Rows of zeroes can be exploited in the same way as we did with columns.
  155. * However, the column calculation has created many nonzero AC terms, so
  156. * the simplification applies less often (typically 5% to 10% of the time).
  157. * And testing floats for zero is relatively expensive, so we don't bother.
  158. */
  159. /* Even part */
  160. /* Apply signed->unsigned and prepare float->int conversion */
  161. z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
  162. tmp10 = z5 + wsptr[4];
  163. tmp11 = z5 - wsptr[4];
  164. tmp13 = wsptr[2] + wsptr[6];
  165. tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
  166. tmp0 = tmp10 + tmp13;
  167. tmp3 = tmp10 - tmp13;
  168. tmp1 = tmp11 + tmp12;
  169. tmp2 = tmp11 - tmp12;
  170. /* Odd part */
  171. z13 = wsptr[5] + wsptr[3];
  172. z10 = wsptr[5] - wsptr[3];
  173. z11 = wsptr[1] + wsptr[7];
  174. z12 = wsptr[1] - wsptr[7];
  175. tmp7 = z11 + z13;
  176. tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
  177. z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
  178. tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
  179. tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
  180. tmp6 = tmp12 - tmp7;
  181. tmp5 = tmp11 - tmp6;
  182. tmp4 = tmp10 - tmp5;
  183. /* Final output stage: float->int conversion and range-limit */
  184. outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
  185. outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
  186. outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
  187. outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
  188. outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
  189. outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
  190. outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
  191. outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
  192. wsptr += DCTSIZE; /* advance pointer to next row */
  193. }
  194. }
  195. #endif /* DCT_FLOAT_SUPPORTED */