瀏覽代碼

[typer] start on splitting up type.ml

Simon Krajewski 6 年之前
父節點
當前提交
8302f5d1d2
共有 9 個文件被更改,包括 3189 次插入3161 次删除
  1. 4 1
      src/core/abstract.ml
  2. 7 3
      src/core/error.ml
  3. 733 0
      src/core/tFunctions.ml
  4. 322 0
      src/core/tOther.ml
  5. 643 0
      src/core/tPrinting.ml
  6. 371 0
      src/core/tType.ml
  7. 852 0
      src/core/tUnification.ml
  8. 251 4
      src/core/texpr.ml
  9. 6 3153
      src/core/type.ml

+ 4 - 1
src/core/abstract.ml

@@ -1,5 +1,8 @@
 open Meta
-open Type
+open TType
+open TFunctions
+open TPrinting
+open TUnification
 open Error
 
 let build_abstract a = match a.a_impl with

+ 7 - 3
src/core/error.ml

@@ -1,5 +1,9 @@
 open Globals
-open Type
+open TType
+open TUnification
+open TFunctions
+open TPrinting
+open TOther
 
 type call_error =
 	| Not_enough_arguments of (string * bool * t) list
@@ -85,8 +89,8 @@ module BetterErrors = struct
 
 	type access = {
 		acc_kind : access_kind;
-		mutable acc_expected : Type.t;
-		mutable acc_actual : Type.t;
+		mutable acc_expected : TType.t;
+		mutable acc_actual : TType.t;
 		mutable acc_messages : unify_error list;
 		mutable acc_next : access option;
 	}

+ 733 - 0
src/core/tFunctions.ml

@@ -0,0 +1,733 @@
+open Globals
+open Ast
+open TType
+
+let monomorph_create_ref : (unit -> tmono) ref = ref (fun _ -> assert false)
+let monomorph_bind_ref : (tmono -> t -> unit) ref = ref (fun _ _ -> assert false)
+
+(* Flags *)
+
+let has_flag flags flag =
+	flags land (1 lsl flag) > 0
+
+let set_flag flags flag =
+	flags lor (1 lsl flag)
+
+let unset_flag flags flag =
+	flags land (lnot (1 lsl flag))
+
+let int_of_class_field_flag (flag : flag_tclass_field) =
+	Obj.magic flag
+
+let add_class_field_flag cf (flag : flag_tclass_field) =
+	cf.cf_flags <- set_flag cf.cf_flags (int_of_class_field_flag flag)
+
+let remove_class_field_flag cf (flag : flag_tclass_field) =
+	cf.cf_flags <- unset_flag cf.cf_flags (int_of_class_field_flag flag)
+
+let has_class_field_flag cf (flag : flag_tclass_field) =
+	has_flag cf.cf_flags (int_of_class_field_flag flag)
+
+(* ======= General utility ======= *)
+
+let alloc_var =
+	let uid = ref 0 in
+	(fun kind n t p ->
+		incr uid;
+		{
+			v_kind = kind;
+			v_name = n;
+			v_type = t;
+			v_id = !uid;
+			v_capture = false;
+			v_final = (match kind with VUser TVOLocalFunction -> true | _ -> false);
+			v_extra = None;
+			v_meta = [];
+			v_pos = p
+		}
+	)
+
+let alloc_mid =
+	let mid = ref 0 in
+	(fun() -> incr mid; !mid)
+
+let mk e t p = { eexpr = e; etype = t; epos = p }
+
+let mk_block e =
+	match e.eexpr with
+	| TBlock _ -> e
+	| _ -> mk (TBlock [e]) e.etype e.epos
+
+let mk_cast e t p = mk (TCast(e,None)) t p
+
+let null t p = mk (TConst TNull) t p
+
+let mk_mono() = TMono (!monomorph_create_ref ())
+
+let rec t_dynamic = TDynamic t_dynamic
+
+let mk_anon fl = TAnon { a_fields = fl; a_status = ref Closed; }
+
+(* We use this for display purposes because otherwise we never see the Dynamic type that
+   is defined in StdTypes.hx. This is set each time a typer is created, but this is fine
+   because Dynamic is the same in all contexts. If this ever changes we'll have to review
+   how we handle this. *)
+let t_dynamic_def = ref t_dynamic
+
+let tfun pl r = TFun (List.map (fun t -> "",false,t) pl,r)
+
+let fun_args l = List.map (fun (a,c,t) -> a, c <> None, t) l
+
+let mk_class m path pos name_pos =
+	{
+		cl_path = path;
+		cl_module = m;
+		cl_pos = pos;
+		cl_name_pos = name_pos;
+		cl_doc = None;
+		cl_meta = [];
+		cl_private = false;
+		cl_kind = KNormal;
+		cl_extern = false;
+		cl_final = false;
+		cl_interface = false;
+		cl_params = [];
+		cl_using = [];
+		cl_super = None;
+		cl_implements = [];
+		cl_fields = PMap.empty;
+		cl_ordered_statics = [];
+		cl_ordered_fields = [];
+		cl_statics = PMap.empty;
+		cl_dynamic = None;
+		cl_array_access = None;
+		cl_constructor = None;
+		cl_init = None;
+		cl_overrides = [];
+		cl_build = (fun() -> Built);
+		cl_restore = (fun() -> ());
+		cl_descendants = [];
+	}
+
+let module_extra file sign time kind policy =
+	{
+		m_file = file;
+		m_sign = sign;
+		m_display = {
+			m_inline_calls = [];
+			m_type_hints = [];
+		};
+		m_dirty = None;
+		m_added = 0;
+		m_mark = 0;
+		m_time = time;
+		m_processed = 0;
+		m_deps = PMap.empty;
+		m_kind = kind;
+		m_binded_res = PMap.empty;
+		m_if_feature = [];
+		m_features = Hashtbl.create 0;
+		m_check_policy = policy;
+	}
+
+
+let mk_field name ?(public = true) t p name_pos = {
+	cf_name = name;
+	cf_type = t;
+	cf_pos = p;
+	cf_name_pos = name_pos;
+	cf_doc = None;
+	cf_meta = [];
+	cf_kind = Var { v_read = AccNormal; v_write = AccNormal };
+	cf_expr = None;
+	cf_expr_unoptimized = None;
+	cf_params = [];
+	cf_overloads = [];
+	cf_flags = if public then set_flag 0 (int_of_class_field_flag CfPublic) else 0;
+}
+
+let null_module = {
+		m_id = alloc_mid();
+		m_path = [] , "";
+		m_types = [];
+		m_extra = module_extra "" "" 0. MFake [];
+	}
+
+let null_class =
+	let c = mk_class null_module ([],"") null_pos null_pos in
+	c.cl_private <- true;
+	c
+
+let null_field = mk_field "" t_dynamic null_pos null_pos
+
+let null_abstract = {
+	a_path = ([],"");
+	a_module = null_module;
+	a_pos = null_pos;
+	a_name_pos = null_pos;
+	a_private = true;
+	a_doc = None;
+	a_meta = [];
+	a_params = [];
+	a_using = [];
+	a_ops = [];
+	a_unops = [];
+	a_impl = None;
+	a_this = t_dynamic;
+	a_from = [];
+	a_from_field = [];
+	a_to = [];
+	a_to_field = [];
+	a_array = [];
+	a_read = None;
+	a_write = None;
+}
+
+let add_dependency m mdep =
+	if m != null_module && m != mdep then m.m_extra.m_deps <- PMap.add mdep.m_id mdep m.m_extra.m_deps
+
+let arg_name (a,_) = a.v_name
+
+let t_infos t : tinfos =
+	match t with
+	| TClassDecl c -> Obj.magic c
+	| TEnumDecl e -> Obj.magic e
+	| TTypeDecl t -> Obj.magic t
+	| TAbstractDecl a -> Obj.magic a
+
+let t_path t = (t_infos t).mt_path
+
+let rec is_parent csup c =
+	if c == csup || List.exists (fun (i,_) -> is_parent csup i) c.cl_implements then
+		true
+	else match c.cl_super with
+		| None -> false
+		| Some (c,_) -> is_parent csup c
+
+let add_descendant c descendant =
+	c.cl_descendants <- descendant :: c.cl_descendants
+
+let lazy_type f =
+	match !f with
+	| LAvailable t -> t
+	| LProcessing f | LWait f -> f()
+
+let lazy_available t = LAvailable t
+let lazy_processing f = LProcessing f
+let lazy_wait f = LWait f
+
+let map loop t =
+	match t with
+	| TMono r ->
+		(match r.tm_type with
+		| None -> t
+		| Some t -> loop t) (* erase*)
+	| TEnum (_,[]) | TInst (_,[]) | TType (_,[]) ->
+		t
+	| TEnum (e,tl) ->
+		TEnum (e, List.map loop tl)
+	| TInst (c,tl) ->
+		TInst (c, List.map loop tl)
+	| TType (t2,tl) ->
+		TType (t2,List.map loop tl)
+	| TAbstract (a,tl) ->
+		TAbstract (a,List.map loop tl)
+	| TFun (tl,r) ->
+		TFun (List.map (fun (s,o,t) -> s, o, loop t) tl,loop r)
+	| TAnon a ->
+		let fields = PMap.map (fun f -> { f with cf_type = loop f.cf_type }) a.a_fields in
+		begin match !(a.a_status) with
+			| Opened ->
+				a.a_fields <- fields;
+				t
+			| _ ->
+				TAnon {
+					a_fields = fields;
+					a_status = a.a_status;
+				}
+		end
+	| TLazy f ->
+		let ft = lazy_type f in
+		let ft2 = loop ft in
+		if ft == ft2 then t else ft2
+	| TDynamic t2 ->
+		if t == t2 then	t else TDynamic (loop t2)
+
+let duplicate t =
+	let monos = ref [] in
+	let rec loop t =
+		match t with
+		| TMono { tm_type = None } ->
+			(try
+				List.assq t !monos
+			with Not_found ->
+				let m = mk_mono() in
+				monos := (t,m) :: !monos;
+				m)
+		| _ ->
+			map loop t
+	in
+	loop t
+
+exception ApplyParamsRecursion
+
+(* substitute parameters with other types *)
+let apply_params ?stack cparams params t =
+	match cparams with
+	| [] -> t
+	| _ ->
+	let rec loop l1 l2 =
+		match l1, l2 with
+		| [] , [] -> []
+		| (x,TLazy f) :: l1, _ -> loop ((x,lazy_type f) :: l1) l2
+		| (_,t1) :: l1 , t2 :: l2 -> (t1,t2) :: loop l1 l2
+		| _ -> assert false
+	in
+	let subst = loop cparams params in
+	let rec loop t =
+		try
+			List.assq t subst
+		with Not_found ->
+		match t with
+		| TMono r ->
+			(match r.tm_type with
+			| None -> t
+			| Some t -> loop t)
+		| TEnum (e,tl) ->
+			(match tl with
+			| [] -> t
+			| _ -> TEnum (e,List.map loop tl))
+		| TType (t2,tl) ->
+			(match tl with
+			| [] -> t
+			| _ ->
+				let new_applied_params = List.map loop tl in
+				(match stack with
+				| None -> ()
+				| Some stack ->
+					List.iter (fun (subject, old_applied_params) ->
+						(*
+							E.g.:
+							```
+							typedef Rec<T> = { function method():Rec<Array<T>> }
+							```
+							We need to make sure that we are not applying the result of previous
+							application to the same place, which would mean the result of current
+							application would go into `apply_params` again and then again and so on.
+
+							Argument `stack` holds all previous results of `apply_params` to typedefs in current
+							unification process.
+
+							Imagine we are trying to unify `Rec<Int>` with something.
+
+							Once `apply_params Array<T> Int Rec<Array<T>>` is called for the first time the result
+							will be `Rec< Array<Int> >`. Store `Array<Int>` into `stack`
+
+							Then the next params application looks like this:
+								`apply_params Array<T> Array<Int> Rec<Array<T>>`
+							Notice the second argument is actually the result of a previous `apply_params` call.
+							And the result of the current call is `Rec< Array<Array<Int>> >`.
+
+							The third call would be:
+								`apply_params Array<T> Array<Array<Int>> Rec<Array<T>>`
+							and so on.
+
+							To stop infinite params application we need to check that we are trying to apply params
+							produced by the previous `apply_params Array<Int> _ Rec<Array<T>>` to the same `Rec<Array<T>>`
+						*)
+						if
+							subject == t (* Check the place that we're applying to is the same `Rec<Array<T>>` *)
+							&& old_applied_params == params (* Check that params we're applying are the same params
+																produced by the previous call to
+																`apply_params Array<T> _ Rec<Array<T>>` *)
+						then
+							raise ApplyParamsRecursion
+					) !stack;
+					stack := (t, new_applied_params) :: !stack;
+				);
+				TType (t2,new_applied_params))
+		| TAbstract (a,tl) ->
+			(match tl with
+			| [] -> t
+			| _ -> TAbstract (a,List.map loop tl))
+		| TInst (c,tl) ->
+			(match tl with
+			| [] ->
+				t
+			| [TMono r] ->
+				(match r.tm_type with
+				| Some tt when t == tt ->
+					(* for dynamic *)
+					let pt = mk_mono() in
+					let t = TInst (c,[pt]) in
+					(match pt with TMono r -> !monomorph_bind_ref r t | _ -> assert false);
+					t
+				| _ -> TInst (c,List.map loop tl))
+			| _ ->
+				TInst (c,List.map loop tl))
+		| TFun (tl,r) ->
+			TFun (List.map (fun (s,o,t) -> s, o, loop t) tl,loop r)
+		| TAnon a ->
+			let fields = PMap.map (fun f -> { f with cf_type = loop f.cf_type }) a.a_fields in
+			begin match !(a.a_status) with
+				| Opened ->
+					a.a_fields <- fields;
+					t
+				| _ ->
+					TAnon {
+						a_fields = fields;
+						a_status = a.a_status;
+					}
+			end
+		| TLazy f ->
+			let ft = lazy_type f in
+			let ft2 = loop ft in
+			if ft == ft2 then
+				t
+			else
+				ft2
+		| TDynamic t2 ->
+			if t == t2 then
+				t
+			else
+				TDynamic (loop t2)
+	in
+	loop t
+
+let monomorphs eparams t =
+	apply_params eparams (List.map (fun _ -> mk_mono()) eparams) t
+
+let apply_params_stack = ref []
+
+let try_apply_params_rec cparams params t success =
+	let old_stack = !apply_params_stack in
+	try
+		let result = success (apply_params ~stack:apply_params_stack cparams params t) in
+		apply_params_stack := old_stack;
+		result
+	with
+		| ApplyParamsRecursion ->
+			apply_params_stack := old_stack;
+		| err ->
+			apply_params_stack := old_stack;
+			raise err
+
+let rec follow t =
+	match t with
+	| TMono r ->
+		(match r.tm_type with
+		| Some t -> follow t
+		| _ -> t)
+	| TLazy f ->
+		follow (lazy_type f)
+	| TType (t,tl) ->
+		follow (apply_params t.t_params tl t.t_type)
+	| TAbstract({a_path = [],"Null"},[t]) ->
+		follow t
+	| _ -> t
+
+let follow_once t =
+	match t with
+	| TMono r ->
+		(match r.tm_type with
+		| None -> t
+		| Some t -> t)
+	| TAbstract _ | TEnum _ | TInst _ | TFun _ | TAnon _ | TDynamic _ ->
+		t
+	| TType (t,tl) ->
+		apply_params t.t_params tl t.t_type
+	| TLazy f ->
+		lazy_type f
+
+let rec follow_without_null t =
+	match t with
+	| TMono r ->
+		(match r.tm_type with
+		| Some t -> follow_without_null t
+		| _ -> t)
+	| TLazy f ->
+		follow_without_null (lazy_type f)
+	| TType (t,tl) ->
+		follow_without_null (apply_params t.t_params tl t.t_type)
+	| _ -> t
+
+(** Assumes `follow` has already been applied *)
+let rec ambiguate_funs t =
+	match t with
+	| TFun _ -> TFun ([], t_dynamic)
+	| TMono r ->
+		(match r.tm_type with
+		| Some _ -> assert false
+		| _ -> t)
+	| TInst (a, pl) ->
+	    TInst (a, List.map ambiguate_funs pl)
+	| TEnum (a, pl) ->
+	    TEnum (a, List.map ambiguate_funs pl)
+	| TAbstract (a, pl) ->
+	    TAbstract (a, List.map ambiguate_funs pl)
+	| TType (a, pl) ->
+	    TType (a, List.map ambiguate_funs pl)
+	| TDynamic _ -> t
+	| TAnon a ->
+	    TAnon { a with a_fields =
+		    PMap.map (fun af -> { af with cf_type =
+				ambiguate_funs af.cf_type }) a.a_fields }
+	| TLazy _ -> assert false
+
+let rec is_nullable = function
+	| TMono r ->
+		(match r.tm_type with None -> false | Some t -> is_nullable t)
+	| TAbstract ({ a_path = ([],"Null") },[_]) ->
+		true
+	| TLazy f ->
+		is_nullable (lazy_type f)
+	| TType (t,tl) ->
+		is_nullable (apply_params t.t_params tl t.t_type)
+	| TFun _ ->
+		false
+(*
+	Type parameters will most of the time be nullable objects, so we don't want to make it hard for users
+	to have to specify Null<T> all over the place, so while they could be a basic type, let's assume they will not.
+
+	This will still cause issues with inlining and haxe.rtti.Generic. In that case proper explicit Null<T> is required to
+	work correctly with basic types. This could still be fixed by redoing a nullability inference on the typed AST.
+
+	| TInst ({ cl_kind = KTypeParameter },_) -> false
+*)
+	| TAbstract (a,_) when Meta.has Meta.CoreType a.a_meta ->
+		not (Meta.has Meta.NotNull a.a_meta)
+	| TAbstract (a,tl) ->
+		not (Meta.has Meta.NotNull a.a_meta) && is_nullable (apply_params a.a_params tl a.a_this)
+	| _ ->
+		true
+
+let rec is_null ?(no_lazy=false) = function
+	| TMono r ->
+		(match r.tm_type with None -> false | Some t -> is_null t)
+	| TAbstract ({ a_path = ([],"Null") },[t]) ->
+		not (is_nullable (follow t))
+	| TLazy f ->
+		if no_lazy then raise Exit else is_null (lazy_type f)
+	| TType (t,tl) ->
+		is_null (apply_params t.t_params tl t.t_type)
+	| _ ->
+		false
+
+(* Determines if we have a Null<T>. Unlike is_null, this returns true even if the wrapped type is nullable itself. *)
+let rec is_explicit_null = function
+	| TMono r ->
+		(match r.tm_type with None -> false | Some t -> is_explicit_null t)
+	| TAbstract ({ a_path = ([],"Null") },[t]) ->
+		true
+	| TLazy f ->
+		is_explicit_null (lazy_type f)
+	| TType (t,tl) ->
+		is_explicit_null (apply_params t.t_params tl t.t_type)
+	| _ ->
+		false
+
+let rec has_mono t = match t with
+	| TMono r ->
+		(match r.tm_type with None -> true | Some t -> has_mono t)
+	| TInst(_,pl) | TEnum(_,pl) | TAbstract(_,pl) | TType(_,pl) ->
+		List.exists has_mono pl
+	| TDynamic _ ->
+		false
+	| TFun(args,r) ->
+		has_mono r || List.exists (fun (_,_,t) -> has_mono t) args
+	| TAnon a ->
+		PMap.fold (fun cf b -> has_mono cf.cf_type || b) a.a_fields false
+	| TLazy f ->
+		has_mono (lazy_type f)
+
+let concat e1 e2 =
+	let e = (match e1.eexpr, e2.eexpr with
+		| TBlock el1, TBlock el2 -> TBlock (el1@el2)
+		| TBlock el, _ -> TBlock (el @ [e2])
+		| _, TBlock el -> TBlock (e1 :: el)
+		| _ , _ -> TBlock [e1;e2]
+	) in
+	mk e e2.etype (punion e1.epos e2.epos)
+
+let is_closed a = !(a.a_status) <> Opened
+
+let type_of_module_type = function
+	| TClassDecl c -> TInst (c,List.map snd c.cl_params)
+	| TEnumDecl e -> TEnum (e,List.map snd e.e_params)
+	| TTypeDecl t -> TType (t,List.map snd t.t_params)
+	| TAbstractDecl a -> TAbstract (a,List.map snd a.a_params)
+
+let rec module_type_of_type = function
+	| TInst(c,_) -> TClassDecl c
+	| TEnum(en,_) -> TEnumDecl en
+	| TType(t,_) -> TTypeDecl t
+	| TAbstract(a,_) -> TAbstractDecl a
+	| TLazy f -> module_type_of_type (lazy_type f)
+	| TMono r ->
+		(match r.tm_type with
+		| Some t -> module_type_of_type t
+		| _ -> raise Exit)
+	| _ ->
+		raise Exit
+
+let tconst_to_const = function
+	| TInt i -> Int (Int32.to_string i)
+	| TFloat s -> Float s
+	| TString s -> String(s,SDoubleQuotes)
+	| TBool b -> Ident (if b then "true" else "false")
+	| TNull -> Ident "null"
+	| TThis -> Ident "this"
+	| TSuper -> Ident "super"
+
+let has_ctor_constraint c = match c.cl_kind with
+	| KTypeParameter tl ->
+		List.exists (fun t -> match follow t with
+			| TAnon a when PMap.mem "new" a.a_fields -> true
+			| TAbstract({a_path=["haxe"],"Constructible"},_) -> true
+			| _ -> false
+		) tl;
+	| _ -> false
+
+(* ======= Field utility ======= *)
+
+let field_name f =
+	match f with
+	| FAnon f | FInstance (_,_,f) | FStatic (_,f) | FClosure (_,f) -> f.cf_name
+	| FEnum (_,f) -> f.ef_name
+	| FDynamic n -> n
+
+let extract_field = function
+	| FAnon f | FInstance (_,_,f) | FStatic (_,f) | FClosure (_,f) -> Some f
+	| _ -> None
+
+let is_physical_var_field f =
+	match f.cf_kind with
+	| Var { v_read = AccNormal | AccInline | AccNo } | Var { v_write = AccNormal | AccNo } -> true
+	| Var _ -> Meta.has Meta.IsVar f.cf_meta
+	| _ -> false
+
+let is_physical_field f =
+	match f.cf_kind with
+	| Method _ -> true
+	| _ -> is_physical_var_field f
+
+let field_type f =
+	match f.cf_params with
+	| [] -> f.cf_type
+	| l -> monomorphs l f.cf_type
+
+let rec raw_class_field build_type c tl i =
+	let apply = apply_params c.cl_params tl in
+	try
+		let f = PMap.find i c.cl_fields in
+		Some (c,tl), build_type f , f
+	with Not_found -> try (match c.cl_constructor with
+		| Some ctor when i = "new" -> Some (c,tl), build_type ctor,ctor
+		| _ -> raise Not_found)
+	with Not_found -> try
+		match c.cl_super with
+		| None ->
+			raise Not_found
+		| Some (c,tl) ->
+			let c2 , t , f = raw_class_field build_type c (List.map apply tl) i in
+			c2, apply_params c.cl_params tl t , f
+	with Not_found ->
+		match c.cl_kind with
+		| KTypeParameter tl ->
+			let rec loop = function
+				| [] ->
+					raise Not_found
+				| t :: ctl ->
+					match follow t with
+					| TAnon a ->
+						(try
+							let f = PMap.find i a.a_fields in
+							None, build_type f, f
+						with
+							Not_found -> loop ctl)
+					| TInst (c,tl) ->
+						(try
+							let c2, t , f = raw_class_field build_type c (List.map apply tl) i in
+							c2, apply_params c.cl_params tl t, f
+						with
+							Not_found -> loop ctl)
+					| _ ->
+						loop ctl
+			in
+			loop tl
+		| _ ->
+			if not c.cl_interface then raise Not_found;
+			(*
+				an interface can implements other interfaces without
+				having to redeclare its fields
+			*)
+			let rec loop = function
+				| [] ->
+					raise Not_found
+				| (c,tl) :: l ->
+					try
+						let c2, t , f = raw_class_field build_type c (List.map apply tl) i in
+						c2, apply_params c.cl_params tl t, f
+					with
+						Not_found -> loop l
+			in
+			loop c.cl_implements
+
+let class_field = raw_class_field field_type
+
+let quick_field t n =
+	match follow t with
+	| TInst (c,tl) ->
+		let c, _, f = raw_class_field (fun f -> f.cf_type) c tl n in
+		(match c with None -> FAnon f | Some (c,tl) -> FInstance (c,tl,f))
+	| TAnon a ->
+		(match !(a.a_status) with
+		| EnumStatics e ->
+			let ef = PMap.find n e.e_constrs in
+			FEnum(e,ef)
+		| Statics c ->
+			FStatic (c,PMap.find n c.cl_statics)
+		| AbstractStatics a ->
+			begin match a.a_impl with
+				| Some c ->
+					let cf = PMap.find n c.cl_statics in
+					FStatic(c,cf) (* is that right? *)
+				| _ ->
+					raise Not_found
+			end
+		| _ ->
+			FAnon (PMap.find n a.a_fields))
+	| TDynamic _ ->
+		FDynamic n
+	| TEnum _  | TMono _ | TAbstract _ | TFun _ ->
+		raise Not_found
+	| TLazy _ | TType _ ->
+		assert false
+
+let quick_field_dynamic t s =
+	try quick_field t s
+	with Not_found -> FDynamic s
+
+let rec get_constructor build_type c =
+	match c.cl_constructor, c.cl_super with
+	| Some c, _ -> build_type c, c
+	| None, None -> raise Not_found
+	| None, Some (csup,cparams) ->
+		let t, c = get_constructor build_type csup in
+		apply_params csup.cl_params cparams t, c
+
+let has_constructor c =
+	try
+		ignore(get_constructor (fun cf -> cf.cf_type) c);
+		true
+	with Not_found -> false
+
+let resolve_typedef t =
+	match t with
+	| TClassDecl _ | TEnumDecl _ | TAbstractDecl _ -> t
+	| TTypeDecl td ->
+		match follow td.t_type with
+		| TEnum (e,_) -> TEnumDecl e
+		| TInst (c,_) -> TClassDecl c
+		| TAbstract (a,_) -> TAbstractDecl a
+		| _ -> t

+ 322 - 0
src/core/tOther.ml

@@ -0,0 +1,322 @@
+open Globals
+open Ast
+open TType
+open TFunctions
+open TPrinting
+
+module TExprToExpr = struct
+	let tpath p mp pl =
+		if snd mp = snd p then
+			CTPath {
+				tpackage = fst p;
+				tname = snd p;
+				tparams = pl;
+				tsub = None;
+			}
+		else CTPath {
+				tpackage = fst mp;
+				tname = snd mp;
+				tparams = pl;
+				tsub = Some (snd p);
+			}
+
+	let rec convert_type = function
+		| TMono r ->
+			(match r.tm_type with
+			| None -> raise Exit
+			| Some t -> convert_type t)
+		| TInst ({cl_private = true; cl_path=_,name},tl)
+		| TEnum ({e_private = true; e_path=_,name},tl)
+		| TType ({t_private = true; t_path=_,name},tl)
+		| TAbstract ({a_private = true; a_path=_,name},tl) ->
+			CTPath {
+				tpackage = [];
+				tname = name;
+				tparams = List.map tparam tl;
+				tsub = None;
+			}
+		| TEnum (e,pl) ->
+			tpath e.e_path e.e_module.m_path (List.map tparam pl)
+		| TInst({cl_kind = KExpr e} as c,pl) ->
+			tpath ([],snd c.cl_path) ([],snd c.cl_path) (List.map tparam pl)
+		| TInst({cl_kind = KTypeParameter _} as c,pl) ->
+			tpath ([],snd c.cl_path) ([],snd c.cl_path) (List.map tparam pl)
+		| TInst (c,pl) ->
+			tpath c.cl_path c.cl_module.m_path (List.map tparam pl)
+		| TType (t,pl) as tf ->
+			(* recurse on type-type *)
+			if (snd t.t_path).[0] = '#' then convert_type (follow tf) else tpath t.t_path t.t_module.m_path (List.map tparam pl)
+		| TAbstract (a,pl) ->
+			tpath a.a_path a.a_module.m_path (List.map tparam pl)
+		| TFun (args,ret) ->
+			CTFunction (List.map (fun (_,_,t) -> convert_type' t) args, (convert_type' ret))
+		| TAnon a ->
+			begin match !(a.a_status) with
+			| Statics c -> tpath ([],"Class") ([],"Class") [TPType (tpath c.cl_path c.cl_path [],null_pos)]
+			| EnumStatics e -> tpath ([],"Enum") ([],"Enum") [TPType (tpath e.e_path e.e_path [],null_pos)]
+			| _ ->
+				CTAnonymous (PMap.foldi (fun _ f acc ->
+					{
+						cff_name = f.cf_name,null_pos;
+						cff_kind = FVar (mk_type_hint f.cf_type null_pos,None);
+						cff_pos = f.cf_pos;
+						cff_doc = f.cf_doc;
+						cff_meta = f.cf_meta;
+						cff_access = [];
+					} :: acc
+				) a.a_fields [])
+			end
+		| (TDynamic t2) as t ->
+			tpath ([],"Dynamic") ([],"Dynamic") (if t == t_dynamic then [] else [tparam t2])
+		| TLazy f ->
+			convert_type (lazy_type f)
+
+	and convert_type' t =
+		convert_type t,null_pos
+
+	and tparam = function
+		| TInst ({cl_kind = KExpr e}, _) -> TPExpr e
+		| t -> TPType (convert_type' t)
+
+	and mk_type_hint t p =
+		match follow t with
+		| TMono _ -> None
+		| _ -> (try Some (convert_type t,p) with Exit -> None)
+
+	let rec convert_expr e =
+		let full_type_path t =
+			let mp,p = match t with
+			| TClassDecl c -> c.cl_module.m_path,c.cl_path
+			| TEnumDecl en -> en.e_module.m_path,en.e_path
+			| TAbstractDecl a -> a.a_module.m_path,a.a_path
+			| TTypeDecl t -> t.t_module.m_path,t.t_path
+			in
+			if snd mp = snd p then p else (fst mp) @ [snd mp],snd p
+		in
+		let mk_path = expr_of_type_path in
+		let mk_ident = function
+			| "`trace" -> Ident "trace"
+			| n -> Ident n
+		in
+		let eopt = function None -> None | Some e -> Some (convert_expr e) in
+		((match e.eexpr with
+		| TConst c ->
+			EConst (tconst_to_const c)
+		| TLocal v -> EConst (mk_ident v.v_name)
+		| TArray (e1,e2) -> EArray (convert_expr e1,convert_expr e2)
+		| TBinop (op,e1,e2) -> EBinop (op, convert_expr e1, convert_expr e2)
+		| TField (e,f) -> EField (convert_expr e, field_name f)
+		| TTypeExpr t -> fst (mk_path (full_type_path t) e.epos)
+		| TParenthesis e -> EParenthesis (convert_expr e)
+		| TObjectDecl fl -> EObjectDecl (List.map (fun (k,e) -> k, convert_expr e) fl)
+		| TArrayDecl el -> EArrayDecl (List.map convert_expr el)
+		| TCall (e,el) -> ECall (convert_expr e,List.map convert_expr el)
+		| TNew (c,pl,el) -> ENew ((match (try convert_type (TInst (c,pl)) with Exit -> convert_type (TInst (c,[]))) with CTPath p -> p,null_pos | _ -> assert false),List.map convert_expr el)
+		| TUnop (op,p,e) -> EUnop (op,p,convert_expr e)
+		| TFunction f ->
+			let arg (v,c) = (v.v_name,v.v_pos), false, v.v_meta, mk_type_hint v.v_type null_pos, (match c with None -> None | Some c -> Some (convert_expr c)) in
+			EFunction (FKAnonymous,{ f_params = []; f_args = List.map arg f.tf_args; f_type = mk_type_hint f.tf_type null_pos; f_expr = Some (convert_expr f.tf_expr) })
+		| TVar (v,eo) ->
+			EVars ([(v.v_name,v.v_pos), v.v_final, mk_type_hint v.v_type v.v_pos, eopt eo])
+		| TBlock el -> EBlock (List.map convert_expr el)
+		| TFor (v,it,e) ->
+			let ein = (EBinop (OpIn,(EConst (Ident v.v_name),it.epos),convert_expr it),it.epos) in
+			EFor (ein,convert_expr e)
+		| TIf (e,e1,e2) -> EIf (convert_expr e,convert_expr e1,eopt e2)
+		| TWhile (e1,e2,flag) -> EWhile (convert_expr e1, convert_expr e2, flag)
+		| TSwitch (e,cases,def) ->
+			let cases = List.map (fun (vl,e) ->
+				List.map convert_expr vl,None,(match e.eexpr with TBlock [] -> None | _ -> Some (convert_expr e)),e.epos
+			) cases in
+			let def = match eopt def with None -> None | Some (EBlock [],_) -> Some (None,null_pos) | Some e -> Some (Some e,pos e) in
+			ESwitch (convert_expr e,cases,def)
+		| TEnumIndex _
+		| TEnumParameter _ ->
+			(* these are considered complex, so the AST is handled in TMeta(Meta.Ast) *)
+			assert false
+		| TTry (e,catches) ->
+			let e1 = convert_expr e in
+			let catches = List.map (fun (v,e) ->
+				let ct = try convert_type v.v_type,null_pos with Exit -> assert false in
+				let e = convert_expr e in
+				(v.v_name,v.v_pos),ct,e,(pos e)
+			) catches in
+			ETry (e1,catches)
+		| TReturn e -> EReturn (eopt e)
+		| TBreak -> EBreak
+		| TContinue -> EContinue
+		| TThrow e -> EThrow (convert_expr e)
+		| TCast (e,t) ->
+			let t = (match t with
+				| None -> None
+				| Some t ->
+					let t = (match t with TClassDecl c -> TInst (c,[]) | TEnumDecl e -> TEnum (e,[]) | TTypeDecl t -> TType (t,[]) | TAbstractDecl a -> TAbstract (a,[])) in
+					Some (try convert_type t,null_pos with Exit -> assert false)
+			) in
+			ECast (convert_expr e,t)
+		| TMeta ((Meta.Ast,[e1,_],_),_) -> e1
+		| TMeta (m,e) -> EMeta(m,convert_expr e)
+		| TIdent s -> EConst (Ident s))
+		,e.epos)
+
+end
+
+module ExtType = struct
+	let is_mono = function
+		| TMono { tm_type = None } -> true
+		| _ -> false
+
+	let is_void = function
+		| TAbstract({a_path=[],"Void"},_) -> true
+		| _ -> false
+
+	let is_int t = match t with
+		| TAbstract({a_path=[],"Int"},_) -> true
+		| _ -> false
+
+	let is_float t = match t with
+		| TAbstract({a_path=[],"Float"},_) -> true
+		| _ -> false
+
+	let is_numeric t = match t with
+		| TAbstract({a_path=[],"Float"},_) -> true
+		| TAbstract({a_path=[],"Int"},_) -> true
+		| _ -> false
+
+	let is_string t = match t with
+		| TInst({cl_path=[],"String"},_) -> true
+		| _ -> false
+
+	let is_bool t = match t with
+		| TAbstract({a_path=[],"Bool"},_) -> true
+		| _ -> false
+
+	type semantics =
+		| VariableSemantics
+		| ReferenceSemantics
+		| ValueSemantics
+
+	let semantics_name = function
+		| VariableSemantics -> "variable"
+		| ReferenceSemantics -> "reference"
+		| ValueSemantics -> "value"
+
+	let has_semantics t sem =
+		let name = semantics_name sem in
+		let check meta =
+			has_meta_option meta Meta.Semantics name
+		in
+		let rec loop t = match t with
+			| TInst(c,_) -> check c.cl_meta
+			| TEnum(en,_) -> check en.e_meta
+			| TType(t,tl) -> check t.t_meta || (loop (apply_params t.t_params tl t.t_type))
+			| TAbstract(a,_) -> check a.a_meta
+			| TLazy f -> loop (lazy_type f)
+			| TMono r ->
+				(match r.tm_type with
+				| Some t -> loop t
+				| _ -> false)
+			| _ ->
+				false
+		in
+		loop t
+
+	let has_variable_semantics t = has_semantics t VariableSemantics
+	let has_reference_semantics t = has_semantics t ReferenceSemantics
+	let has_value_semantics t = has_semantics t ValueSemantics
+end
+
+let no_meta = []
+
+let class_module_type c = {
+	t_path = [],"Class<" ^ (s_type_path c.cl_path) ^ ">" ;
+	t_module = c.cl_module;
+	t_doc = None;
+	t_pos = c.cl_pos;
+	t_name_pos = null_pos;
+	t_type = TAnon {
+		a_fields = c.cl_statics;
+		a_status = ref (Statics c);
+	};
+	t_private = true;
+	t_params = [];
+	t_using = [];
+	t_meta = no_meta;
+}
+
+let enum_module_type m path p  = {
+	t_path = [], "Enum<" ^ (s_type_path path) ^ ">";
+	t_module = m;
+	t_doc = None;
+	t_pos = p;
+	t_name_pos = null_pos;
+	t_type = mk_mono();
+	t_private = true;
+	t_params = [];
+	t_using = [];
+	t_meta = [];
+}
+
+let abstract_module_type a tl = {
+	t_path = [],Printf.sprintf "Abstract<%s%s>" (s_type_path a.a_path) (s_type_params (ref []) tl);
+	t_module = a.a_module;
+	t_doc = None;
+	t_pos = a.a_pos;
+	t_name_pos = null_pos;
+	t_type = TAnon {
+		a_fields = PMap.empty;
+		a_status = ref (AbstractStatics a);
+	};
+	t_private = true;
+	t_params = [];
+	t_using = [];
+	t_meta = no_meta;
+}
+
+module TClass = struct
+	let get_member_fields' self_too c0 tl =
+		let rec loop acc c tl =
+			let apply = apply_params c.cl_params tl in
+			let maybe_add acc cf =
+				if not (PMap.mem cf.cf_name acc) then begin
+					let cf = if tl = [] then cf else {cf with cf_type = apply cf.cf_type} in
+					PMap.add cf.cf_name (c,cf) acc
+				end else acc
+			in
+			let acc = if self_too || c != c0 then List.fold_left maybe_add acc c.cl_ordered_fields else acc in
+			if c.cl_interface then
+				List.fold_left (fun acc (i,tl) -> loop acc i (List.map apply tl)) acc c.cl_implements
+			else
+				match c.cl_super with
+				| Some(c,tl) -> loop acc c (List.map apply tl)
+				| None -> acc
+		in
+		loop PMap.empty c0 tl
+
+	let get_all_super_fields c =
+		get_member_fields' false c (List.map snd c.cl_params)
+
+	let get_all_fields c tl =
+		get_member_fields' true c tl
+
+	let get_overridden_fields c cf =
+		let rec loop acc c = match c.cl_super with
+			| None ->
+				acc
+			| Some(c,_) ->
+				begin try
+					let cf' = PMap.find cf.cf_name c.cl_fields in
+					loop (cf' :: acc) c
+				with Not_found ->
+					loop acc c
+				end
+		in
+		loop [] c
+end
+
+let s_class_path c =
+	let path = match c.cl_kind with
+		| KAbstractImpl a -> a.a_path
+		| _ -> c.cl_path
+	in
+	s_type_path path

+ 643 - 0
src/core/tPrinting.ml

@@ -0,0 +1,643 @@
+open Globals
+open Ast
+open TType
+open TFunctions
+
+let print_context() = ref []
+
+let rec s_type_kind t =
+	let map tl = String.concat ", " (List.map s_type_kind tl) in
+	match t with
+	| TMono r ->
+		begin match r.tm_type with
+			| None -> Printf.sprintf "TMono (None)"
+			| Some t -> "TMono (Some (" ^ (s_type_kind t) ^ "))"
+		end
+	| TEnum(en,tl) -> Printf.sprintf "TEnum(%s, [%s])" (s_type_path en.e_path) (map tl)
+	| TInst(c,tl) -> Printf.sprintf "TInst(%s, [%s])" (s_type_path c.cl_path) (map tl)
+	| TType(t,tl) -> Printf.sprintf "TType(%s, [%s])" (s_type_path t.t_path) (map tl)
+	| TAbstract(a,tl) -> Printf.sprintf "TAbstract(%s, [%s])" (s_type_path a.a_path) (map tl)
+	| TFun(tl,r) -> Printf.sprintf "TFun([%s], %s)" (String.concat ", " (List.map (fun (n,b,t) -> Printf.sprintf "%s%s:%s" (if b then "?" else "") n (s_type_kind t)) tl)) (s_type_kind r)
+	| TAnon an -> "TAnon"
+	| TDynamic t2 -> "TDynamic"
+	| TLazy _ -> "TLazy"
+
+let s_module_type_kind = function
+	| TClassDecl c -> "TClassDecl(" ^ (s_type_path c.cl_path) ^ ")"
+	| TEnumDecl en -> "TEnumDecl(" ^ (s_type_path en.e_path) ^ ")"
+	| TAbstractDecl a -> "TAbstractDecl(" ^ (s_type_path a.a_path) ^ ")"
+	| TTypeDecl t -> "TTypeDecl(" ^ (s_type_path t.t_path) ^ ")"
+
+let rec s_type ctx t =
+	match t with
+	| TMono r ->
+		(match r.tm_type with
+		| None ->
+			begin try
+				let id = List.assq t (!ctx) in
+				Printf.sprintf "Unknown<%d>" id
+			with Not_found ->
+				let id = List.length !ctx in
+				ctx := (t,id) :: !ctx;
+				Printf.sprintf "Unknown<%d>" id
+			end
+		| Some t -> s_type ctx t)
+	| TEnum (e,tl) ->
+		s_type_path e.e_path ^ s_type_params ctx tl
+	| TInst (c,tl) ->
+		(match c.cl_kind with
+		| KExpr e -> Ast.Printer.s_expr e
+		| _ -> s_type_path c.cl_path ^ s_type_params ctx tl)
+	| TType (t,tl) ->
+		s_type_path t.t_path ^ s_type_params ctx tl
+	| TAbstract (a,tl) ->
+		s_type_path a.a_path ^ s_type_params ctx tl
+	| TFun ([],t) ->
+		"Void -> " ^ s_fun ctx t false
+	| TFun (l,t) ->
+		let args = match l with
+			| [] -> "()"
+			| ["",b,t] -> Printf.sprintf "%s%s" (if b then "?" else "") (s_fun ctx t true)
+			| _ ->
+				let args = String.concat ", " (List.map (fun (s,b,t) ->
+					(if b then "?" else "") ^ (if s = "" then "" else s ^ " : ") ^ s_fun ctx t true
+				) l) in
+				"(" ^ args ^ ")"
+		in
+		Printf.sprintf "%s -> %s" args (s_fun ctx t false)
+	| TAnon a ->
+		begin
+			match !(a.a_status) with
+			| Statics c -> Printf.sprintf "{ Statics %s }" (s_type_path c.cl_path)
+			| EnumStatics e -> Printf.sprintf "{ EnumStatics %s }" (s_type_path e.e_path)
+			| AbstractStatics a -> Printf.sprintf "{ AbstractStatics %s }" (s_type_path a.a_path)
+			| _ ->
+				let fl = PMap.fold (fun f acc -> ((if Meta.has Meta.Optional f.cf_meta then " ?" else " ") ^ f.cf_name ^ " : " ^ s_type ctx f.cf_type) :: acc) a.a_fields [] in
+				"{" ^ (if not (is_closed a) then "+" else "") ^  String.concat "," fl ^ " }"
+		end
+	| TDynamic t2 ->
+		"Dynamic" ^ s_type_params ctx (if t == t2 then [] else [t2])
+	| TLazy f ->
+		s_type ctx (lazy_type f)
+
+and s_fun ctx t void =
+	match t with
+	| TFun _ ->
+		"(" ^ s_type ctx t ^ ")"
+	| TAbstract ({ a_path = ([],"Void") },[]) when void ->
+		"(" ^ s_type ctx t ^ ")"
+	| TMono r ->
+		(match r.tm_type with
+		| None -> s_type ctx t
+		| Some t -> s_fun ctx t void)
+	| TLazy f ->
+		s_fun ctx (lazy_type f) void
+	| _ ->
+		s_type ctx t
+
+and s_type_params ctx = function
+	| [] -> ""
+	| l -> "<" ^ String.concat ", " (List.map (s_type ctx) l) ^ ">"
+
+let s_access is_read = function
+	| AccNormal -> "default"
+	| AccNo -> "null"
+	| AccNever -> "never"
+	| AccResolve -> "resolve"
+	| AccCall -> if is_read then "get" else "set"
+	| AccInline	-> "inline"
+	| AccRequire (n,_) -> "require " ^ n
+	| AccCtor -> "ctor"
+
+let s_kind = function
+	| Var { v_read = AccNormal; v_write = AccNormal } -> "var"
+	| Var v -> "(" ^ s_access true v.v_read ^ "," ^ s_access false v.v_write ^ ")"
+	| Method m ->
+		match m with
+		| MethNormal -> "method"
+		| MethDynamic -> "dynamic method"
+		| MethInline -> "inline method"
+		| MethMacro -> "macro method"
+
+let s_expr_kind e =
+	match e.eexpr with
+	| TConst _ -> "Const"
+	| TLocal _ -> "Local"
+	| TArray (_,_) -> "Array"
+	| TBinop (_,_,_) -> "Binop"
+	| TEnumParameter (_,_,_) -> "EnumParameter"
+	| TEnumIndex _ -> "EnumIndex"
+	| TField (_,_) -> "Field"
+	| TTypeExpr _ -> "TypeExpr"
+	| TParenthesis _ -> "Parenthesis"
+	| TObjectDecl _ -> "ObjectDecl"
+	| TArrayDecl _ -> "ArrayDecl"
+	| TCall (_,_) -> "Call"
+	| TNew (_,_,_) -> "New"
+	| TUnop (_,_,_) -> "Unop"
+	| TFunction _ -> "Function"
+	| TVar _ -> "Vars"
+	| TBlock _ -> "Block"
+	| TFor (_,_,_) -> "For"
+	| TIf (_,_,_) -> "If"
+	| TWhile (_,_,_) -> "While"
+	| TSwitch (_,_,_) -> "Switch"
+	| TTry (_,_) -> "Try"
+	| TReturn _ -> "Return"
+	| TBreak -> "Break"
+	| TContinue -> "Continue"
+	| TThrow _ -> "Throw"
+	| TCast _ -> "Cast"
+	| TMeta _ -> "Meta"
+	| TIdent _ -> "Ident"
+
+let s_const = function
+	| TInt i -> Int32.to_string i
+	| TFloat s -> s
+	| TString s -> Printf.sprintf "\"%s\"" (StringHelper.s_escape s)
+	| TBool b -> if b then "true" else "false"
+	| TNull -> "null"
+	| TThis -> "this"
+	| TSuper -> "super"
+
+let s_field_access s_type fa = match fa with
+	| FStatic (c,f) -> "static(" ^ s_type_path c.cl_path ^ "." ^ f.cf_name ^ ")"
+	| FInstance (c,_,f) -> "inst(" ^ s_type_path c.cl_path ^ "." ^ f.cf_name ^ " : " ^ s_type f.cf_type ^ ")"
+	| FClosure (c,f) -> "closure(" ^ (match c with None -> f.cf_name | Some (c,_) -> s_type_path c.cl_path ^ "." ^ f.cf_name)  ^ ")"
+	| FAnon f -> "anon(" ^ f.cf_name ^ ")"
+	| FEnum (en,f) -> "enum(" ^ s_type_path en.e_path ^ "." ^ f.ef_name ^ ")"
+	| FDynamic f -> "dynamic(" ^ f ^ ")"
+
+let rec s_expr s_type e =
+	let sprintf = Printf.sprintf in
+	let slist f l = String.concat "," (List.map f l) in
+	let loop = s_expr s_type in
+	let s_var v = v.v_name ^ ":" ^ string_of_int v.v_id ^ if v.v_capture then "[c]" else "" in
+	let str = (match e.eexpr with
+	| TConst c ->
+		"Const " ^ s_const c
+	| TLocal v ->
+		"Local " ^ s_var v
+	| TArray (e1,e2) ->
+		sprintf "%s[%s]" (loop e1) (loop e2)
+	| TBinop (op,e1,e2) ->
+		sprintf "(%s %s %s)" (loop e1) (s_binop op) (loop e2)
+	| TEnumIndex e1 ->
+		sprintf "EnumIndex %s" (loop e1)
+	| TEnumParameter (e1,_,i) ->
+		sprintf "%s[%i]" (loop e1) i
+	| TField (e,f) ->
+		let fstr = s_field_access s_type f in
+		sprintf "%s.%s" (loop e) fstr
+	| TTypeExpr m ->
+		sprintf "TypeExpr %s" (s_type_path (t_path m))
+	| TParenthesis e ->
+		sprintf "Parenthesis %s" (loop e)
+	| TObjectDecl fl ->
+		sprintf "ObjectDecl {%s}" (slist (fun ((f,_,qs),e) -> sprintf "%s : %s" (s_object_key_name f qs) (loop e)) fl)
+	| TArrayDecl el ->
+		sprintf "ArrayDecl [%s]" (slist loop el)
+	| TCall (e,el) ->
+		sprintf "Call %s(%s)" (loop e) (slist loop el)
+	| TNew (c,pl,el) ->
+		sprintf "New %s%s(%s)" (s_type_path c.cl_path) (match pl with [] -> "" | l -> sprintf "<%s>" (slist s_type l)) (slist loop el)
+	| TUnop (op,f,e) ->
+		(match f with
+		| Prefix -> sprintf "(%s %s)" (s_unop op) (loop e)
+		| Postfix -> sprintf "(%s %s)" (loop e) (s_unop op))
+	| TFunction f ->
+		let args = slist (fun (v,o) -> sprintf "%s : %s%s" (s_var v) (s_type v.v_type) (match o with None -> "" | Some c -> " = " ^ loop c)) f.tf_args in
+		sprintf "Function(%s) : %s = %s" args (s_type f.tf_type) (loop f.tf_expr)
+	| TVar (v,eo) ->
+		sprintf "Vars %s" (sprintf "%s : %s%s" (s_var v) (s_type v.v_type) (match eo with None -> "" | Some e -> " = " ^ loop e))
+	| TBlock el ->
+		sprintf "Block {\n%s}" (String.concat "" (List.map (fun e -> sprintf "%s;\n" (loop e)) el))
+	| TFor (v,econd,e) ->
+		sprintf "For (%s : %s in %s,%s)" (s_var v) (s_type v.v_type) (loop econd) (loop e)
+	| TIf (e,e1,e2) ->
+		sprintf "If (%s,%s%s)" (loop e) (loop e1) (match e2 with None -> "" | Some e -> "," ^ loop e)
+	| TWhile (econd,e,flag) ->
+		(match flag with
+		| NormalWhile -> sprintf "While (%s,%s)" (loop econd) (loop e)
+		| DoWhile -> sprintf "DoWhile (%s,%s)" (loop e) (loop econd))
+	| TSwitch (e,cases,def) ->
+		sprintf "Switch (%s,(%s)%s)" (loop e) (slist (fun (cl,e) -> sprintf "case %s: %s" (slist loop cl) (loop e)) cases) (match def with None -> "" | Some e -> "," ^ loop e)
+	| TTry (e,cl) ->
+		sprintf "Try %s(%s) " (loop e) (slist (fun (v,e) -> sprintf "catch( %s : %s ) %s" (s_var v) (s_type v.v_type) (loop e)) cl)
+	| TReturn None ->
+		"Return"
+	| TReturn (Some e) ->
+		sprintf "Return %s" (loop e)
+	| TBreak ->
+		"Break"
+	| TContinue ->
+		"Continue"
+	| TThrow e ->
+		"Throw " ^ (loop e)
+	| TCast (e,t) ->
+		sprintf "Cast %s%s" (match t with None -> "" | Some t -> s_type_path (t_path t) ^ ": ") (loop e)
+	| TMeta ((n,el,_),e) ->
+		sprintf "@%s%s %s" (Meta.to_string n) (match el with [] -> "" | _ -> "(" ^ (String.concat ", " (List.map Ast.Printer.s_expr el)) ^ ")") (loop e)
+	| TIdent s ->
+		"Ident " ^ s
+	) in
+	sprintf "(%s : %s)" str (s_type e.etype)
+
+let rec s_expr_pretty print_var_ids tabs top_level s_type e =
+	let sprintf = Printf.sprintf in
+	let loop = s_expr_pretty print_var_ids tabs false s_type in
+	let slist c f l = String.concat c (List.map f l) in
+	let clist f l = slist ", " f l in
+	let local v = if print_var_ids then sprintf "%s<%i>" v.v_name v.v_id else v.v_name in
+	match e.eexpr with
+	| TConst c -> s_const c
+	| TLocal v -> local v
+	| TArray (e1,e2) -> sprintf "%s[%s]" (loop e1) (loop e2)
+	| TBinop (op,e1,e2) -> sprintf "%s %s %s" (loop e1) (s_binop op) (loop e2)
+	| TEnumParameter (e1,_,i) -> sprintf "%s[%i]" (loop e1) i
+	| TEnumIndex e1 -> sprintf "enumIndex %s" (loop e1)
+	| TField (e1,s) -> sprintf "%s.%s" (loop e1) (field_name s)
+	| TTypeExpr mt -> (s_type_path (t_path mt))
+	| TParenthesis e1 -> sprintf "(%s)" (loop e1)
+	| TObjectDecl fl -> sprintf "{%s}" (clist (fun ((f,_,qs),e) -> sprintf "%s : %s" (s_object_key_name f qs) (loop e)) fl)
+	| TArrayDecl el -> sprintf "[%s]" (clist loop el)
+	| TCall (e1,el) -> sprintf "%s(%s)" (loop e1) (clist loop el)
+	| TNew (c,pl,el) ->
+		sprintf "new %s(%s)" (s_type_path c.cl_path) (clist loop el)
+	| TUnop (op,f,e) ->
+		(match f with
+		| Prefix -> sprintf "%s %s" (s_unop op) (loop e)
+		| Postfix -> sprintf "%s %s" (loop e) (s_unop op))
+	| TFunction f ->
+		let args = clist (fun (v,o) -> sprintf "%s:%s%s" (local v) (s_type v.v_type) (match o with None -> "" | Some c -> " = " ^ loop c)) f.tf_args in
+		sprintf "%s(%s) %s" (if top_level then "" else "function") args (loop f.tf_expr)
+	| TVar (v,eo) ->
+		sprintf "var %s" (sprintf "%s%s" (local v) (match eo with None -> "" | Some e -> " = " ^ loop e))
+	| TBlock el ->
+		let ntabs = tabs ^ "\t" in
+		let s = sprintf "{\n%s" (String.concat "" (List.map (fun e -> sprintf "%s%s;\n" ntabs (s_expr_pretty print_var_ids ntabs top_level s_type e)) el)) in
+		(match el with
+			| [] -> "{}"
+			| _ ->  s ^ tabs ^ "}")
+	| TFor (v,econd,e) ->
+		sprintf "for (%s in %s) %s" (local v) (loop econd) (loop e)
+	| TIf (e,e1,e2) ->
+		sprintf "if (%s) %s%s" (loop e) (loop e1) (match e2 with None -> "" | Some e -> " else " ^ loop e)
+	| TWhile (econd,e,flag) ->
+		(match flag with
+		| NormalWhile -> sprintf "while (%s) %s" (loop econd) (loop e)
+		| DoWhile -> sprintf "do (%s) while(%s)" (loop e) (loop econd))
+	| TSwitch (e,cases,def) ->
+		let ntabs = tabs ^ "\t" in
+		let s = sprintf "switch (%s) {\n%s%s" (loop e) (slist "" (fun (cl,e) -> sprintf "%scase %s: %s;\n" ntabs (clist loop cl) (s_expr_pretty print_var_ids ntabs top_level s_type e)) cases) (match def with None -> "" | Some e -> ntabs ^ "default: " ^ (s_expr_pretty print_var_ids ntabs top_level s_type e) ^ "\n") in
+		s ^ tabs ^ "}"
+	| TTry (e,cl) ->
+		sprintf "try %s%s" (loop e) (clist (fun (v,e) -> sprintf " catch (%s:%s) %s" (local v) (s_type v.v_type) (loop e)) cl)
+	| TReturn None ->
+		"return"
+	| TReturn (Some e) ->
+		sprintf "return %s" (loop e)
+	| TBreak ->
+		"break"
+	| TContinue ->
+		"continue"
+	| TThrow e ->
+		"throw " ^ (loop e)
+	| TCast (e,None) ->
+		sprintf "cast %s" (loop e)
+	| TCast (e,Some mt) ->
+		sprintf "cast (%s,%s)" (loop e) (s_type_path (t_path mt))
+	| TMeta ((n,el,_),e) ->
+		sprintf "@%s%s %s" (Meta.to_string n) (match el with [] -> "" | _ -> "(" ^ (String.concat ", " (List.map Ast.Printer.s_expr el)) ^ ")") (loop e)
+	| TIdent s ->
+		s
+
+let rec s_expr_ast print_var_ids tabs s_type e =
+	let sprintf = Printf.sprintf in
+	let loop ?(extra_tabs="") = s_expr_ast print_var_ids (tabs ^ "\t" ^ extra_tabs) s_type in
+	let tag_args tabs sl = match sl with
+		| [] -> ""
+		| [s] when not (String.contains s '\n') -> " " ^ s
+		| _ ->
+			let tabs = "\n" ^ tabs ^ "\t" in
+			tabs ^ (String.concat tabs sl)
+	in
+	let tag s ?(t=None) ?(extra_tabs="") sl =
+		let st = match t with
+			| None -> s_type e.etype
+			| Some t -> s_type t
+		in
+		sprintf "[%s:%s]%s" s st (tag_args (tabs ^ extra_tabs) sl)
+	in
+	let var_id v = if print_var_ids then v.v_id else 0 in
+	let const c t = tag "Const" ~t [s_const c] in
+	let local v t = sprintf "[Local %s(%i):%s%s]" v.v_name (var_id v) (s_type v.v_type) (match t with None -> "" | Some t -> ":" ^ (s_type t)) in
+	let var v sl = sprintf "[Var %s(%i):%s]%s" v.v_name (var_id v) (s_type v.v_type) (tag_args tabs sl) in
+	let module_type mt = sprintf "[TypeExpr %s:%s]" (s_type_path (t_path mt)) (s_type e.etype) in
+	match e.eexpr with
+	| TConst c -> const c (Some e.etype)
+	| TLocal v -> local v (Some e.etype)
+	| TArray (e1,e2) -> tag "Array" [loop e1; loop e2]
+	| TBinop (op,e1,e2) -> tag "Binop" [loop e1; s_binop op; loop e2]
+	| TUnop (op,flag,e1) -> tag "Unop" [s_unop op; if flag = Postfix then "Postfix" else "Prefix"; loop e1]
+	| TEnumParameter (e1,ef,i) -> tag "EnumParameter" [loop e1; ef.ef_name; string_of_int i]
+	| TEnumIndex e1 -> tag "EnumIndex" [loop e1]
+	| TField (e1,fa) ->
+		let sfa = match fa with
+			| FInstance(c,tl,cf) -> tag "FInstance" ~extra_tabs:"\t" [s_type (TInst(c,tl)); Printf.sprintf "%s:%s" cf.cf_name (s_type cf.cf_type)]
+			| FStatic(c,cf) -> tag "FStatic" ~extra_tabs:"\t" [s_type_path c.cl_path; Printf.sprintf "%s:%s" cf.cf_name (s_type cf.cf_type)]
+			| FClosure(co,cf) -> tag "FClosure" ~extra_tabs:"\t" [(match co with None -> "None" | Some (c,tl) -> s_type (TInst(c,tl))); Printf.sprintf "%s:%s" cf.cf_name (s_type cf.cf_type)]
+			| FAnon cf -> tag "FAnon" ~extra_tabs:"\t" [Printf.sprintf "%s:%s" cf.cf_name (s_type cf.cf_type)]
+			| FDynamic s -> tag "FDynamic" ~extra_tabs:"\t" [s]
+			| FEnum(en,ef) -> tag "FEnum" ~extra_tabs:"\t" [s_type_path en.e_path; ef.ef_name]
+		in
+		tag "Field" [loop e1; sfa]
+	| TTypeExpr mt -> module_type mt
+	| TParenthesis e1 -> tag "Parenthesis" [loop e1]
+	| TObjectDecl fl -> tag "ObjectDecl" (List.map (fun ((s,_,qs),e) -> sprintf "%s: %s" (s_object_key_name s qs) (loop e)) fl)
+	| TArrayDecl el -> tag "ArrayDecl" (List.map loop el)
+	| TCall (e1,el) -> tag "Call" (loop e1 :: (List.map loop el))
+	| TNew (c,tl,el) -> tag "New" ((s_type (TInst(c,tl))) :: (List.map loop el))
+	| TFunction f ->
+		let arg (v,cto) =
+			tag "Arg" ~t:(Some v.v_type) ~extra_tabs:"\t" (match cto with None -> [local v None] | Some ct -> [local v None;loop ct])
+		in
+		tag "Function" ((List.map arg f.tf_args) @ [loop f.tf_expr])
+	| TVar (v,eo) -> var v (match eo with None -> [] | Some e -> [loop e])
+	| TBlock el -> tag "Block" (List.map loop el)
+	| TIf (e,e1,e2) -> tag "If" (loop e :: (Printf.sprintf "[Then:%s] %s" (s_type e1.etype) (loop e1)) :: (match e2 with None -> [] | Some e -> [Printf.sprintf "[Else:%s] %s" (s_type e.etype) (loop e)]))
+	| TCast (e1,None) -> tag "Cast" [loop e1]
+	| TCast (e1,Some mt) -> tag "Cast" [loop e1; module_type mt]
+	| TThrow e1 -> tag "Throw" [loop e1]
+	| TBreak -> tag "Break" []
+	| TContinue -> tag "Continue" []
+	| TReturn None -> tag "Return" []
+	| TReturn (Some e1) -> tag "Return" [loop e1]
+	| TWhile (e1,e2,NormalWhile) -> tag "While" [loop e1; loop e2]
+	| TWhile (e1,e2,DoWhile) -> tag "Do" [loop e1; loop e2]
+	| TFor (v,e1,e2) -> tag "For" [local v None; loop e1; loop e2]
+	| TTry (e1,catches) ->
+		let sl = List.map (fun (v,e) ->
+			sprintf "Catch %s%s" (local v None) (tag_args (tabs ^ "\t") [loop ~extra_tabs:"\t" e]);
+		) catches in
+		tag "Try" ((loop e1) :: sl)
+	| TSwitch (e1,cases,eo) ->
+		let sl = List.map (fun (el,e) ->
+			tag "Case" ~t:(Some e.etype) ~extra_tabs:"\t" ((List.map loop el) @ [loop ~extra_tabs:"\t" e])
+		) cases in
+		let sl = match eo with
+			| None -> sl
+			| Some e -> sl @ [tag "Default" ~t:(Some e.etype) ~extra_tabs:"\t" [loop ~extra_tabs:"\t" e]]
+		in
+		tag "Switch" ((loop e1) :: sl)
+	| TMeta ((m,el,_),e1) ->
+		let s = Meta.to_string m in
+		let s = match el with
+			| [] -> s
+			| _ -> sprintf "%s(%s)" s (String.concat ", " (List.map Ast.Printer.s_expr el))
+		in
+		tag "Meta" [s; loop e1]
+	| TIdent s ->
+		tag "Ident" [s]
+
+let s_types ?(sep = ", ") tl =
+	let pctx = print_context() in
+	String.concat sep (List.map (s_type pctx) tl)
+
+let s_class_kind = function
+	| KNormal ->
+		"KNormal"
+	| KTypeParameter tl ->
+		Printf.sprintf "KTypeParameter [%s]" (s_types tl)
+	| KExpr _ ->
+		"KExpr"
+	| KGeneric ->
+		"KGeneric"
+	| KGenericInstance(c,tl) ->
+		Printf.sprintf "KGenericInstance %s<%s>" (s_type_path c.cl_path) (s_types tl)
+	| KMacroType ->
+		"KMacroType"
+	| KGenericBuild _ ->
+		"KGenericBuild"
+	| KAbstractImpl a ->
+		Printf.sprintf "KAbstractImpl %s" (s_type_path a.a_path)
+
+module Printer = struct
+
+	let s_type t =
+		s_type (print_context()) t
+
+	let s_pair s1 s2 =
+		Printf.sprintf "(%s,%s)" s1 s2
+
+	let s_record_field name value =
+		Printf.sprintf "%s = %s;" name value
+
+	let s_pos p =
+		Printf.sprintf "%s: %i-%i" p.pfile p.pmin p.pmax
+
+	let s_record_fields tabs fields =
+		let sl = List.map (fun (name,value) -> s_record_field name value) fields in
+		Printf.sprintf "{\n%s\t%s\n%s}" tabs (String.concat ("\n\t" ^ tabs) sl) tabs
+
+	let s_list sep f l =
+		"[" ^ (String.concat sep (List.map f l)) ^ "]"
+
+	let s_opt f o = match o with
+		| None -> "None"
+		| Some v -> f v
+
+	let s_pmap fk fv pm =
+		"{" ^ (String.concat ", " (PMap.foldi (fun k v acc -> (Printf.sprintf "%s = %s" (fk k) (fv v)) :: acc) pm [])) ^ "}"
+
+	let s_doc = s_opt (fun s -> s)
+
+	let s_metadata_entry (s,el,_) =
+		Printf.sprintf "@%s%s" (Meta.to_string s) (match el with [] -> "" | el -> "(" ^ (String.concat ", " (List.map Ast.Printer.s_expr el)) ^ ")")
+
+	let s_metadata metadata =
+		s_list " " s_metadata_entry metadata
+
+	let s_type_param (s,t) = match follow t with
+		| TInst({cl_kind = KTypeParameter tl1},tl2) ->
+			begin match tl1 with
+			| [] -> s
+			| _ -> Printf.sprintf "%s:%s" s (String.concat ", " (List.map s_type tl1))
+			end
+		| _ -> assert false
+
+	let s_type_params tl =
+		s_list ", " s_type_param tl
+
+	let s_tclass_field tabs cf =
+		s_record_fields tabs [
+			"cf_name",cf.cf_name;
+			"cf_doc",s_doc cf.cf_doc;
+			"cf_type",s_type_kind (follow cf.cf_type);
+			"cf_pos",s_pos cf.cf_pos;
+			"cf_name_pos",s_pos cf.cf_name_pos;
+			"cf_meta",s_metadata cf.cf_meta;
+			"cf_kind",s_kind cf.cf_kind;
+			"cf_params",s_type_params cf.cf_params;
+			"cf_expr",s_opt (s_expr_ast true "\t\t" s_type) cf.cf_expr;
+		]
+
+	let s_tclass tabs c =
+		s_record_fields tabs [
+			"cl_path",s_type_path c.cl_path;
+			"cl_module",s_type_path c.cl_module.m_path;
+			"cl_pos",s_pos c.cl_pos;
+			"cl_name_pos",s_pos c.cl_name_pos;
+			"cl_private",string_of_bool c.cl_private;
+			"cl_doc",s_doc c.cl_doc;
+			"cl_meta",s_metadata c.cl_meta;
+			"cl_params",s_type_params c.cl_params;
+			"cl_kind",s_class_kind c.cl_kind;
+			"cl_extern",string_of_bool c.cl_extern;
+			"cl_final",string_of_bool c.cl_final;
+			"cl_interface",string_of_bool c.cl_interface;
+			"cl_super",s_opt (fun (c,tl) -> s_type (TInst(c,tl))) c.cl_super;
+			"cl_implements",s_list ", " (fun (c,tl) -> s_type (TInst(c,tl))) c.cl_implements;
+			"cl_array_access",s_opt s_type c.cl_array_access;
+			"cl_overrides",s_list "," (fun cf -> cf.cf_name) c.cl_overrides;
+			"cl_init",s_opt (s_expr_ast true "" s_type) c.cl_init;
+			"cl_constructor",s_opt (s_tclass_field (tabs ^ "\t")) c.cl_constructor;
+			"cl_ordered_fields",s_list "\n\t" (s_tclass_field (tabs ^ "\t")) c.cl_ordered_fields;
+			"cl_ordered_statics",s_list "\n\t" (s_tclass_field (tabs ^ "\t")) c.cl_ordered_statics;
+		]
+
+	let s_tdef tabs t =
+		s_record_fields tabs [
+			"t_path",s_type_path t.t_path;
+			"t_module",s_type_path t.t_module.m_path;
+			"t_pos",s_pos t.t_pos;
+			"t_name_pos",s_pos t.t_name_pos;
+			"t_private",string_of_bool t.t_private;
+			"t_doc",s_doc t.t_doc;
+			"t_meta",s_metadata t.t_meta;
+			"t_params",s_type_params t.t_params;
+			"t_type",s_type_kind t.t_type
+		]
+
+	let s_tenum_field tabs ef =
+		s_record_fields tabs [
+			"ef_name",ef.ef_name;
+			"ef_doc",s_doc ef.ef_doc;
+			"ef_pos",s_pos ef.ef_pos;
+			"ef_name_pos",s_pos ef.ef_name_pos;
+			"ef_type",s_type_kind ef.ef_type;
+			"ef_index",string_of_int ef.ef_index;
+			"ef_params",s_type_params ef.ef_params;
+			"ef_meta",s_metadata ef.ef_meta
+		]
+
+	let s_tenum tabs en =
+		s_record_fields tabs [
+			"e_path",s_type_path en.e_path;
+			"e_module",s_type_path en.e_module.m_path;
+			"e_pos",s_pos en.e_pos;
+			"e_name_pos",s_pos en.e_name_pos;
+			"e_private",string_of_bool en.e_private;
+			"d_doc",s_doc en.e_doc;
+			"e_meta",s_metadata en.e_meta;
+			"e_params",s_type_params en.e_params;
+			"e_type",s_tdef "\t" en.e_type;
+			"e_extern",string_of_bool en.e_extern;
+			"e_constrs",s_list "\n\t" (s_tenum_field (tabs ^ "\t")) (PMap.fold (fun ef acc -> ef :: acc) en.e_constrs []);
+			"e_names",String.concat ", " en.e_names
+		]
+
+	let s_tabstract tabs a =
+		s_record_fields tabs [
+			"a_path",s_type_path a.a_path;
+			"a_modules",s_type_path a.a_module.m_path;
+			"a_pos",s_pos a.a_pos;
+			"a_name_pos",s_pos a.a_name_pos;
+			"a_private",string_of_bool a.a_private;
+			"a_doc",s_doc a.a_doc;
+			"a_meta",s_metadata a.a_meta;
+			"a_params",s_type_params a.a_params;
+			"a_ops",s_list ", " (fun (op,cf) -> Printf.sprintf "%s: %s" (s_binop op) cf.cf_name) a.a_ops;
+			"a_unops",s_list ", " (fun (op,flag,cf) -> Printf.sprintf "%s (%s): %s" (s_unop op) (if flag = Postfix then "postfix" else "prefix") cf.cf_name) a.a_unops;
+			"a_impl",s_opt (fun c -> s_type_path c.cl_path) a.a_impl;
+			"a_this",s_type_kind a.a_this;
+			"a_from",s_list ", " s_type_kind a.a_from;
+			"a_to",s_list ", " s_type_kind a.a_to;
+			"a_from_field",s_list ", " (fun (t,cf) -> Printf.sprintf "%s: %s" (s_type_kind t) cf.cf_name) a.a_from_field;
+			"a_to_field",s_list ", " (fun (t,cf) -> Printf.sprintf "%s: %s" (s_type_kind t) cf.cf_name) a.a_to_field;
+			"a_array",s_list ", " (fun cf -> cf.cf_name) a.a_array;
+			"a_read",s_opt (fun cf -> cf.cf_name) a.a_read;
+			"a_write",s_opt (fun cf -> cf.cf_name) a.a_write;
+		]
+
+	let s_tvar_extra (tl,eo) =
+		Printf.sprintf "Some(%s, %s)" (s_type_params tl) (s_opt (s_expr_ast true "" s_type) eo)
+
+	let s_tvar v =
+		s_record_fields "" [
+			"v_id",string_of_int v.v_id;
+			"v_name",v.v_name;
+			"v_type",s_type v.v_type;
+			"v_capture",string_of_bool v.v_capture;
+			"v_extra",s_opt s_tvar_extra v.v_extra;
+			"v_meta",s_metadata v.v_meta;
+		]
+
+	let s_module_kind = function
+		| MCode -> "MCode"
+		| MMacro -> "MMacro"
+		| MFake -> "MFake"
+		| MExtern -> "MExtern"
+		| MImport -> "MImport"
+
+	let s_module_def_extra tabs me =
+		s_record_fields tabs [
+			"m_file",me.m_file;
+			"m_sign",me.m_sign;
+			"m_time",string_of_float me.m_time;
+			"m_dirty",s_opt s_type_path me.m_dirty;
+			"m_added",string_of_int me.m_added;
+			"m_mark",string_of_int me.m_mark;
+			"m_deps",s_pmap string_of_int (fun m -> snd m.m_path) me.m_deps;
+			"m_processed",string_of_int me.m_processed;
+			"m_kind",s_module_kind me.m_kind;
+			"m_binded_res",""; (* TODO *)
+			"m_if_feature",""; (* TODO *)
+			"m_features",""; (* TODO *)
+		]
+
+	let s_module_def m =
+		s_record_fields "" [
+			"m_id",string_of_int m.m_id;
+			"m_path",s_type_path m.m_path;
+			"m_extra",s_module_def_extra "\t" m.m_extra
+		]
+
+	let s_type_path tp =
+		s_record_fields "" [
+			"tpackage",s_list "." (fun s -> s) tp.tpackage;
+			"tname",tp.tname;
+			"tparams","";
+			"tsub",s_opt (fun s -> s) tp.tsub;
+		]
+
+	let s_class_flag = function
+		| HInterface -> "HInterface"
+		| HExtern -> "HExtern"
+		| HPrivate -> "HPrivate"
+		| HExtends tp -> "HExtends " ^ (s_type_path (fst tp))
+		| HImplements tp -> "HImplements " ^ (s_type_path (fst tp))
+		| HFinal -> "HFinal"
+
+	let s_placed f (x,p) =
+		s_pair (f x) (s_pos p)
+
+	let s_class_field cff =
+		s_record_fields "" [
+			"cff_name",s_placed (fun s -> s) cff.cff_name;
+			"cff_doc",s_opt (fun s -> s) cff.cff_doc;
+			"cff_pos",s_pos cff.cff_pos;
+			"cff_meta",s_metadata cff.cff_meta;
+			"cff_access",s_list ", " Ast.s_placed_access cff.cff_access;
+		]
+end

+ 371 - 0
src/core/tType.ml

@@ -0,0 +1,371 @@
+open Ast
+open Globals
+
+type field_kind =
+	| Var of var_kind
+	| Method of method_kind
+
+and var_kind = {
+	v_read : var_access;
+	v_write : var_access;
+}
+
+and var_access =
+	| AccNormal
+	| AccNo             (* can't be accessed outside of the class itself and its subclasses *)
+	| AccNever          (* can't be accessed, even in subclasses *)
+	| AccCtor           (* can only be accessed from the constructor *)
+	| AccResolve        (* call resolve("field") when accessed *)
+	| AccCall           (* perform a method call when accessed *)
+	| AccInline         (* similar to Normal but inline when accessed *)
+	| AccRequire of string * string option (* set when @:require(cond) fails *)
+
+and method_kind =
+	| MethNormal
+	| MethInline
+	| MethDynamic
+	| MethMacro
+
+type module_check_policy =
+	| NoCheckFileTimeModification
+	| CheckFileContentModification
+	| NoCheckDependencies
+	| NoCheckShadowing
+
+type t =
+	| TMono of tmono
+	| TEnum of tenum * tparams
+	| TInst of tclass * tparams
+	| TType of tdef * tparams
+	| TFun of tsignature
+	| TAnon of tanon
+	| TDynamic of t
+	| TLazy of tlazy ref
+	| TAbstract of tabstract * tparams
+
+and tmono = {
+	mutable tm_type : t option;
+}
+
+and tlazy =
+	| LAvailable of t
+	| LProcessing of (unit -> t)
+	| LWait of (unit -> t)
+
+and tsignature = (string * bool * t) list * t
+
+and tparams = t list
+
+and type_params = (string * t) list
+
+and tconstant =
+	| TInt of int32
+	| TFloat of string
+	| TString of string
+	| TBool of bool
+	| TNull
+	| TThis
+	| TSuper
+
+and tvar_extra = (type_params * texpr option) option
+
+and tvar_origin =
+	| TVOLocalVariable
+	| TVOArgument
+	| TVOForVariable
+	| TVOPatternVariable
+	| TVOCatchVariable
+	| TVOLocalFunction
+
+and tvar_kind =
+	| VUser of tvar_origin
+	| VGenerated
+	| VInlined
+	| VInlinedConstructorVariable
+	| VExtractorVariable
+
+and tvar = {
+	mutable v_id : int;
+	mutable v_name : string;
+	mutable v_type : t;
+	mutable v_kind : tvar_kind;
+	mutable v_capture : bool;
+	mutable v_final : bool;
+	mutable v_extra : tvar_extra;
+	mutable v_meta : metadata;
+	v_pos : pos;
+}
+
+and tfunc = {
+	tf_args : (tvar * texpr option) list;
+	tf_type : t;
+	tf_expr : texpr;
+}
+
+and anon_status =
+	| Closed
+	| Opened
+	| Const
+	| Extend of t list
+	| Statics of tclass
+	| EnumStatics of tenum
+	| AbstractStatics of tabstract
+
+and tanon = {
+	mutable a_fields : (string, tclass_field) PMap.t;
+	a_status : anon_status ref;
+}
+
+and texpr_expr =
+	| TConst of tconstant
+	| TLocal of tvar
+	| TArray of texpr * texpr
+	| TBinop of Ast.binop * texpr * texpr
+	| TField of texpr * tfield_access
+	| TTypeExpr of module_type
+	| TParenthesis of texpr
+	| TObjectDecl of ((string * pos * quote_status) * texpr) list
+	| TArrayDecl of texpr list
+	| TCall of texpr * texpr list
+	| TNew of tclass * tparams * texpr list
+	| TUnop of Ast.unop * Ast.unop_flag * texpr
+	| TFunction of tfunc
+	| TVar of tvar * texpr option
+	| TBlock of texpr list
+	| TFor of tvar * texpr * texpr
+	| TIf of texpr * texpr * texpr option
+	| TWhile of texpr * texpr * Ast.while_flag
+	| TSwitch of texpr * (texpr list * texpr) list * texpr option
+	| TTry of texpr * (tvar * texpr) list
+	| TReturn of texpr option
+	| TBreak
+	| TContinue
+	| TThrow of texpr
+	| TCast of texpr * module_type option
+	| TMeta of metadata_entry * texpr
+	| TEnumParameter of texpr * tenum_field * int
+	| TEnumIndex of texpr
+	| TIdent of string
+
+and tfield_access =
+	| FInstance of tclass * tparams * tclass_field
+	| FStatic of tclass * tclass_field
+	| FAnon of tclass_field
+	| FDynamic of string
+	| FClosure of (tclass * tparams) option * tclass_field (* None class = TAnon *)
+	| FEnum of tenum * tenum_field
+
+and texpr = {
+	eexpr : texpr_expr;
+	etype : t;
+	epos : pos;
+}
+
+and tclass_field = {
+	mutable cf_name : string;
+	mutable cf_type : t;
+	cf_pos : pos;
+	cf_name_pos : pos;
+	mutable cf_doc : Ast.documentation;
+	mutable cf_meta : metadata;
+	mutable cf_kind : field_kind;
+	mutable cf_params : type_params;
+	mutable cf_expr : texpr option;
+	mutable cf_expr_unoptimized : tfunc option;
+	mutable cf_overloads : tclass_field list;
+	mutable cf_flags : int;
+}
+
+and tclass_kind =
+	| KNormal
+	| KTypeParameter of t list
+	| KExpr of Ast.expr
+	| KGeneric
+	| KGenericInstance of tclass * tparams
+	| KMacroType
+	| KGenericBuild of class_field list
+	| KAbstractImpl of tabstract
+
+and metadata = Ast.metadata
+
+and tinfos = {
+	mt_path : path;
+	mt_module : module_def;
+	mt_pos : pos;
+	mt_name_pos : pos;
+	mt_private : bool;
+	mt_doc : Ast.documentation;
+	mutable mt_meta : metadata;
+	mt_params : type_params;
+	mutable mt_using : (tclass * pos) list;
+}
+
+and tclass = {
+	mutable cl_path : path;
+	mutable cl_module : module_def;
+	mutable cl_pos : pos;
+	mutable cl_name_pos : pos;
+	mutable cl_private : bool;
+	mutable cl_doc : Ast.documentation;
+	mutable cl_meta : metadata;
+	mutable cl_params : type_params;
+	mutable cl_using : (tclass * pos) list;
+	(* do not insert any fields above *)
+	mutable cl_kind : tclass_kind;
+	mutable cl_extern : bool;
+	mutable cl_final : bool;
+	mutable cl_interface : bool;
+	mutable cl_super : (tclass * tparams) option;
+	mutable cl_implements : (tclass * tparams) list;
+	mutable cl_fields : (string, tclass_field) PMap.t;
+	mutable cl_statics : (string, tclass_field) PMap.t;
+	mutable cl_ordered_statics : tclass_field list;
+	mutable cl_ordered_fields : tclass_field list;
+	mutable cl_dynamic : t option;
+	mutable cl_array_access : t option;
+	mutable cl_constructor : tclass_field option;
+	mutable cl_init : texpr option;
+	mutable cl_overrides : tclass_field list;
+
+	mutable cl_build : unit -> build_state;
+	mutable cl_restore : unit -> unit;
+	(*
+		These are classes which directly extend or directly implement this class.
+		Populated automatically in post-processing step (Filters.run)
+	*)
+	mutable cl_descendants : tclass list;
+}
+
+and tenum_field = {
+	ef_name : string;
+	mutable ef_type : t;
+	ef_pos : pos;
+	ef_name_pos : pos;
+	ef_doc : Ast.documentation;
+	ef_index : int;
+	mutable ef_params : type_params;
+	mutable ef_meta : metadata;
+}
+
+and tenum = {
+	mutable e_path : path;
+	e_module : module_def;
+	e_pos : pos;
+	e_name_pos : pos;
+	e_private : bool;
+	e_doc : Ast.documentation;
+	mutable e_meta : metadata;
+	mutable e_params : type_params;
+	mutable e_using : (tclass * pos) list;
+	(* do not insert any fields above *)
+	e_type : tdef;
+	mutable e_extern : bool;
+	mutable e_constrs : (string , tenum_field) PMap.t;
+	mutable e_names : string list;
+}
+
+and tdef = {
+	t_path : path;
+	t_module : module_def;
+	t_pos : pos;
+	t_name_pos : pos;
+	t_private : bool;
+	t_doc : Ast.documentation;
+	mutable t_meta : metadata;
+	mutable t_params : type_params;
+	mutable t_using : (tclass * pos) list;
+	(* do not insert any fields above *)
+	mutable t_type : t;
+}
+
+and tabstract = {
+	mutable a_path : path;
+	a_module : module_def;
+	a_pos : pos;
+	a_name_pos : pos;
+	a_private : bool;
+	a_doc : Ast.documentation;
+	mutable a_meta : metadata;
+	mutable a_params : type_params;
+	mutable a_using : (tclass * pos) list;
+	(* do not insert any fields above *)
+	mutable a_ops : (Ast.binop * tclass_field) list;
+	mutable a_unops : (Ast.unop * unop_flag * tclass_field) list;
+	mutable a_impl : tclass option;
+	mutable a_this : t;
+	mutable a_from : t list;
+	mutable a_from_field : (t * tclass_field) list;
+	mutable a_to : t list;
+	mutable a_to_field : (t * tclass_field) list;
+	mutable a_array : tclass_field list;
+	mutable a_read : tclass_field option;
+	mutable a_write : tclass_field option;
+}
+
+and module_type =
+	| TClassDecl of tclass
+	| TEnumDecl of tenum
+	| TTypeDecl of tdef
+	| TAbstractDecl of tabstract
+
+and module_def = {
+	m_id : int;
+	m_path : path;
+	mutable m_types : module_type list;
+	m_extra : module_def_extra;
+}
+
+and module_def_display = {
+	mutable m_inline_calls : (pos * pos) list; (* calls whatever is at pos1 from pos2 *)
+	mutable m_type_hints : (pos * pos) list;
+}
+
+and module_def_extra = {
+	m_file : string;
+	m_sign : string;
+	m_display : module_def_display;
+	mutable m_check_policy : module_check_policy list;
+	mutable m_time : float;
+	mutable m_dirty : path option;
+	mutable m_added : int;
+	mutable m_mark : int;
+	mutable m_deps : (int,module_def) PMap.t;
+	mutable m_processed : int;
+	mutable m_kind : module_kind;
+	mutable m_binded_res : (string, string) PMap.t;
+	mutable m_if_feature : (string *(tclass * tclass_field * bool)) list;
+	mutable m_features : (string,bool) Hashtbl.t;
+}
+
+and module_kind =
+	| MCode
+	| MMacro
+	| MFake
+	| MExtern
+	| MImport
+
+and build_state =
+	| Built
+	| Building of tclass list
+	| BuildMacro of (unit -> unit) list ref
+
+type basic_types = {
+	mutable tvoid : t;
+	mutable tint : t;
+	mutable tfloat : t;
+	mutable tbool : t;
+	mutable tnull : t -> t;
+	mutable tstring : t;
+	mutable tarray : t -> t;
+}
+
+type class_field_scope =
+	| CFSStatic
+	| CFSMember
+	| CFSConstructor
+
+type flag_tclass_field =
+	| CfPublic
+	| CfExtern (* This is only set if the field itself is extern, not just the class. *)
+	| CfFinal
+	| CfModifiesThis (* This is set for methods which reassign `this`. E.g. `this = value` *)

+ 852 - 0
src/core/tUnification.ml

@@ -0,0 +1,852 @@
+open Globals
+open TType
+open TFunctions
+open TPrinting
+
+module Monomorph = struct
+	let create () = {
+		tm_type = None;
+	}
+
+	let do_bind m t =
+		(* assert(m.tm_type = None); *) (* TODO: should be here, but matcher.ml does some weird bind handling at the moment. *)
+		m.tm_type <- Some t
+
+	let rec bind m t =
+		m.tm_type <- Some t
+
+	let unbind m =
+		m.tm_type <- None
+end
+
+let rec link e a b =
+	(* tell if setting a == b will create a type-loop *)
+	let rec loop t =
+		if t == a then
+			true
+		else match t with
+		| TMono t -> (match t.tm_type with None -> false | Some t -> loop t)
+		| TEnum (_,tl) -> List.exists loop tl
+		| TInst (_,tl) | TType (_,tl) | TAbstract (_,tl) -> List.exists loop tl
+		| TFun (tl,t) -> List.exists (fun (_,_,t) -> loop t) tl || loop t
+		| TDynamic t2 ->
+			if t == t2 then
+				false
+			else
+				loop t2
+		| TLazy f ->
+			loop (lazy_type f)
+		| TAnon a ->
+			try
+				PMap.iter (fun _ f -> if loop f.cf_type then raise Exit) a.a_fields;
+				false
+			with
+				Exit -> true
+	in
+	(* tell is already a ~= b *)
+	if loop b then
+		(follow b) == a
+	else if b == t_dynamic then
+		true
+	else begin
+		Monomorph.bind e b;
+		true
+	end
+
+let would_produce_recursive_anon field_acceptor field_donor =
+	try
+		(match !(field_acceptor.a_status) with
+		| Opened ->
+			PMap.iter (fun n field ->
+				match follow field.cf_type with
+				| TAnon a when field_acceptor == a -> raise Exit
+				| _ -> ()
+			) field_donor.a_fields;
+		| _ -> ());
+		false
+	with Exit -> true
+
+let link_dynamic a b = match follow a,follow b with
+	| TMono r,TDynamic _ -> Monomorph.bind r b
+	| TDynamic _,TMono r -> Monomorph.bind r a
+	| _ -> ()
+
+let fast_eq_check type_param_check a b =
+	if a == b then
+		true
+	else match a , b with
+	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
+		List.for_all2 (fun (_,_,t1) (_,_,t2) -> type_param_check t1 t2) l1 l2 && type_param_check r1 r2
+	| TType (t1,l1), TType (t2,l2) ->
+		t1 == t2 && List.for_all2 type_param_check l1 l2
+	| TEnum (e1,l1), TEnum (e2,l2) ->
+		e1 == e2 && List.for_all2 type_param_check l1 l2
+	| TInst (c1,l1), TInst (c2,l2) ->
+		c1 == c2 && List.for_all2 type_param_check l1 l2
+	| TAbstract (a1,l1), TAbstract (a2,l2) ->
+		a1 == a2 && List.for_all2 type_param_check l1 l2
+	| _ , _ ->
+		false
+
+let rec fast_eq a b = fast_eq_check fast_eq a b
+
+let rec fast_eq_mono ml a b =
+	if fast_eq_check (fast_eq_mono ml) a b then
+		true
+	else match a , b with
+	| TMono _, _ ->
+		List.memq a ml
+	| _ , _ ->
+		false
+
+let rec shallow_eq a b =
+	a == b
+	|| begin
+		let a = follow a
+		and b = follow b in
+		fast_eq_check shallow_eq a b
+		|| match a , b with
+			| t, TMono { tm_type = None } when t == t_dynamic -> true
+			| TMono { tm_type = None }, t when t == t_dynamic -> true
+			| TMono { tm_type = None }, TMono { tm_type = None } -> true
+			| TAnon a1, TAnon a2 ->
+				let fields_eq() =
+					let rec loop fields1 fields2 =
+						match fields1, fields2 with
+						| [], [] -> true
+						| _, [] | [], _ -> false
+						| f1 :: rest1, f2 :: rest2 ->
+							f1.cf_name = f2.cf_name
+							&& (try shallow_eq f1.cf_type f2.cf_type with Not_found -> false)
+							&& loop rest1 rest2
+					in
+					let fields1 = PMap.fold (fun field fields -> field :: fields) a1.a_fields []
+					and fields2 = PMap.fold (fun field fields -> field :: fields) a2.a_fields []
+					and sort_compare f1 f2 = compare f1.cf_name f2.cf_name in
+					loop (List.sort sort_compare fields1) (List.sort sort_compare fields2)
+				in
+				(match !(a2.a_status), !(a1.a_status) with
+				| Statics c, Statics c2 -> c == c2
+				| EnumStatics e, EnumStatics e2 -> e == e2
+				| AbstractStatics a, AbstractStatics a2 -> a == a2
+				| Extend tl1, Extend tl2 -> fields_eq() && List.for_all2 shallow_eq tl1 tl2
+				| Closed, Closed -> fields_eq()
+				| Opened, Opened -> fields_eq()
+				| Const, Const -> fields_eq()
+				| _ -> false
+				)
+			| _ , _ ->
+				false
+	end
+
+(* perform unification with subtyping.
+   the first type is always the most down in the class hierarchy
+   it's also the one that is pointed by the position.
+   It's actually a typecheck of  A :> B where some mutations can happen *)
+
+type unify_error =
+	| Cannot_unify of t * t
+	| Invalid_field_type of string
+	| Has_no_field of t * string
+	| Has_no_runtime_field of t * string
+	| Has_extra_field of t * string
+	| Invalid_kind of string * field_kind * field_kind
+	| Invalid_visibility of string
+	| Not_matching_optional of string
+	| Cant_force_optional
+	| Invariant_parameter of int
+	| Constraint_failure of string
+	| Missing_overload of tclass_field * t
+	| FinalInvariance (* nice band name *)
+	| Invalid_function_argument of int (* index *) * int (* total *)
+	| Invalid_return_type
+	| Unify_custom of string
+
+exception Unify_error of unify_error list
+
+let cannot_unify a b = Cannot_unify (a,b)
+let invalid_field n = Invalid_field_type n
+let invalid_kind n a b = Invalid_kind (n,a,b)
+let invalid_visibility n = Invalid_visibility n
+let has_no_field t n = Has_no_field (t,n)
+let has_extra_field t n = Has_extra_field (t,n)
+let error l = raise (Unify_error l)
+let has_meta m ml = List.exists (fun (m2,_,_) -> m = m2) ml
+let get_meta m ml = List.find (fun (m2,_,_) -> m = m2) ml
+
+(*
+	we can restrict access as soon as both are runtime-compatible
+*)
+let unify_access a1 a2 =
+	a1 = a2 || match a1, a2 with
+	| _, AccNo | _, AccNever -> true
+	| AccInline, AccNormal -> true
+	| _ -> false
+
+let direct_access = function
+	| AccNo | AccNever | AccNormal | AccInline | AccRequire _ | AccCtor -> true
+	| AccResolve | AccCall -> false
+
+let unify_kind k1 k2 =
+	k1 = k2 || match k1, k2 with
+		| Var v1, Var v2 -> unify_access v1.v_read v2.v_read && unify_access v1.v_write v2.v_write
+		| Var v, Method m ->
+			(match v.v_read, v.v_write, m with
+			| AccNormal, _, MethNormal -> true
+			| AccNormal, AccNormal, MethDynamic -> true
+			| _ -> false)
+		| Method m, Var v ->
+			(match m with
+			| MethDynamic -> direct_access v.v_read && direct_access v.v_write
+			| MethMacro -> false
+			| MethNormal | MethInline ->
+				match v.v_read,v.v_write with
+				| AccNormal,(AccNo | AccNever) -> true
+				| _ -> false)
+		| Method m1, Method m2 ->
+			match m1,m2 with
+			| MethInline, MethNormal
+			| MethDynamic, MethNormal -> true
+			| _ -> false
+
+type 'a rec_stack = {
+	mutable rec_stack : 'a list;
+}
+
+let new_rec_stack() = { rec_stack = [] }
+let rec_stack_exists f s = List.exists f s.rec_stack
+let rec_stack_memq v s = List.memq v s.rec_stack
+let rec_stack_loop stack value f arg =
+	stack.rec_stack <- value :: stack.rec_stack;
+	try
+		let r = f arg in
+		stack.rec_stack <- List.tl stack.rec_stack;
+		r
+	with e ->
+		stack.rec_stack <- List.tl stack.rec_stack;
+		raise e
+
+let eq_stack = new_rec_stack()
+
+let rec_stack stack value fcheck frun ferror =
+	if not (rec_stack_exists fcheck stack) then begin
+		try
+			stack.rec_stack <- value :: stack.rec_stack;
+			let v = frun() in
+			stack.rec_stack <- List.tl stack.rec_stack;
+			v
+		with
+			Unify_error l ->
+				stack.rec_stack <- List.tl stack.rec_stack;
+				ferror l
+			| e ->
+				stack.rec_stack <- List.tl stack.rec_stack;
+				raise e
+	end
+
+let rec_stack_default stack value fcheck frun def =
+	if not (rec_stack_exists fcheck stack) then rec_stack_loop stack value frun () else def
+
+let rec_stack_bool stack value fcheck frun =
+	if (rec_stack_exists fcheck stack) then false else begin
+		try
+			stack.rec_stack <- value :: stack.rec_stack;
+			frun();
+			stack.rec_stack <- List.tl stack.rec_stack;
+			true
+		with
+			Unify_error l ->
+				stack.rec_stack <- List.tl stack.rec_stack;
+				false
+			| e ->
+				stack.rec_stack <- List.tl stack.rec_stack;
+				raise e
+	end
+
+type eq_kind =
+	| EqStrict
+	| EqCoreType
+	| EqRightDynamic
+	| EqBothDynamic
+	| EqDoNotFollowNull (* like EqStrict, but does not follow Null<T> *)
+
+let rec type_eq param a b =
+	let can_follow t = match param with
+		| EqCoreType -> false
+		| EqDoNotFollowNull -> not (is_explicit_null t)
+		| _ -> true
+	in
+	if a == b then
+		()
+	else match a , b with
+	| TLazy f , _ -> type_eq param (lazy_type f) b
+	| _ , TLazy f -> type_eq param a (lazy_type f)
+	| TMono t , _ ->
+		(match t.tm_type with
+		| None -> if param = EqCoreType || not (link t a b) then error [cannot_unify a b]
+		| Some t -> type_eq param t b)
+	| _ , TMono t ->
+		(match t.tm_type with
+		| None -> if param = EqCoreType || not (link t b a) then error [cannot_unify a b]
+		| Some t -> type_eq param a t)
+	| TAbstract ({a_path=[],"Null"},[t1]),TAbstract ({a_path=[],"Null"},[t2]) ->
+		type_eq param t1 t2
+	| TAbstract ({a_path=[],"Null"},[t]),_ when param <> EqDoNotFollowNull ->
+		type_eq param t b
+	| _,TAbstract ({a_path=[],"Null"},[t]) when param <> EqDoNotFollowNull ->
+		type_eq param a t
+	| TType (t1,tl1), TType (t2,tl2) when (t1 == t2 || (param = EqCoreType && t1.t_path = t2.t_path)) && List.length tl1 = List.length tl2 ->
+		type_eq_params param a b tl1 tl2
+	| TType (t,tl) , _ when can_follow a ->
+		type_eq param (apply_params t.t_params tl t.t_type) b
+	| _ , TType (t,tl) when can_follow b ->
+		rec_stack eq_stack (a,b)
+			(fun (a2,b2) -> fast_eq a a2 && fast_eq b b2)
+			(fun() -> type_eq param a (apply_params t.t_params tl t.t_type))
+			(fun l -> error (cannot_unify a b :: l))
+	| TEnum (e1,tl1) , TEnum (e2,tl2) ->
+		if e1 != e2 && not (param = EqCoreType && e1.e_path = e2.e_path) then error [cannot_unify a b];
+		type_eq_params param a b tl1 tl2
+	| TInst (c1,tl1) , TInst (c2,tl2) ->
+		if c1 != c2 && not (param = EqCoreType && c1.cl_path = c2.cl_path) && (match c1.cl_kind, c2.cl_kind with KExpr _, KExpr _ -> false | _ -> true) then error [cannot_unify a b];
+		type_eq_params param a b tl1 tl2
+	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
+		let i = ref 0 in
+		(try
+			type_eq param r1 r2;
+			List.iter2 (fun (n,o1,t1) (_,o2,t2) ->
+				incr i;
+				if o1 <> o2 then error [Not_matching_optional n];
+				type_eq param t1 t2
+			) l1 l2
+		with
+			Unify_error l ->
+				let msg = if !i = 0 then Invalid_return_type else Invalid_function_argument(!i,List.length l1) in
+				error (cannot_unify a b :: msg :: l)
+		)
+	| TDynamic a , TDynamic b ->
+		type_eq param a b
+	| TAbstract (a1,tl1) , TAbstract (a2,tl2) ->
+		if a1 != a2 && not (param = EqCoreType && a1.a_path = a2.a_path) then error [cannot_unify a b];
+		type_eq_params param a b tl1 tl2
+	| TAnon a1, TAnon a2 ->
+		(try
+			(match !(a2.a_status) with
+			| Statics c -> (match !(a1.a_status) with Statics c2 when c == c2 -> () | _ -> error [])
+			| EnumStatics e -> (match !(a1.a_status) with EnumStatics e2 when e == e2 -> () | _ -> error [])
+			| AbstractStatics a -> (match !(a1.a_status) with AbstractStatics a2 when a == a2 -> () | _ -> error [])
+			| _ -> ()
+			);
+			if would_produce_recursive_anon a1 a2 || would_produce_recursive_anon a2 a1 then error [cannot_unify a b];
+			PMap.iter (fun n f1 ->
+				try
+					let f2 = PMap.find n a2.a_fields in
+					if f1.cf_kind <> f2.cf_kind && (param = EqStrict || param = EqCoreType || not (unify_kind f1.cf_kind f2.cf_kind)) then error [invalid_kind n f1.cf_kind f2.cf_kind];
+					let a = f1.cf_type and b = f2.cf_type in
+					(try type_eq param a b with Unify_error l -> error (invalid_field n :: l));
+					if (has_class_field_flag f1 CfPublic) != (has_class_field_flag f2 CfPublic) then error [invalid_visibility n];
+				with
+					Not_found ->
+						if is_closed a2 then error [has_no_field b n];
+						if not (link (Monomorph.create()) b f1.cf_type) then error [cannot_unify a b];
+						a2.a_fields <- PMap.add n f1 a2.a_fields
+			) a1.a_fields;
+			PMap.iter (fun n f2 ->
+				if not (PMap.mem n a1.a_fields) then begin
+					if is_closed a1 then error [has_no_field a n];
+					if not (link (Monomorph.create()) a f2.cf_type) then error [cannot_unify a b];
+					a1.a_fields <- PMap.add n f2 a1.a_fields
+				end;
+			) a2.a_fields;
+		with
+			Unify_error l -> error (cannot_unify a b :: l))
+	| _ , _ ->
+		if b == t_dynamic && (param = EqRightDynamic || param = EqBothDynamic) then
+			()
+		else if a == t_dynamic && param = EqBothDynamic then
+			()
+		else
+			error [cannot_unify a b]
+
+and type_eq_params param a b tl1 tl2 =
+	let i = ref 0 in
+	List.iter2 (fun t1 t2 ->
+		incr i;
+		try
+			type_eq param t1 t2
+		with Unify_error l ->
+			let err = cannot_unify a b in
+			error (err :: (Invariant_parameter !i) :: l)
+		) tl1 tl2
+
+let type_iseq a b =
+	try
+		type_eq EqStrict a b;
+		true
+	with
+		Unify_error _ -> false
+
+let type_iseq_strict a b =
+	try
+		type_eq EqDoNotFollowNull a b;
+		true
+	with Unify_error _ ->
+		false
+
+let unify_stack = new_rec_stack()
+let abstract_cast_stack = new_rec_stack()
+let unify_new_monos = new_rec_stack()
+
+let print_stacks() =
+	let ctx = print_context() in
+	let st = s_type ctx in
+	print_endline "unify_stack";
+	List.iter (fun (a,b) -> Printf.printf "\t%s , %s\n" (st a) (st b)) unify_stack.rec_stack;
+	print_endline "monos";
+	List.iter (fun m -> print_endline ("\t" ^ st m)) unify_new_monos.rec_stack;
+	print_endline "abstract_cast_stack";
+	List.iter (fun (a,b) -> Printf.printf "\t%s , %s\n" (st a) (st b)) abstract_cast_stack.rec_stack
+
+let rec unify a b =
+	if a == b then
+		()
+	else match a, b with
+	| TLazy f , _ -> unify (lazy_type f) b
+	| _ , TLazy f -> unify a (lazy_type f)
+	| TMono t , _ ->
+		(match t.tm_type with
+		| None -> if not (link t a b) then error [cannot_unify a b]
+		| Some t -> unify t b)
+	| _ , TMono t ->
+		(match t.tm_type with
+		| None -> if not (link t b a) then error [cannot_unify a b]
+		| Some t -> unify a t)
+	| TType (t,tl) , _ ->
+		rec_stack unify_stack (a,b)
+			(fun(a2,b2) -> fast_eq a a2 && fast_eq b b2)
+			(fun() -> try_apply_params_rec t.t_params tl t.t_type (fun a -> unify a b))
+			(fun l -> error (cannot_unify a b :: l))
+	| _ , TType (t,tl) ->
+		rec_stack unify_stack (a,b)
+			(fun(a2,b2) -> fast_eq a a2 && fast_eq b b2)
+			(fun() -> try_apply_params_rec t.t_params tl t.t_type (unify a))
+			(fun l -> error (cannot_unify a b :: l))
+	| TEnum (ea,tl1) , TEnum (eb,tl2) ->
+		if ea != eb then error [cannot_unify a b];
+		unify_type_params a b tl1 tl2
+	| TAbstract ({a_path=[],"Null"},[t]),_ ->
+		begin try unify t b
+		with Unify_error l -> error (cannot_unify a b :: l) end
+	| _,TAbstract ({a_path=[],"Null"},[t]) ->
+		begin try unify a t
+		with Unify_error l -> error (cannot_unify a b :: l) end
+	| TAbstract (a1,tl1) , TAbstract (a2,tl2) when a1 == a2 ->
+		begin try
+			unify_type_params a b tl1 tl2
+		with Unify_error _ as err ->
+			(* the type could still have a from/to relation to itself (issue #3494) *)
+			begin try
+				unify_abstracts a b a1 tl1 a2 tl2
+			with Unify_error _ ->
+				raise err
+			end
+		end
+	| TAbstract ({a_path=[],"Void"},_) , _
+	| _ , TAbstract ({a_path=[],"Void"},_) ->
+		error [cannot_unify a b]
+	| TAbstract (a1,tl1) , TAbstract (a2,tl2) ->
+		unify_abstracts a b a1 tl1 a2 tl2
+	| TInst (c1,tl1) , TInst (c2,tl2) ->
+		let rec loop c tl =
+			if c == c2 then begin
+				unify_type_params a b tl tl2;
+				true
+			end else (match c.cl_super with
+				| None -> false
+				| Some (cs,tls) ->
+					loop cs (List.map (apply_params c.cl_params tl) tls)
+			) || List.exists (fun (cs,tls) ->
+				loop cs (List.map (apply_params c.cl_params tl) tls)
+			) c.cl_implements
+			|| (match c.cl_kind with
+			| KTypeParameter pl -> List.exists (fun t ->
+				match follow t with
+				| TInst (cs,tls) -> loop cs (List.map (apply_params c.cl_params tl) tls)
+				| TAbstract(aa,tl) -> List.exists (unify_to aa tl b) aa.a_to
+				| _ -> false
+			) pl
+			| _ -> false)
+		in
+		if not (loop c1 tl1) then error [cannot_unify a b]
+	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
+		let i = ref 0 in
+		(try
+			(match follow r2 with
+			| TAbstract ({a_path=[],"Void"},_) -> incr i
+			| _ -> unify r1 r2; incr i);
+			List.iter2 (fun (_,o1,t1) (_,o2,t2) ->
+				if o1 && not o2 then error [Cant_force_optional];
+				unify t1 t2;
+				incr i
+			) l2 l1 (* contravariance *)
+		with
+			Unify_error l ->
+				let msg = if !i = 0 then Invalid_return_type else Invalid_function_argument(!i,List.length l1) in
+				error (cannot_unify a b :: msg :: l))
+	| TInst (c,tl) , TAnon an ->
+		if PMap.is_empty an.a_fields then (match c.cl_kind with
+			| KTypeParameter pl ->
+				(* one of the constraints must unify with { } *)
+				if not (List.exists (fun t -> match follow t with TInst _ | TAnon _ -> true | _ -> false) pl) then error [cannot_unify a b]
+			| _ -> ());
+		(try
+			PMap.iter (fun n f2 ->
+				(*
+					introducing monomorphs while unifying might create infinite loops - see #2315
+					let's store these monomorphs and make sure we reach a fixed point
+				*)
+				let monos = ref [] in
+				let make_type f =
+					match f.cf_params with
+					| [] -> f.cf_type
+					| l ->
+						let ml = List.map (fun _ -> mk_mono()) l in
+						monos := ml;
+						apply_params f.cf_params ml f.cf_type
+				in
+				let _, ft, f1 = (try raw_class_field make_type c tl n with Not_found -> error [has_no_field a n]) in
+				let ft = apply_params c.cl_params tl ft in
+				if not (unify_kind f1.cf_kind f2.cf_kind) then error [invalid_kind n f1.cf_kind f2.cf_kind];
+				if (has_class_field_flag f2 CfPublic) && not (has_class_field_flag f1 CfPublic) then error [invalid_visibility n];
+
+				(match f2.cf_kind with
+				| Var { v_read = AccNo } | Var { v_read = AccNever } ->
+					(* we will do a recursive unification, so let's check for possible recursion *)
+					let old_monos = unify_new_monos.rec_stack in
+					unify_new_monos.rec_stack <- !monos @ unify_new_monos.rec_stack;
+					rec_stack unify_stack (ft,f2.cf_type)
+						(fun (a2,b2) -> fast_eq b2 f2.cf_type && fast_eq_mono unify_new_monos.rec_stack ft a2)
+						(fun() -> try unify_with_access f1 ft f2 with e -> unify_new_monos.rec_stack <- old_monos; raise e)
+						(fun l -> error (invalid_field n :: l));
+					unify_new_monos.rec_stack <- old_monos;
+				| Method MethNormal | Method MethInline | Var { v_write = AccNo } | Var { v_write = AccNever } ->
+					(* same as before, but unification is reversed (read-only var) *)
+					let old_monos = unify_new_monos.rec_stack in
+					unify_new_monos.rec_stack <- !monos @ unify_new_monos.rec_stack;
+					rec_stack unify_stack (f2.cf_type,ft)
+						(fun(a2,b2) -> fast_eq_mono unify_new_monos.rec_stack b2 ft && fast_eq f2.cf_type a2)
+						(fun() -> try unify_with_access f1 ft f2 with e -> unify_new_monos.rec_stack <- old_monos; raise e)
+						(fun l -> error (invalid_field n :: l));
+					unify_new_monos.rec_stack <- old_monos;
+				| _ ->
+					(* will use fast_eq, which have its own stack *)
+					try
+						unify_with_access f1 ft f2
+					with
+						Unify_error l ->
+							error (invalid_field n :: l));
+
+				List.iter (fun f2o ->
+					if not (List.exists (fun f1o -> type_iseq f1o.cf_type f2o.cf_type) (f1 :: f1.cf_overloads))
+					then error [Missing_overload (f1, f2o.cf_type)]
+				) f2.cf_overloads;
+				(* we mark the field as :?used because it might be used through the structure *)
+				if not (Meta.has Meta.MaybeUsed f1.cf_meta) then begin
+					f1.cf_meta <- (Meta.MaybeUsed,[],f1.cf_pos) :: f1.cf_meta;
+					match f2.cf_kind with
+					| Var vk ->
+						let check name =
+							try
+								let _,_,cf = raw_class_field make_type c tl name in
+								if not (Meta.has Meta.MaybeUsed cf.cf_meta) then
+									cf.cf_meta <- (Meta.MaybeUsed,[],f1.cf_pos) :: cf.cf_meta
+							with Not_found ->
+								()
+						in
+						(match vk.v_read with AccCall -> check ("get_" ^ f1.cf_name) | _ -> ());
+						(match vk.v_write with AccCall -> check ("set_" ^ f1.cf_name) | _ -> ());
+					| _ -> ()
+				end;
+				(match f1.cf_kind with
+				| Method MethInline ->
+					if (c.cl_extern || has_class_field_flag f1 CfExtern) && not (Meta.has Meta.Runtime f1.cf_meta) then error [Has_no_runtime_field (a,n)];
+				| _ -> ());
+			) an.a_fields;
+			(match !(an.a_status) with
+			| Opened -> an.a_status := Closed;
+			| Statics _ | EnumStatics _ | AbstractStatics _ -> error []
+			| Closed | Extend _ | Const -> ())
+		with
+			Unify_error l -> error (cannot_unify a b :: l))
+	| TAnon a1, TAnon a2 ->
+		unify_anons a b a1 a2
+	| TAnon an, TAbstract ({ a_path = [],"Class" },[pt]) ->
+		(match !(an.a_status) with
+		| Statics cl -> unify (TInst (cl,List.map (fun _ -> mk_mono()) cl.cl_params)) pt
+		| _ -> error [cannot_unify a b])
+	| TAnon an, TAbstract ({ a_path = [],"Enum" },[pt]) ->
+		(match !(an.a_status) with
+		| EnumStatics e -> unify (TEnum (e,List.map (fun _ -> mk_mono()) e.e_params)) pt
+		| _ -> error [cannot_unify a b])
+	| TEnum _, TAbstract ({ a_path = [],"EnumValue" },[]) ->
+		()
+	| TEnum(en,_), TAbstract ({ a_path = ["haxe"],"FlatEnum" },[]) when Meta.has Meta.FlatEnum en.e_meta ->
+		()
+	| TFun _, TAbstract ({ a_path = ["haxe"],"Function" },[]) ->
+		()
+	| TInst(c,tl),TAbstract({a_path = ["haxe"],"Constructible"},[t1]) ->
+		begin try
+			begin match c.cl_kind with
+				| KTypeParameter tl ->
+					(* type parameters require an equal Constructible constraint *)
+					if not (List.exists (fun t -> match follow t with TAbstract({a_path = ["haxe"],"Constructible"},[t2]) -> type_iseq t1 t2 | _ -> false) tl) then error [cannot_unify a b]
+				| _ ->
+					let _,t,cf = class_field c tl "new" in
+					if not (has_class_field_flag cf CfPublic) then error [invalid_visibility "new"];
+					begin try unify t t1
+					with Unify_error l -> error (cannot_unify a b :: l) end
+			end
+		with Not_found ->
+			error [has_no_field a "new"]
+		end
+	| TDynamic t , _ ->
+		if t == a then
+			()
+		else (match b with
+		| TDynamic t2 ->
+			if t2 != b then
+				(try
+					type_eq EqRightDynamic t t2
+				with
+					Unify_error l -> error (cannot_unify a b :: l));
+		| TAbstract(bb,tl) when (List.exists (unify_from bb tl a b) bb.a_from) ->
+			()
+		| _ ->
+			error [cannot_unify a b])
+	| _ , TDynamic t ->
+		if t == b then
+			()
+		else (match a with
+		| TDynamic t2 ->
+			if t2 != a then
+				(try
+					type_eq EqRightDynamic t t2
+				with
+					Unify_error l -> error (cannot_unify a b :: l));
+		| TAnon an ->
+			(try
+				(match !(an.a_status) with
+				| Statics _ | EnumStatics _ -> error []
+				| Opened -> an.a_status := Closed
+				| _ -> ());
+				PMap.iter (fun _ f ->
+					try
+						type_eq EqStrict (field_type f) t
+					with Unify_error l ->
+						error (invalid_field f.cf_name :: l)
+				) an.a_fields
+			with Unify_error l ->
+				error (cannot_unify a b :: l))
+		| TAbstract(aa,tl) when (List.exists (unify_to aa tl b) aa.a_to) ->
+			()
+		| _ ->
+			error [cannot_unify a b])
+	| TAbstract (aa,tl), _  ->
+		if not (List.exists (unify_to aa tl b) aa.a_to) then error [cannot_unify a b];
+	| TInst ({ cl_kind = KTypeParameter ctl } as c,pl), TAbstract (bb,tl) ->
+		(* one of the constraints must satisfy the abstract *)
+		if not (List.exists (fun t ->
+			let t = apply_params c.cl_params pl t in
+			try unify t b; true with Unify_error _ -> false
+		) ctl) && not (List.exists (unify_from bb tl a b) bb.a_from) then error [cannot_unify a b];
+	| _, TAbstract (bb,tl) ->
+		if not (List.exists (unify_from bb tl a b) bb.a_from) then error [cannot_unify a b]
+	| _ , _ ->
+		error [cannot_unify a b]
+
+and unify_abstracts a b a1 tl1 a2 tl2 =
+	let f1 = unify_to a1 tl1 b in
+		let f2 = unify_from a2 tl2 a b in
+		if (List.exists (f1 ~allow_transitive_cast:false) a1.a_to)
+		|| (List.exists (f2 ~allow_transitive_cast:false) a2.a_from)
+		|| (((Meta.has Meta.CoreType a1.a_meta) || (Meta.has Meta.CoreType a2.a_meta))
+			&& ((List.exists f1 a1.a_to) || (List.exists f2 a2.a_from))) then
+			()
+		else
+			error [cannot_unify a b]
+
+and unify_anons a b a1 a2 =
+	if would_produce_recursive_anon a1 a2 then error [cannot_unify a b];
+	(try
+		PMap.iter (fun n f2 ->
+		try
+			let f1 = PMap.find n a1.a_fields in
+			if not (unify_kind f1.cf_kind f2.cf_kind) then
+				(match !(a1.a_status), f1.cf_kind, f2.cf_kind with
+				| Opened, Var { v_read = AccNormal; v_write = AccNo }, Var { v_read = AccNormal; v_write = AccNormal } ->
+					f1.cf_kind <- f2.cf_kind;
+				| _ -> error [invalid_kind n f1.cf_kind f2.cf_kind]);
+			if (has_class_field_flag f2 CfPublic) && not (has_class_field_flag f1 CfPublic) then error [invalid_visibility n];
+			try
+				let f1_type =
+					if fast_eq f1.cf_type f2.cf_type then f1.cf_type
+					else field_type f1
+				in
+				unify_with_access f1 f1_type f2;
+				(match !(a1.a_status) with
+				| Statics c when not (Meta.has Meta.MaybeUsed f1.cf_meta) -> f1.cf_meta <- (Meta.MaybeUsed,[],f1.cf_pos) :: f1.cf_meta
+				| _ -> ());
+			with
+				Unify_error l -> error (invalid_field n :: l)
+		with
+			Not_found ->
+				match !(a1.a_status) with
+				| Opened ->
+					if not (link (Monomorph.create()) a f2.cf_type) then error [];
+					a1.a_fields <- PMap.add n f2 a1.a_fields
+				| Const when Meta.has Meta.Optional f2.cf_meta ->
+					()
+				| _ ->
+					error [has_no_field a n];
+		) a2.a_fields;
+		(match !(a1.a_status) with
+		| Const when not (PMap.is_empty a2.a_fields) ->
+			PMap.iter (fun n _ -> if not (PMap.mem n a2.a_fields) then error [has_extra_field a n]) a1.a_fields;
+		| Opened ->
+			a1.a_status := Closed
+		| _ -> ());
+		(match !(a2.a_status) with
+		| Statics c -> (match !(a1.a_status) with Statics c2 when c == c2 -> () | _ -> error [])
+		| EnumStatics e -> (match !(a1.a_status) with EnumStatics e2 when e == e2 -> () | _ -> error [])
+		| AbstractStatics a -> (match !(a1.a_status) with AbstractStatics a2 when a == a2 -> () | _ -> error [])
+		| Opened -> a2.a_status := Closed
+		| Const | Extend _ | Closed -> ())
+	with
+		Unify_error l -> error (cannot_unify a b :: l))
+
+and unify_from ab tl a b ?(allow_transitive_cast=true) t =
+	rec_stack_bool abstract_cast_stack (a,b)
+		(fun (a2,b2) -> fast_eq a a2 && fast_eq b b2)
+		(fun() ->
+			let t = apply_params ab.a_params tl t in
+			let unify_func = if allow_transitive_cast then unify else type_eq EqRightDynamic in
+			unify_func a t)
+
+and unify_to ab tl b ?(allow_transitive_cast=true) t =
+	let t = apply_params ab.a_params tl t in
+	let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
+	try
+		unify_func t b;
+		true
+	with Unify_error _ ->
+		false
+
+and unify_from_field ab tl a b ?(allow_transitive_cast=true) (t,cf) =
+	rec_stack_bool abstract_cast_stack (a,b)
+		(fun (a2,b2) -> fast_eq a a2 && fast_eq b b2)
+		(fun() ->
+			let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
+			match follow cf.cf_type with
+			| TFun(_,r) ->
+				let monos = List.map (fun _ -> mk_mono()) cf.cf_params in
+				let map t = apply_params ab.a_params tl (apply_params cf.cf_params monos t) in
+				unify_func a (map t);
+				List.iter2 (fun m (name,t) -> match follow t with
+					| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] ->
+						List.iter (fun tc -> match follow m with TMono _ -> raise (Unify_error []) | _ -> unify m (map tc) ) constr
+					| _ -> ()
+				) monos cf.cf_params;
+				unify_func (map r) b;
+				true
+			| _ -> assert false)
+
+and unify_to_field ab tl b ?(allow_transitive_cast=true) (t,cf) =
+	let a = TAbstract(ab,tl) in
+	rec_stack_bool abstract_cast_stack (b,a)
+		(fun (b2,a2) -> fast_eq a a2 && fast_eq b b2)
+		(fun() ->
+			let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
+			match follow cf.cf_type with
+			| TFun((_,_,ta) :: _,_) ->
+				let monos = List.map (fun _ -> mk_mono()) cf.cf_params in
+				let map t = apply_params ab.a_params tl (apply_params cf.cf_params monos t) in
+				let athis = map ab.a_this in
+				(* we cannot allow implicit casts when the this type is not completely known yet *)
+				(* if has_mono athis then raise (Unify_error []); *)
+				with_variance (type_eq EqStrict) athis (map ta);
+				(* immediate constraints checking is ok here because we know there are no monomorphs *)
+				List.iter2 (fun m (name,t) -> match follow t with
+					| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] ->
+						List.iter (fun tc -> match follow m with TMono _ -> raise (Unify_error []) | _ -> unify m (map tc) ) constr
+					| _ -> ()
+				) monos cf.cf_params;
+				unify_func (map t) b;
+			| _ -> assert false)
+
+and unify_with_variance f t1 t2 =
+	let allows_variance_to t tf = type_iseq tf t in
+	match follow t1,follow t2 with
+	| TInst(c1,tl1),TInst(c2,tl2) when c1 == c2 ->
+		List.iter2 f tl1 tl2
+	| TEnum(en1,tl1),TEnum(en2,tl2) when en1 == en2 ->
+		List.iter2 f tl1 tl2
+	| TAbstract(a1,tl1),TAbstract(a2,tl2) when a1 == a2 && Meta.has Meta.CoreType a1.a_meta ->
+		List.iter2 f tl1 tl2
+	| TAbstract(a1,pl1),TAbstract(a2,pl2) ->
+		if (Meta.has Meta.CoreType a1.a_meta) && (Meta.has Meta.CoreType a2.a_meta) then begin
+			let ta1 = apply_params a1.a_params pl1 a1.a_this in
+			let ta2 = apply_params a2.a_params pl2 a2.a_this in
+			type_eq EqStrict ta1 ta2;
+		end;
+		if not (List.exists (allows_variance_to t2) a1.a_to) && not (List.exists (allows_variance_to t1) a2.a_from) then
+			error [cannot_unify t1 t2]
+	| TAbstract(a,pl),t ->
+		type_eq EqBothDynamic (apply_params a.a_params pl a.a_this) t;
+		if not (List.exists (fun t2 -> allows_variance_to t (apply_params a.a_params pl t2)) a.a_to) then error [cannot_unify t1 t2]
+	| t,TAbstract(a,pl) ->
+		type_eq EqBothDynamic t (apply_params a.a_params pl a.a_this);
+		if not (List.exists (fun t2 -> allows_variance_to t (apply_params a.a_params pl t2)) a.a_from) then error [cannot_unify t1 t2]
+	| (TAnon a1 as t1), (TAnon a2 as t2) ->
+		rec_stack unify_stack (t1,t2)
+			(fun (a,b) -> fast_eq a t1 && fast_eq b t2)
+			(fun() -> unify_anons t1 t2 a1 a2)
+			(fun l -> error l)
+	| _ ->
+		error [cannot_unify t1 t2]
+
+and unify_type_params a b tl1 tl2 =
+	let i = ref 0 in
+	List.iter2 (fun t1 t2 ->
+		incr i;
+		try
+			with_variance (type_eq EqRightDynamic) t1 t2
+		with Unify_error l ->
+			let err = cannot_unify a b in
+			error (err :: (Invariant_parameter !i) :: l)
+	) tl1 tl2
+
+and with_variance f t1 t2 =
+	try
+		f t1 t2
+	with Unify_error l -> try
+		unify_with_variance (with_variance f) t1 t2
+	with Unify_error _ ->
+		raise (Unify_error l)
+
+and unify_with_access f1 t1 f2 =
+	match f2.cf_kind with
+	(* write only *)
+	| Var { v_read = AccNo } | Var { v_read = AccNever } -> unify f2.cf_type t1
+	(* read only *)
+	| Method MethNormal | Method MethInline | Var { v_write = AccNo } | Var { v_write = AccNever } ->
+		if (has_class_field_flag f1 CfFinal) <> (has_class_field_flag f2 CfFinal) then raise (Unify_error [FinalInvariance]);
+		unify t1 f2.cf_type
+	(* read/write *)
+	| _ -> with_variance (type_eq EqBothDynamic) t1 f2.cf_type
+
+let does_unify a b =
+	try
+		unify a b;
+		true
+	with Unify_error _ ->
+		false

+ 251 - 4
src/core/texpr.ml

@@ -1,8 +1,255 @@
 open Globals
 open Ast
-open Type
+open TType
+open TFunctions
+open TUnification
+open TPrinting
 open Error
 
+let iter f e =
+	match e.eexpr with
+	| TConst _
+	| TLocal _
+	| TBreak
+	| TContinue
+	| TTypeExpr _
+	| TIdent _ ->
+		()
+	| TArray (e1,e2)
+	| TBinop (_,e1,e2)
+	| TFor (_,e1,e2)
+	| TWhile (e1,e2,_) ->
+		f e1;
+		f e2;
+	| TThrow e
+	| TField (e,_)
+	| TEnumParameter (e,_,_)
+	| TEnumIndex e
+	| TParenthesis e
+	| TCast (e,_)
+	| TUnop (_,_,e)
+	| TMeta(_,e) ->
+		f e
+	| TArrayDecl el
+	| TNew (_,_,el)
+	| TBlock el ->
+		List.iter f el
+	| TObjectDecl fl ->
+		List.iter (fun (_,e) -> f e) fl
+	| TCall (e,el) ->
+		f e;
+		List.iter f el
+	| TVar (v,eo) ->
+		(match eo with None -> () | Some e -> f e)
+	| TFunction fu ->
+		f fu.tf_expr
+	| TIf (e,e1,e2) ->
+		f e;
+		f e1;
+		(match e2 with None -> () | Some e -> f e)
+	| TSwitch (e,cases,def) ->
+		f e;
+		List.iter (fun (el,e2) -> List.iter f el; f e2) cases;
+		(match def with None -> () | Some e -> f e)
+	| TTry (e,catches) ->
+		f e;
+		List.iter (fun (_,e) -> f e) catches
+	| TReturn eo ->
+		(match eo with None -> () | Some e -> f e)
+
+(**
+	Returns `true` if `predicate` is evaluated to `true` for at least one of sub-expressions.
+	Returns `false` otherwise.
+	Does not evaluate `predicate` for the `e` expression.
+*)
+let check_expr predicate e =
+	match e.eexpr with
+		| TConst _ | TLocal _ | TBreak | TContinue | TTypeExpr _ | TIdent _ ->
+			false
+		| TArray (e1,e2) | TBinop (_,e1,e2) | TFor (_,e1,e2) | TWhile (e1,e2,_) ->
+			predicate e1 || predicate e2;
+		| TThrow e | TField (e,_) | TEnumParameter (e,_,_) | TEnumIndex e | TParenthesis e
+		| TCast (e,_) | TUnop (_,_,e) | TMeta(_,e) ->
+			predicate e
+		| TArrayDecl el | TNew (_,_,el) | TBlock el ->
+			List.exists predicate el
+		| TObjectDecl fl ->
+			List.exists (fun (_,e) -> predicate e) fl
+		| TCall (e,el) ->
+			predicate e ||  List.exists predicate el
+		| TVar (_,eo) | TReturn eo ->
+			(match eo with None -> false | Some e -> predicate e)
+		| TFunction fu ->
+			predicate fu.tf_expr
+		| TIf (e,e1,e2) ->
+			predicate e || predicate e1 || (match e2 with None -> false | Some e -> predicate e)
+		| TSwitch (e,cases,def) ->
+			predicate e
+			|| List.exists (fun (el,e2) -> List.exists predicate el || predicate e2) cases
+			|| (match def with None -> false | Some e -> predicate e)
+		| TTry (e,catches) ->
+			predicate e || List.exists (fun (_,e) -> predicate e) catches
+
+let map_expr f e =
+	match e.eexpr with
+	| TConst _
+	| TLocal _
+	| TBreak
+	| TContinue
+	| TTypeExpr _
+	| TIdent _ ->
+		e
+	| TArray (e1,e2) ->
+		let e1 = f e1 in
+		{ e with eexpr = TArray (e1,f e2) }
+	| TBinop (op,e1,e2) ->
+		let e1 = f e1 in
+		{ e with eexpr = TBinop (op,e1,f e2) }
+	| TFor (v,e1,e2) ->
+		let e1 = f e1 in
+		{ e with eexpr = TFor (v,e1,f e2) }
+	| TWhile (e1,e2,flag) ->
+		let e1 = f e1 in
+		{ e with eexpr = TWhile (e1,f e2,flag) }
+	| TThrow e1 ->
+		{ e with eexpr = TThrow (f e1) }
+	| TEnumParameter (e1,ef,i) ->
+		{ e with eexpr = TEnumParameter(f e1,ef,i) }
+	| TEnumIndex e1 ->
+		{ e with eexpr = TEnumIndex (f e1) }
+	| TField (e1,v) ->
+		{ e with eexpr = TField (f e1,v) }
+	| TParenthesis e1 ->
+		{ e with eexpr = TParenthesis (f e1) }
+	| TUnop (op,pre,e1) ->
+		{ e with eexpr = TUnop (op,pre,f e1) }
+	| TArrayDecl el ->
+		{ e with eexpr = TArrayDecl (List.map f el) }
+	| TNew (t,pl,el) ->
+		{ e with eexpr = TNew (t,pl,List.map f el) }
+	| TBlock el ->
+		{ e with eexpr = TBlock (List.map f el) }
+	| TObjectDecl el ->
+		{ e with eexpr = TObjectDecl (List.map (fun (v,e) -> v, f e) el) }
+	| TCall (e1,el) ->
+		let e1 = f e1 in
+		{ e with eexpr = TCall (e1, List.map f el) }
+	| TVar (v,eo) ->
+		{ e with eexpr = TVar (v, match eo with None -> None | Some e -> Some (f e)) }
+	| TFunction fu ->
+		{ e with eexpr = TFunction { fu with tf_expr = f fu.tf_expr } }
+	| TIf (ec,e1,e2) ->
+		let ec = f ec in
+		let e1 = f e1 in
+		{ e with eexpr = TIf (ec,e1,match e2 with None -> None | Some e -> Some (f e)) }
+	| TSwitch (e1,cases,def) ->
+		let e1 = f e1 in
+		let cases = List.map (fun (el,e2) -> List.map f el, f e2) cases in
+		{ e with eexpr = TSwitch (e1, cases, match def with None -> None | Some e -> Some (f e)) }
+	| TTry (e1,catches) ->
+		let e1 = f e1 in
+		{ e with eexpr = TTry (e1, List.map (fun (v,e) -> v, f e) catches) }
+	| TReturn eo ->
+		{ e with eexpr = TReturn (match eo with None -> None | Some e -> Some (f e)) }
+	| TCast (e1,t) ->
+		{ e with eexpr = TCast (f e1,t) }
+	| TMeta (m,e1) ->
+		 {e with eexpr = TMeta(m,f e1)}
+
+let map_expr_type f ft fv e =
+	match e.eexpr with
+	| TConst _
+	| TBreak
+	| TContinue
+	| TTypeExpr _
+	| TIdent _ ->
+		{ e with etype = ft e.etype }
+	| TLocal v ->
+		{ e with eexpr = TLocal (fv v); etype = ft e.etype }
+	| TArray (e1,e2) ->
+		let e1 = f e1 in
+		{ e with eexpr = TArray (e1,f e2); etype = ft e.etype }
+	| TBinop (op,e1,e2) ->
+		let e1 = f e1 in
+		{ e with eexpr = TBinop (op,e1,f e2); etype = ft e.etype }
+	| TFor (v,e1,e2) ->
+		let v = fv v in
+		let e1 = f e1 in
+		{ e with eexpr = TFor (v,e1,f e2); etype = ft e.etype }
+	| TWhile (e1,e2,flag) ->
+		let e1 = f e1 in
+		{ e with eexpr = TWhile (e1,f e2,flag); etype = ft e.etype }
+	| TThrow e1 ->
+		{ e with eexpr = TThrow (f e1); etype = ft e.etype }
+	| TEnumParameter (e1,ef,i) ->
+		{ e with eexpr = TEnumParameter (f e1,ef,i); etype = ft e.etype }
+	| TEnumIndex e1 ->
+		{ e with eexpr = TEnumIndex (f e1); etype = ft e.etype }
+	| TField (e1,v) ->
+		let e1 = f e1 in
+		let v = try
+			let n = match v with
+				| FClosure _ -> raise Not_found
+				| FAnon f | FInstance (_,_,f) | FStatic (_,f) -> f.cf_name
+				| FEnum (_,f) -> f.ef_name
+				| FDynamic n -> n
+			in
+			quick_field e1.etype n
+		with Not_found ->
+			v
+		in
+		{ e with eexpr = TField (e1,v); etype = ft e.etype }
+	| TParenthesis e1 ->
+		{ e with eexpr = TParenthesis (f e1); etype = ft e.etype }
+	| TUnop (op,pre,e1) ->
+		{ e with eexpr = TUnop (op,pre,f e1); etype = ft e.etype }
+	| TArrayDecl el ->
+		{ e with eexpr = TArrayDecl (List.map f el); etype = ft e.etype }
+	| TNew (c,pl,el) ->
+		let et = ft e.etype in
+		(* make sure that we use the class corresponding to the replaced type *)
+		let t = match c.cl_kind with
+			| KTypeParameter _ | KGeneric ->
+				et
+			| _ ->
+				ft (TInst(c,pl))
+		in
+		let c, pl = (match follow t with TInst (c,pl) -> (c,pl) | TAbstract({a_impl = Some c},pl) -> c,pl | t -> TUnification.error [has_no_field t "new"]) in
+		{ e with eexpr = TNew (c,pl,List.map f el); etype = et }
+	| TBlock el ->
+		{ e with eexpr = TBlock (List.map f el); etype = ft e.etype }
+	| TObjectDecl el ->
+		{ e with eexpr = TObjectDecl (List.map (fun (v,e) -> v, f e) el); etype = ft e.etype }
+	| TCall (e1,el) ->
+		let e1 = f e1 in
+		{ e with eexpr = TCall (e1, List.map f el); etype = ft e.etype }
+	| TVar (v,eo) ->
+		{ e with eexpr = TVar (fv v, match eo with None -> None | Some e -> Some (f e)); etype = ft e.etype }
+	| TFunction fu ->
+		let fu = {
+			tf_expr = f fu.tf_expr;
+			tf_args = List.map (fun (v,o) -> fv v, o) fu.tf_args;
+			tf_type = ft fu.tf_type;
+		} in
+		{ e with eexpr = TFunction fu; etype = ft e.etype }
+	| TIf (ec,e1,e2) ->
+		let ec = f ec in
+		let e1 = f e1 in
+		{ e with eexpr = TIf (ec,e1,match e2 with None -> None | Some e -> Some (f e)); etype = ft e.etype }
+	| TSwitch (e1,cases,def) ->
+		let e1 = f e1 in
+		let cases = List.map (fun (el,e2) -> List.map f el, f e2) cases in
+		{ e with eexpr = TSwitch (e1, cases, match def with None -> None | Some e -> Some (f e)); etype = ft e.etype }
+	| TTry (e1,catches) ->
+		let e1 = f e1 in
+		{ e with eexpr = TTry (e1, List.map (fun (v,e) -> fv v, f e) catches); etype = ft e.etype }
+	| TReturn eo ->
+		{ e with eexpr = TReturn (match eo with None -> None | Some e -> Some (f e)); etype = ft e.etype }
+	| TCast (e1,t) ->
+		{ e with eexpr = TCast (f e1,t); etype = ft e.etype }
+	| TMeta (m,e1) ->
+		{e with eexpr = TMeta(m, f e1); etype = ft e.etype }
+
 let equal_fa fa1 fa2 = match fa1,fa2 with
 	| FStatic(c1,cf1),FStatic(c2,cf2) -> c1 == c2 && cf1.cf_name == cf2.cf_name
 	| FInstance(c1,tl1,cf1),FInstance(c2,tl2,cf2) -> c1 == c2 && safe_for_all2 type_iseq tl1 tl2 && cf1.cf_name == cf2.cf_name
@@ -302,7 +549,7 @@ let rec constructor_side_effects e =
 	| TParenthesis _ | TTypeExpr _ | TLocal _ | TMeta _
 	| TConst _ | TContinue | TBreak | TCast _ | TIdent _ ->
 		try
-			Type.iter (fun e -> if constructor_side_effects e then raise Exit) e;
+			iter (fun e -> if constructor_side_effects e then raise Exit) e;
 			false;
 		with Exit ->
 			true
@@ -343,7 +590,7 @@ let for_remap basic v e1 e2 p =
 	let enext = mk (TField(ev',quick_field t1 "next")) (tfun [] v.v_type) e1.epos in
 	let enext = mk (TCall(enext,[])) v.v_type e1.epos in
 	let eassign = mk (TVar(v,Some enext)) basic.tvoid p in
-	let ebody = Type.concat eassign e2 in
+	let ebody = concat eassign e2 in
 	mk (TBlock [
 		mk (TVar (v',Some e1)) basic.tvoid e1.epos;
 		mk (TWhile((mk (TParenthesis ehasnext) ehasnext.etype ehasnext.epos),ebody,NormalWhile)) basic.tvoid e1.epos;
@@ -529,7 +776,7 @@ let collect_captured_vars e =
 				loop e;
 			) catches
 		| _ ->
-			Type.iter loop e
+			iter loop e
 	in
 	loop e;
 	List.rev !unknown,!accesses_this

+ 6 - 3153
src/core/type.ml

@@ -17,3160 +17,13 @@
 	Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  *)
 
-open Ast
-open Globals
+include TType
+include TFunctions
+include TPrinting
+include TUnification
+include Texpr
+include TOther
 
-type field_kind =
-	| Var of var_kind
-	| Method of method_kind
-
-and var_kind = {
-	v_read : var_access;
-	v_write : var_access;
-}
-
-and var_access =
-	| AccNormal
-	| AccNo             (* can't be accessed outside of the class itself and its subclasses *)
-	| AccNever          (* can't be accessed, even in subclasses *)
-	| AccCtor           (* can only be accessed from the constructor *)
-	| AccResolve        (* call resolve("field") when accessed *)
-	| AccCall           (* perform a method call when accessed *)
-	| AccInline         (* similar to Normal but inline when accessed *)
-	| AccRequire of string * string option (* set when @:require(cond) fails *)
-
-and method_kind =
-	| MethNormal
-	| MethInline
-	| MethDynamic
-	| MethMacro
-
-type module_check_policy =
-	| NoCheckFileTimeModification
-	| CheckFileContentModification
-	| NoCheckDependencies
-	| NoCheckShadowing
-
-type t =
-	| TMono of tmono
-	| TEnum of tenum * tparams
-	| TInst of tclass * tparams
-	| TType of tdef * tparams
-	| TFun of tsignature
-	| TAnon of tanon
-	| TDynamic of t
-	| TLazy of tlazy ref
-	| TAbstract of tabstract * tparams
-
-and tmono = {
-	mutable tm_type : t option;
-}
-
-and tlazy =
-	| LAvailable of t
-	| LProcessing of (unit -> t)
-	| LWait of (unit -> t)
-
-and tsignature = (string * bool * t) list * t
-
-and tparams = t list
-
-and type_params = (string * t) list
-
-and tconstant =
-	| TInt of int32
-	| TFloat of string
-	| TString of string
-	| TBool of bool
-	| TNull
-	| TThis
-	| TSuper
-
-and tvar_extra = (type_params * texpr option) option
-
-and tvar_origin =
-	| TVOLocalVariable
-	| TVOArgument
-	| TVOForVariable
-	| TVOPatternVariable
-	| TVOCatchVariable
-	| TVOLocalFunction
-
-and tvar_kind =
-	| VUser of tvar_origin
-	| VGenerated
-	| VInlined
-	| VInlinedConstructorVariable
-	| VExtractorVariable
-
-and tvar = {
-	mutable v_id : int;
-	mutable v_name : string;
-	mutable v_type : t;
-	mutable v_kind : tvar_kind;
-	mutable v_capture : bool;
-	mutable v_final : bool;
-	mutable v_extra : tvar_extra;
-	mutable v_meta : metadata;
-	v_pos : pos;
-}
-
-and tfunc = {
-	tf_args : (tvar * texpr option) list;
-	tf_type : t;
-	tf_expr : texpr;
-}
-
-and anon_status =
-	| Closed
-	| Opened
-	| Const
-	| Extend of t list
-	| Statics of tclass
-	| EnumStatics of tenum
-	| AbstractStatics of tabstract
-
-and tanon = {
-	mutable a_fields : (string, tclass_field) PMap.t;
-	a_status : anon_status ref;
-}
-
-and texpr_expr =
-	| TConst of tconstant
-	| TLocal of tvar
-	| TArray of texpr * texpr
-	| TBinop of Ast.binop * texpr * texpr
-	| TField of texpr * tfield_access
-	| TTypeExpr of module_type
-	| TParenthesis of texpr
-	| TObjectDecl of ((string * pos * quote_status) * texpr) list
-	| TArrayDecl of texpr list
-	| TCall of texpr * texpr list
-	| TNew of tclass * tparams * texpr list
-	| TUnop of Ast.unop * Ast.unop_flag * texpr
-	| TFunction of tfunc
-	| TVar of tvar * texpr option
-	| TBlock of texpr list
-	| TFor of tvar * texpr * texpr
-	| TIf of texpr * texpr * texpr option
-	| TWhile of texpr * texpr * Ast.while_flag
-	| TSwitch of texpr * (texpr list * texpr) list * texpr option
-	| TTry of texpr * (tvar * texpr) list
-	| TReturn of texpr option
-	| TBreak
-	| TContinue
-	| TThrow of texpr
-	| TCast of texpr * module_type option
-	| TMeta of metadata_entry * texpr
-	| TEnumParameter of texpr * tenum_field * int
-	| TEnumIndex of texpr
-	| TIdent of string
-
-and tfield_access =
-	| FInstance of tclass * tparams * tclass_field
-	| FStatic of tclass * tclass_field
-	| FAnon of tclass_field
-	| FDynamic of string
-	| FClosure of (tclass * tparams) option * tclass_field (* None class = TAnon *)
-	| FEnum of tenum * tenum_field
-
-and texpr = {
-	eexpr : texpr_expr;
-	etype : t;
-	epos : pos;
-}
-
-and tclass_field = {
-	mutable cf_name : string;
-	mutable cf_type : t;
-	cf_pos : pos;
-	cf_name_pos : pos;
-	mutable cf_doc : Ast.documentation;
-	mutable cf_meta : metadata;
-	mutable cf_kind : field_kind;
-	mutable cf_params : type_params;
-	mutable cf_expr : texpr option;
-	mutable cf_expr_unoptimized : tfunc option;
-	mutable cf_overloads : tclass_field list;
-	mutable cf_flags : int;
-}
-
-and tclass_kind =
-	| KNormal
-	| KTypeParameter of t list
-	| KExpr of Ast.expr
-	| KGeneric
-	| KGenericInstance of tclass * tparams
-	| KMacroType
-	| KGenericBuild of class_field list
-	| KAbstractImpl of tabstract
-
-and metadata = Ast.metadata
-
-and tinfos = {
-	mt_path : path;
-	mt_module : module_def;
-	mt_pos : pos;
-	mt_name_pos : pos;
-	mt_private : bool;
-	mt_doc : Ast.documentation;
-	mutable mt_meta : metadata;
-	mt_params : type_params;
-	mutable mt_using : (tclass * pos) list;
-}
-
-and tclass = {
-	mutable cl_path : path;
-	mutable cl_module : module_def;
-	mutable cl_pos : pos;
-	mutable cl_name_pos : pos;
-	mutable cl_private : bool;
-	mutable cl_doc : Ast.documentation;
-	mutable cl_meta : metadata;
-	mutable cl_params : type_params;
-	mutable cl_using : (tclass * pos) list;
-	(* do not insert any fields above *)
-	mutable cl_kind : tclass_kind;
-	mutable cl_extern : bool;
-	mutable cl_final : bool;
-	mutable cl_interface : bool;
-	mutable cl_super : (tclass * tparams) option;
-	mutable cl_implements : (tclass * tparams) list;
-	mutable cl_fields : (string, tclass_field) PMap.t;
-	mutable cl_statics : (string, tclass_field) PMap.t;
-	mutable cl_ordered_statics : tclass_field list;
-	mutable cl_ordered_fields : tclass_field list;
-	mutable cl_dynamic : t option;
-	mutable cl_array_access : t option;
-	mutable cl_constructor : tclass_field option;
-	mutable cl_init : texpr option;
-	mutable cl_overrides : tclass_field list;
-
-	mutable cl_build : unit -> build_state;
-	mutable cl_restore : unit -> unit;
-	(*
-		These are classes which directly extend or directly implement this class.
-		Populated automatically in post-processing step (Filters.run)
-	*)
-	mutable cl_descendants : tclass list;
-}
-
-and tenum_field = {
-	ef_name : string;
-	mutable ef_type : t;
-	ef_pos : pos;
-	ef_name_pos : pos;
-	ef_doc : Ast.documentation;
-	ef_index : int;
-	mutable ef_params : type_params;
-	mutable ef_meta : metadata;
-}
-
-and tenum = {
-	mutable e_path : path;
-	e_module : module_def;
-	e_pos : pos;
-	e_name_pos : pos;
-	e_private : bool;
-	e_doc : Ast.documentation;
-	mutable e_meta : metadata;
-	mutable e_params : type_params;
-	mutable e_using : (tclass * pos) list;
-	(* do not insert any fields above *)
-	e_type : tdef;
-	mutable e_extern : bool;
-	mutable e_constrs : (string , tenum_field) PMap.t;
-	mutable e_names : string list;
-}
-
-and tdef = {
-	t_path : path;
-	t_module : module_def;
-	t_pos : pos;
-	t_name_pos : pos;
-	t_private : bool;
-	t_doc : Ast.documentation;
-	mutable t_meta : metadata;
-	mutable t_params : type_params;
-	mutable t_using : (tclass * pos) list;
-	(* do not insert any fields above *)
-	mutable t_type : t;
-}
-
-and tabstract = {
-	mutable a_path : path;
-	a_module : module_def;
-	a_pos : pos;
-	a_name_pos : pos;
-	a_private : bool;
-	a_doc : Ast.documentation;
-	mutable a_meta : metadata;
-	mutable a_params : type_params;
-	mutable a_using : (tclass * pos) list;
-	(* do not insert any fields above *)
-	mutable a_ops : (Ast.binop * tclass_field) list;
-	mutable a_unops : (Ast.unop * unop_flag * tclass_field) list;
-	mutable a_impl : tclass option;
-	mutable a_this : t;
-	mutable a_from : t list;
-	mutable a_from_field : (t * tclass_field) list;
-	mutable a_to : t list;
-	mutable a_to_field : (t * tclass_field) list;
-	mutable a_array : tclass_field list;
-	mutable a_read : tclass_field option;
-	mutable a_write : tclass_field option;
-}
-
-and module_type =
-	| TClassDecl of tclass
-	| TEnumDecl of tenum
-	| TTypeDecl of tdef
-	| TAbstractDecl of tabstract
-
-and module_def = {
-	m_id : int;
-	m_path : path;
-	mutable m_types : module_type list;
-	m_extra : module_def_extra;
-}
-
-and module_def_display = {
-	mutable m_inline_calls : (pos * pos) list; (* calls whatever is at pos1 from pos2 *)
-	mutable m_type_hints : (pos * pos) list;
-}
-
-and module_def_extra = {
-	m_file : string;
-	m_sign : string;
-	m_display : module_def_display;
-	mutable m_check_policy : module_check_policy list;
-	mutable m_time : float;
-	mutable m_dirty : path option;
-	mutable m_added : int;
-	mutable m_mark : int;
-	mutable m_deps : (int,module_def) PMap.t;
-	mutable m_processed : int;
-	mutable m_kind : module_kind;
-	mutable m_binded_res : (string, string) PMap.t;
-	mutable m_if_feature : (string *(tclass * tclass_field * bool)) list;
-	mutable m_features : (string,bool) Hashtbl.t;
-}
-
-and module_kind =
-	| MCode
-	| MMacro
-	| MFake
-	| MExtern
-	| MImport
-
-and build_state =
-	| Built
-	| Building of tclass list
-	| BuildMacro of (unit -> unit) list ref
-
-type basic_types = {
-	mutable tvoid : t;
-	mutable tint : t;
-	mutable tfloat : t;
-	mutable tbool : t;
-	mutable tnull : t -> t;
-	mutable tstring : t;
-	mutable tarray : t -> t;
-}
-
-type class_field_scope =
-	| CFSStatic
-	| CFSMember
-	| CFSConstructor
-
-type flag_tclass_field =
-	| CfPublic
-	| CfExtern (* This is only set if the field itself is extern, not just the class. *)
-	| CfFinal
-	| CfModifiesThis (* This is set for methods which reassign `this`. E.g. `this = value` *)
-
-let monomorph_create_ref : (unit -> tmono) ref = ref (fun _ -> assert false)
-let monomorph_bind_ref : (tmono -> t -> unit) ref = ref (fun _ _ -> ())
-
-(* Flags *)
-
-let has_flag flags flag =
-	flags land (1 lsl flag) > 0
-
-let set_flag flags flag =
-	flags lor (1 lsl flag)
-
-let unset_flag flags flag =
-	flags land (lnot (1 lsl flag))
-
-let int_of_class_field_flag (flag : flag_tclass_field) =
-	Obj.magic flag
-
-let add_class_field_flag cf (flag : flag_tclass_field) =
-	cf.cf_flags <- set_flag cf.cf_flags (int_of_class_field_flag flag)
-
-let remove_class_field_flag cf (flag : flag_tclass_field) =
-	cf.cf_flags <- unset_flag cf.cf_flags (int_of_class_field_flag flag)
-
-let has_class_field_flag cf (flag : flag_tclass_field) =
-	has_flag cf.cf_flags (int_of_class_field_flag flag)
-
-(* ======= General utility ======= *)
-
-let alloc_var =
-	let uid = ref 0 in
-	(fun kind n t p ->
-		incr uid;
-		{
-			v_kind = kind;
-			v_name = n;
-			v_type = t;
-			v_id = !uid;
-			v_capture = false;
-			v_final = (match kind with VUser TVOLocalFunction -> true | _ -> false);
-			v_extra = None;
-			v_meta = [];
-			v_pos = p
-		}
-	)
-
-let alloc_mid =
-	let mid = ref 0 in
-	(fun() -> incr mid; !mid)
-
-let mk e t p = { eexpr = e; etype = t; epos = p }
-
-let mk_block e =
-	match e.eexpr with
-	| TBlock _ -> e
-	| _ -> mk (TBlock [e]) e.etype e.epos
-
-let mk_cast e t p = mk (TCast(e,None)) t p
-
-let null t p = mk (TConst TNull) t p
-
-let mk_mono() = TMono (!monomorph_create_ref ())
-
-let rec t_dynamic = TDynamic t_dynamic
-
-let mk_anon fl = TAnon { a_fields = fl; a_status = ref Closed; }
-
-(* We use this for display purposes because otherwise we never see the Dynamic type that
-   is defined in StdTypes.hx. This is set each time a typer is created, but this is fine
-   because Dynamic is the same in all contexts. If this ever changes we'll have to review
-   how we handle this. *)
-let t_dynamic_def = ref t_dynamic
-
-let tfun pl r = TFun (List.map (fun t -> "",false,t) pl,r)
-
-let fun_args l = List.map (fun (a,c,t) -> a, c <> None, t) l
-
-let mk_class m path pos name_pos =
-	{
-		cl_path = path;
-		cl_module = m;
-		cl_pos = pos;
-		cl_name_pos = name_pos;
-		cl_doc = None;
-		cl_meta = [];
-		cl_private = false;
-		cl_kind = KNormal;
-		cl_extern = false;
-		cl_final = false;
-		cl_interface = false;
-		cl_params = [];
-		cl_using = [];
-		cl_super = None;
-		cl_implements = [];
-		cl_fields = PMap.empty;
-		cl_ordered_statics = [];
-		cl_ordered_fields = [];
-		cl_statics = PMap.empty;
-		cl_dynamic = None;
-		cl_array_access = None;
-		cl_constructor = None;
-		cl_init = None;
-		cl_overrides = [];
-		cl_build = (fun() -> Built);
-		cl_restore = (fun() -> ());
-		cl_descendants = [];
-	}
-
-let module_extra file sign time kind policy =
-	{
-		m_file = file;
-		m_sign = sign;
-		m_display = {
-			m_inline_calls = [];
-			m_type_hints = [];
-		};
-		m_dirty = None;
-		m_added = 0;
-		m_mark = 0;
-		m_time = time;
-		m_processed = 0;
-		m_deps = PMap.empty;
-		m_kind = kind;
-		m_binded_res = PMap.empty;
-		m_if_feature = [];
-		m_features = Hashtbl.create 0;
-		m_check_policy = policy;
-	}
-
-
-let mk_field name ?(public = true) t p name_pos = {
-	cf_name = name;
-	cf_type = t;
-	cf_pos = p;
-	cf_name_pos = name_pos;
-	cf_doc = None;
-	cf_meta = [];
-	cf_kind = Var { v_read = AccNormal; v_write = AccNormal };
-	cf_expr = None;
-	cf_expr_unoptimized = None;
-	cf_params = [];
-	cf_overloads = [];
-	cf_flags = if public then set_flag 0 (int_of_class_field_flag CfPublic) else 0;
-}
-
-let null_module = {
-		m_id = alloc_mid();
-		m_path = [] , "";
-		m_types = [];
-		m_extra = module_extra "" "" 0. MFake [];
-	}
-
-let null_class =
-	let c = mk_class null_module ([],"") null_pos null_pos in
-	c.cl_private <- true;
-	c
-
-let null_field = mk_field "" t_dynamic null_pos null_pos
-
-let null_abstract = {
-	a_path = ([],"");
-	a_module = null_module;
-	a_pos = null_pos;
-	a_name_pos = null_pos;
-	a_private = true;
-	a_doc = None;
-	a_meta = [];
-	a_params = [];
-	a_using = [];
-	a_ops = [];
-	a_unops = [];
-	a_impl = None;
-	a_this = t_dynamic;
-	a_from = [];
-	a_from_field = [];
-	a_to = [];
-	a_to_field = [];
-	a_array = [];
-	a_read = None;
-	a_write = None;
-}
-
-let add_dependency m mdep =
-	if m != null_module && m != mdep then m.m_extra.m_deps <- PMap.add mdep.m_id mdep m.m_extra.m_deps
-
-let arg_name (a,_) = a.v_name
-
-let t_infos t : tinfos =
-	match t with
-	| TClassDecl c -> Obj.magic c
-	| TEnumDecl e -> Obj.magic e
-	| TTypeDecl t -> Obj.magic t
-	| TAbstractDecl a -> Obj.magic a
-
-let t_path t = (t_infos t).mt_path
-
-let rec is_parent csup c =
-	if c == csup || List.exists (fun (i,_) -> is_parent csup i) c.cl_implements then
-		true
-	else match c.cl_super with
-		| None -> false
-		| Some (c,_) -> is_parent csup c
-
-let add_descendant c descendant =
-	c.cl_descendants <- descendant :: c.cl_descendants
-
-let lazy_type f =
-	match !f with
-	| LAvailable t -> t
-	| LProcessing f | LWait f -> f()
-
-let lazy_available t = LAvailable t
-let lazy_processing f = LProcessing f
-let lazy_wait f = LWait f
-
-let map loop t =
-	match t with
-	| TMono r ->
-		(match r.tm_type with
-		| None -> t
-		| Some t -> loop t) (* erase*)
-	| TEnum (_,[]) | TInst (_,[]) | TType (_,[]) ->
-		t
-	| TEnum (e,tl) ->
-		TEnum (e, List.map loop tl)
-	| TInst (c,tl) ->
-		TInst (c, List.map loop tl)
-	| TType (t2,tl) ->
-		TType (t2,List.map loop tl)
-	| TAbstract (a,tl) ->
-		TAbstract (a,List.map loop tl)
-	| TFun (tl,r) ->
-		TFun (List.map (fun (s,o,t) -> s, o, loop t) tl,loop r)
-	| TAnon a ->
-		let fields = PMap.map (fun f -> { f with cf_type = loop f.cf_type }) a.a_fields in
-		begin match !(a.a_status) with
-			| Opened ->
-				a.a_fields <- fields;
-				t
-			| _ ->
-				TAnon {
-					a_fields = fields;
-					a_status = a.a_status;
-				}
-		end
-	| TLazy f ->
-		let ft = lazy_type f in
-		let ft2 = loop ft in
-		if ft == ft2 then t else ft2
-	| TDynamic t2 ->
-		if t == t2 then	t else TDynamic (loop t2)
-
-let duplicate t =
-	let monos = ref [] in
-	let rec loop t =
-		match t with
-		| TMono { tm_type = None } ->
-			(try
-				List.assq t !monos
-			with Not_found ->
-				let m = mk_mono() in
-				monos := (t,m) :: !monos;
-				m)
-		| _ ->
-			map loop t
-	in
-	loop t
-
-exception ApplyParamsRecursion
-
-(* substitute parameters with other types *)
-let apply_params ?stack cparams params t =
-	match cparams with
-	| [] -> t
-	| _ ->
-	let rec loop l1 l2 =
-		match l1, l2 with
-		| [] , [] -> []
-		| (x,TLazy f) :: l1, _ -> loop ((x,lazy_type f) :: l1) l2
-		| (_,t1) :: l1 , t2 :: l2 -> (t1,t2) :: loop l1 l2
-		| _ -> assert false
-	in
-	let subst = loop cparams params in
-	let rec loop t =
-		try
-			List.assq t subst
-		with Not_found ->
-		match t with
-		| TMono r ->
-			(match r.tm_type with
-			| None -> t
-			| Some t -> loop t)
-		| TEnum (e,tl) ->
-			(match tl with
-			| [] -> t
-			| _ -> TEnum (e,List.map loop tl))
-		| TType (t2,tl) ->
-			(match tl with
-			| [] -> t
-			| _ ->
-				let new_applied_params = List.map loop tl in
-				(match stack with
-				| None -> ()
-				| Some stack ->
-					List.iter (fun (subject, old_applied_params) ->
-						(*
-							E.g.:
-							```
-							typedef Rec<T> = { function method():Rec<Array<T>> }
-							```
-							We need to make sure that we are not applying the result of previous
-							application to the same place, which would mean the result of current
-							application would go into `apply_params` again and then again and so on.
-
-							Argument `stack` holds all previous results of `apply_params` to typedefs in current
-							unification process.
-
-							Imagine we are trying to unify `Rec<Int>` with something.
-
-							Once `apply_params Array<T> Int Rec<Array<T>>` is called for the first time the result
-							will be `Rec< Array<Int> >`. Store `Array<Int>` into `stack`
-
-							Then the next params application looks like this:
-								`apply_params Array<T> Array<Int> Rec<Array<T>>`
-							Notice the second argument is actually the result of a previous `apply_params` call.
-							And the result of the current call is `Rec< Array<Array<Int>> >`.
-
-							The third call would be:
-								`apply_params Array<T> Array<Array<Int>> Rec<Array<T>>`
-							and so on.
-
-							To stop infinite params application we need to check that we are trying to apply params
-							produced by the previous `apply_params Array<Int> _ Rec<Array<T>>` to the same `Rec<Array<T>>`
-						*)
-						if
-							subject == t (* Check the place that we're applying to is the same `Rec<Array<T>>` *)
-							&& old_applied_params == params (* Check that params we're applying are the same params
-																produced by the previous call to
-																`apply_params Array<T> _ Rec<Array<T>>` *)
-						then
-							raise ApplyParamsRecursion
-					) !stack;
-					stack := (t, new_applied_params) :: !stack;
-				);
-				TType (t2,new_applied_params))
-		| TAbstract (a,tl) ->
-			(match tl with
-			| [] -> t
-			| _ -> TAbstract (a,List.map loop tl))
-		| TInst (c,tl) ->
-			(match tl with
-			| [] ->
-				t
-			| [TMono r] ->
-				(match r.tm_type with
-				| Some tt when t == tt ->
-					(* for dynamic *)
-					let pt = mk_mono() in
-					let t = TInst (c,[pt]) in
-					(match pt with TMono r -> !monomorph_bind_ref r t | _ -> assert false);
-					t
-				| _ -> TInst (c,List.map loop tl))
-			| _ ->
-				TInst (c,List.map loop tl))
-		| TFun (tl,r) ->
-			TFun (List.map (fun (s,o,t) -> s, o, loop t) tl,loop r)
-		| TAnon a ->
-			let fields = PMap.map (fun f -> { f with cf_type = loop f.cf_type }) a.a_fields in
-			begin match !(a.a_status) with
-				| Opened ->
-					a.a_fields <- fields;
-					t
-				| _ ->
-					TAnon {
-						a_fields = fields;
-						a_status = a.a_status;
-					}
-			end
-		| TLazy f ->
-			let ft = lazy_type f in
-			let ft2 = loop ft in
-			if ft == ft2 then
-				t
-			else
-				ft2
-		| TDynamic t2 ->
-			if t == t2 then
-				t
-			else
-				TDynamic (loop t2)
-	in
-	loop t
-
-let monomorphs eparams t =
-	apply_params eparams (List.map (fun _ -> mk_mono()) eparams) t
-
-let apply_params_stack = ref []
-
-let try_apply_params_rec cparams params t success =
-	let old_stack = !apply_params_stack in
-	try
-		let result = success (apply_params ~stack:apply_params_stack cparams params t) in
-		apply_params_stack := old_stack;
-		result
-	with
-		| ApplyParamsRecursion ->
-			apply_params_stack := old_stack;
-		| err ->
-			apply_params_stack := old_stack;
-			raise err
-
-let rec follow t =
-	match t with
-	| TMono r ->
-		(match r.tm_type with
-		| Some t -> follow t
-		| _ -> t)
-	| TLazy f ->
-		follow (lazy_type f)
-	| TType (t,tl) ->
-		follow (apply_params t.t_params tl t.t_type)
-	| TAbstract({a_path = [],"Null"},[t]) ->
-		follow t
-	| _ -> t
-
-let follow_once t =
-	match t with
-	| TMono r ->
-		(match r.tm_type with
-		| None -> t
-		| Some t -> t)
-	| TAbstract _ | TEnum _ | TInst _ | TFun _ | TAnon _ | TDynamic _ ->
-		t
-	| TType (t,tl) ->
-		apply_params t.t_params tl t.t_type
-	| TLazy f ->
-		lazy_type f
-
-let rec follow_without_null t =
-	match t with
-	| TMono r ->
-		(match r.tm_type with
-		| Some t -> follow_without_null t
-		| _ -> t)
-	| TLazy f ->
-		follow_without_null (lazy_type f)
-	| TType (t,tl) ->
-		follow_without_null (apply_params t.t_params tl t.t_type)
-	| _ -> t
-
-(** Assumes `follow` has already been applied *)
-let rec ambiguate_funs t =
-	match t with
-	| TFun _ -> TFun ([], t_dynamic)
-	| TMono r ->
-		(match r.tm_type with
-		| Some _ -> assert false
-		| _ -> t)
-	| TInst (a, pl) ->
-	    TInst (a, List.map ambiguate_funs pl)
-	| TEnum (a, pl) ->
-	    TEnum (a, List.map ambiguate_funs pl)
-	| TAbstract (a, pl) ->
-	    TAbstract (a, List.map ambiguate_funs pl)
-	| TType (a, pl) ->
-	    TType (a, List.map ambiguate_funs pl)
-	| TDynamic _ -> t
-	| TAnon a ->
-	    TAnon { a with a_fields =
-		    PMap.map (fun af -> { af with cf_type =
-				ambiguate_funs af.cf_type }) a.a_fields }
-	| TLazy _ -> assert false
-
-let rec is_nullable = function
-	| TMono r ->
-		(match r.tm_type with None -> false | Some t -> is_nullable t)
-	| TAbstract ({ a_path = ([],"Null") },[_]) ->
-		true
-	| TLazy f ->
-		is_nullable (lazy_type f)
-	| TType (t,tl) ->
-		is_nullable (apply_params t.t_params tl t.t_type)
-	| TFun _ ->
-		false
-(*
-	Type parameters will most of the time be nullable objects, so we don't want to make it hard for users
-	to have to specify Null<T> all over the place, so while they could be a basic type, let's assume they will not.
-
-	This will still cause issues with inlining and haxe.rtti.Generic. In that case proper explicit Null<T> is required to
-	work correctly with basic types. This could still be fixed by redoing a nullability inference on the typed AST.
-
-	| TInst ({ cl_kind = KTypeParameter },_) -> false
-*)
-	| TAbstract (a,_) when Meta.has Meta.CoreType a.a_meta ->
-		not (Meta.has Meta.NotNull a.a_meta)
-	| TAbstract (a,tl) ->
-		not (Meta.has Meta.NotNull a.a_meta) && is_nullable (apply_params a.a_params tl a.a_this)
-	| _ ->
-		true
-
-let rec is_null ?(no_lazy=false) = function
-	| TMono r ->
-		(match r.tm_type with None -> false | Some t -> is_null t)
-	| TAbstract ({ a_path = ([],"Null") },[t]) ->
-		not (is_nullable (follow t))
-	| TLazy f ->
-		if no_lazy then raise Exit else is_null (lazy_type f)
-	| TType (t,tl) ->
-		is_null (apply_params t.t_params tl t.t_type)
-	| _ ->
-		false
-
-(* Determines if we have a Null<T>. Unlike is_null, this returns true even if the wrapped type is nullable itself. *)
-let rec is_explicit_null = function
-	| TMono r ->
-		(match r.tm_type with None -> false | Some t -> is_explicit_null t)
-	| TAbstract ({ a_path = ([],"Null") },[t]) ->
-		true
-	| TLazy f ->
-		is_explicit_null (lazy_type f)
-	| TType (t,tl) ->
-		is_explicit_null (apply_params t.t_params tl t.t_type)
-	| _ ->
-		false
-
-let rec has_mono t = match t with
-	| TMono r ->
-		(match r.tm_type with None -> true | Some t -> has_mono t)
-	| TInst(_,pl) | TEnum(_,pl) | TAbstract(_,pl) | TType(_,pl) ->
-		List.exists has_mono pl
-	| TDynamic _ ->
-		false
-	| TFun(args,r) ->
-		has_mono r || List.exists (fun (_,_,t) -> has_mono t) args
-	| TAnon a ->
-		PMap.fold (fun cf b -> has_mono cf.cf_type || b) a.a_fields false
-	| TLazy f ->
-		has_mono (lazy_type f)
-
-let concat e1 e2 =
-	let e = (match e1.eexpr, e2.eexpr with
-		| TBlock el1, TBlock el2 -> TBlock (el1@el2)
-		| TBlock el, _ -> TBlock (el @ [e2])
-		| _, TBlock el -> TBlock (e1 :: el)
-		| _ , _ -> TBlock [e1;e2]
-	) in
-	mk e e2.etype (punion e1.epos e2.epos)
-
-let is_closed a = !(a.a_status) <> Opened
-
-let type_of_module_type = function
-	| TClassDecl c -> TInst (c,List.map snd c.cl_params)
-	| TEnumDecl e -> TEnum (e,List.map snd e.e_params)
-	| TTypeDecl t -> TType (t,List.map snd t.t_params)
-	| TAbstractDecl a -> TAbstract (a,List.map snd a.a_params)
-
-let rec module_type_of_type = function
-	| TInst(c,_) -> TClassDecl c
-	| TEnum(en,_) -> TEnumDecl en
-	| TType(t,_) -> TTypeDecl t
-	| TAbstract(a,_) -> TAbstractDecl a
-	| TLazy f -> module_type_of_type (lazy_type f)
-	| TMono r ->
-		(match r.tm_type with
-		| Some t -> module_type_of_type t
-		| _ -> raise Exit)
-	| _ ->
-		raise Exit
-
-let tconst_to_const = function
-	| TInt i -> Int (Int32.to_string i)
-	| TFloat s -> Float s
-	| TString s -> String(s,SDoubleQuotes)
-	| TBool b -> Ident (if b then "true" else "false")
-	| TNull -> Ident "null"
-	| TThis -> Ident "this"
-	| TSuper -> Ident "super"
-
-let has_ctor_constraint c = match c.cl_kind with
-	| KTypeParameter tl ->
-		List.exists (fun t -> match follow t with
-			| TAnon a when PMap.mem "new" a.a_fields -> true
-			| TAbstract({a_path=["haxe"],"Constructible"},_) -> true
-			| _ -> false
-		) tl;
-	| _ -> false
-
-(* ======= Field utility ======= *)
-
-let field_name f =
-	match f with
-	| FAnon f | FInstance (_,_,f) | FStatic (_,f) | FClosure (_,f) -> f.cf_name
-	| FEnum (_,f) -> f.ef_name
-	| FDynamic n -> n
-
-let extract_field = function
-	| FAnon f | FInstance (_,_,f) | FStatic (_,f) | FClosure (_,f) -> Some f
-	| _ -> None
-
-let is_physical_var_field f =
-	match f.cf_kind with
-	| Var { v_read = AccNormal | AccInline | AccNo } | Var { v_write = AccNormal | AccNo } -> true
-	| Var _ -> Meta.has Meta.IsVar f.cf_meta
-	| _ -> false
-
-let is_physical_field f =
-	match f.cf_kind with
-	| Method _ -> true
-	| _ -> is_physical_var_field f
-
-let field_type f =
-	match f.cf_params with
-	| [] -> f.cf_type
-	| l -> monomorphs l f.cf_type
-
-let rec raw_class_field build_type c tl i =
-	let apply = apply_params c.cl_params tl in
-	try
-		let f = PMap.find i c.cl_fields in
-		Some (c,tl), build_type f , f
-	with Not_found -> try (match c.cl_constructor with
-		| Some ctor when i = "new" -> Some (c,tl), build_type ctor,ctor
-		| _ -> raise Not_found)
-	with Not_found -> try
-		match c.cl_super with
-		| None ->
-			raise Not_found
-		| Some (c,tl) ->
-			let c2 , t , f = raw_class_field build_type c (List.map apply tl) i in
-			c2, apply_params c.cl_params tl t , f
-	with Not_found ->
-		match c.cl_kind with
-		| KTypeParameter tl ->
-			let rec loop = function
-				| [] ->
-					raise Not_found
-				| t :: ctl ->
-					match follow t with
-					| TAnon a ->
-						(try
-							let f = PMap.find i a.a_fields in
-							None, build_type f, f
-						with
-							Not_found -> loop ctl)
-					| TInst (c,tl) ->
-						(try
-							let c2, t , f = raw_class_field build_type c (List.map apply tl) i in
-							c2, apply_params c.cl_params tl t, f
-						with
-							Not_found -> loop ctl)
-					| _ ->
-						loop ctl
-			in
-			loop tl
-		| _ ->
-			if not c.cl_interface then raise Not_found;
-			(*
-				an interface can implements other interfaces without
-				having to redeclare its fields
-			*)
-			let rec loop = function
-				| [] ->
-					raise Not_found
-				| (c,tl) :: l ->
-					try
-						let c2, t , f = raw_class_field build_type c (List.map apply tl) i in
-						c2, apply_params c.cl_params tl t, f
-					with
-						Not_found -> loop l
-			in
-			loop c.cl_implements
-
-let class_field = raw_class_field field_type
-
-let quick_field t n =
-	match follow t with
-	| TInst (c,tl) ->
-		let c, _, f = raw_class_field (fun f -> f.cf_type) c tl n in
-		(match c with None -> FAnon f | Some (c,tl) -> FInstance (c,tl,f))
-	| TAnon a ->
-		(match !(a.a_status) with
-		| EnumStatics e ->
-			let ef = PMap.find n e.e_constrs in
-			FEnum(e,ef)
-		| Statics c ->
-			FStatic (c,PMap.find n c.cl_statics)
-		| AbstractStatics a ->
-			begin match a.a_impl with
-				| Some c ->
-					let cf = PMap.find n c.cl_statics in
-					FStatic(c,cf) (* is that right? *)
-				| _ ->
-					raise Not_found
-			end
-		| _ ->
-			FAnon (PMap.find n a.a_fields))
-	| TDynamic _ ->
-		FDynamic n
-	| TEnum _  | TMono _ | TAbstract _ | TFun _ ->
-		raise Not_found
-	| TLazy _ | TType _ ->
-		assert false
-
-let quick_field_dynamic t s =
-	try quick_field t s
-	with Not_found -> FDynamic s
-
-let rec get_constructor build_type c =
-	match c.cl_constructor, c.cl_super with
-	| Some c, _ -> build_type c, c
-	| None, None -> raise Not_found
-	| None, Some (csup,cparams) ->
-		let t, c = get_constructor build_type csup in
-		apply_params csup.cl_params cparams t, c
-
-let has_constructor c =
-	try
-		ignore(get_constructor (fun cf -> cf.cf_type) c);
-		true
-	with Not_found -> false
-
-(* ======= Printing ======= *)
-
-let print_context() = ref []
-
-let rec s_type_kind t =
-	let map tl = String.concat ", " (List.map s_type_kind tl) in
-	match t with
-	| TMono r ->
-		begin match r.tm_type with
-			| None -> Printf.sprintf "TMono (None)"
-			| Some t -> "TMono (Some (" ^ (s_type_kind t) ^ "))"
-		end
-	| TEnum(en,tl) -> Printf.sprintf "TEnum(%s, [%s])" (s_type_path en.e_path) (map tl)
-	| TInst(c,tl) -> Printf.sprintf "TInst(%s, [%s])" (s_type_path c.cl_path) (map tl)
-	| TType(t,tl) -> Printf.sprintf "TType(%s, [%s])" (s_type_path t.t_path) (map tl)
-	| TAbstract(a,tl) -> Printf.sprintf "TAbstract(%s, [%s])" (s_type_path a.a_path) (map tl)
-	| TFun(tl,r) -> Printf.sprintf "TFun([%s], %s)" (String.concat ", " (List.map (fun (n,b,t) -> Printf.sprintf "%s%s:%s" (if b then "?" else "") n (s_type_kind t)) tl)) (s_type_kind r)
-	| TAnon an -> "TAnon"
-	| TDynamic t2 -> "TDynamic"
-	| TLazy _ -> "TLazy"
-
-let s_module_type_kind = function
-	| TClassDecl c -> "TClassDecl(" ^ (s_type_path c.cl_path) ^ ")"
-	| TEnumDecl en -> "TEnumDecl(" ^ (s_type_path en.e_path) ^ ")"
-	| TAbstractDecl a -> "TAbstractDecl(" ^ (s_type_path a.a_path) ^ ")"
-	| TTypeDecl t -> "TTypeDecl(" ^ (s_type_path t.t_path) ^ ")"
-
-let rec s_type ctx t =
-	match t with
-	| TMono r ->
-		(match r.tm_type with
-		| None ->
-			begin try
-				let id = List.assq t (!ctx) in
-				Printf.sprintf "Unknown<%d>" id
-			with Not_found ->
-				let id = List.length !ctx in
-				ctx := (t,id) :: !ctx;
-				Printf.sprintf "Unknown<%d>" id
-			end
-		| Some t -> s_type ctx t)
-	| TEnum (e,tl) ->
-		s_type_path e.e_path ^ s_type_params ctx tl
-	| TInst (c,tl) ->
-		(match c.cl_kind with
-		| KExpr e -> Ast.Printer.s_expr e
-		| _ -> s_type_path c.cl_path ^ s_type_params ctx tl)
-	| TType (t,tl) ->
-		s_type_path t.t_path ^ s_type_params ctx tl
-	| TAbstract (a,tl) ->
-		s_type_path a.a_path ^ s_type_params ctx tl
-	| TFun ([],t) ->
-		"Void -> " ^ s_fun ctx t false
-	| TFun (l,t) ->
-		let args = match l with
-			| [] -> "()"
-			| ["",b,t] -> Printf.sprintf "%s%s" (if b then "?" else "") (s_fun ctx t true)
-			| _ ->
-				let args = String.concat ", " (List.map (fun (s,b,t) ->
-					(if b then "?" else "") ^ (if s = "" then "" else s ^ " : ") ^ s_fun ctx t true
-				) l) in
-				"(" ^ args ^ ")"
-		in
-		Printf.sprintf "%s -> %s" args (s_fun ctx t false)
-	| TAnon a ->
-		begin
-			match !(a.a_status) with
-			| Statics c -> Printf.sprintf "{ Statics %s }" (s_type_path c.cl_path)
-			| EnumStatics e -> Printf.sprintf "{ EnumStatics %s }" (s_type_path e.e_path)
-			| AbstractStatics a -> Printf.sprintf "{ AbstractStatics %s }" (s_type_path a.a_path)
-			| _ ->
-				let fl = PMap.fold (fun f acc -> ((if Meta.has Meta.Optional f.cf_meta then " ?" else " ") ^ f.cf_name ^ " : " ^ s_type ctx f.cf_type) :: acc) a.a_fields [] in
-				"{" ^ (if not (is_closed a) then "+" else "") ^  String.concat "," fl ^ " }"
-		end
-	| TDynamic t2 ->
-		"Dynamic" ^ s_type_params ctx (if t == t2 then [] else [t2])
-	| TLazy f ->
-		s_type ctx (lazy_type f)
-
-and s_fun ctx t void =
-	match t with
-	| TFun _ ->
-		"(" ^ s_type ctx t ^ ")"
-	| TAbstract ({ a_path = ([],"Void") },[]) when void ->
-		"(" ^ s_type ctx t ^ ")"
-	| TMono r ->
-		(match r.tm_type with
-		| None -> s_type ctx t
-		| Some t -> s_fun ctx t void)
-	| TLazy f ->
-		s_fun ctx (lazy_type f) void
-	| _ ->
-		s_type ctx t
-
-and s_type_params ctx = function
-	| [] -> ""
-	| l -> "<" ^ String.concat ", " (List.map (s_type ctx) l) ^ ">"
-
-let s_access is_read = function
-	| AccNormal -> "default"
-	| AccNo -> "null"
-	| AccNever -> "never"
-	| AccResolve -> "resolve"
-	| AccCall -> if is_read then "get" else "set"
-	| AccInline	-> "inline"
-	| AccRequire (n,_) -> "require " ^ n
-	| AccCtor -> "ctor"
-
-let s_kind = function
-	| Var { v_read = AccNormal; v_write = AccNormal } -> "var"
-	| Var v -> "(" ^ s_access true v.v_read ^ "," ^ s_access false v.v_write ^ ")"
-	| Method m ->
-		match m with
-		| MethNormal -> "method"
-		| MethDynamic -> "dynamic method"
-		| MethInline -> "inline method"
-		| MethMacro -> "macro method"
-
-let s_expr_kind e =
-	match e.eexpr with
-	| TConst _ -> "Const"
-	| TLocal _ -> "Local"
-	| TArray (_,_) -> "Array"
-	| TBinop (_,_,_) -> "Binop"
-	| TEnumParameter (_,_,_) -> "EnumParameter"
-	| TEnumIndex _ -> "EnumIndex"
-	| TField (_,_) -> "Field"
-	| TTypeExpr _ -> "TypeExpr"
-	| TParenthesis _ -> "Parenthesis"
-	| TObjectDecl _ -> "ObjectDecl"
-	| TArrayDecl _ -> "ArrayDecl"
-	| TCall (_,_) -> "Call"
-	| TNew (_,_,_) -> "New"
-	| TUnop (_,_,_) -> "Unop"
-	| TFunction _ -> "Function"
-	| TVar _ -> "Vars"
-	| TBlock _ -> "Block"
-	| TFor (_,_,_) -> "For"
-	| TIf (_,_,_) -> "If"
-	| TWhile (_,_,_) -> "While"
-	| TSwitch (_,_,_) -> "Switch"
-	| TTry (_,_) -> "Try"
-	| TReturn _ -> "Return"
-	| TBreak -> "Break"
-	| TContinue -> "Continue"
-	| TThrow _ -> "Throw"
-	| TCast _ -> "Cast"
-	| TMeta _ -> "Meta"
-	| TIdent _ -> "Ident"
-
-let s_const = function
-	| TInt i -> Int32.to_string i
-	| TFloat s -> s
-	| TString s -> Printf.sprintf "\"%s\"" (StringHelper.s_escape s)
-	| TBool b -> if b then "true" else "false"
-	| TNull -> "null"
-	| TThis -> "this"
-	| TSuper -> "super"
-
-let s_field_access s_type fa = match fa with
-	| FStatic (c,f) -> "static(" ^ s_type_path c.cl_path ^ "." ^ f.cf_name ^ ")"
-	| FInstance (c,_,f) -> "inst(" ^ s_type_path c.cl_path ^ "." ^ f.cf_name ^ " : " ^ s_type f.cf_type ^ ")"
-	| FClosure (c,f) -> "closure(" ^ (match c with None -> f.cf_name | Some (c,_) -> s_type_path c.cl_path ^ "." ^ f.cf_name)  ^ ")"
-	| FAnon f -> "anon(" ^ f.cf_name ^ ")"
-	| FEnum (en,f) -> "enum(" ^ s_type_path en.e_path ^ "." ^ f.ef_name ^ ")"
-	| FDynamic f -> "dynamic(" ^ f ^ ")"
-
-let rec s_expr s_type e =
-	let sprintf = Printf.sprintf in
-	let slist f l = String.concat "," (List.map f l) in
-	let loop = s_expr s_type in
-	let s_var v = v.v_name ^ ":" ^ string_of_int v.v_id ^ if v.v_capture then "[c]" else "" in
-	let str = (match e.eexpr with
-	| TConst c ->
-		"Const " ^ s_const c
-	| TLocal v ->
-		"Local " ^ s_var v
-	| TArray (e1,e2) ->
-		sprintf "%s[%s]" (loop e1) (loop e2)
-	| TBinop (op,e1,e2) ->
-		sprintf "(%s %s %s)" (loop e1) (s_binop op) (loop e2)
-	| TEnumIndex e1 ->
-		sprintf "EnumIndex %s" (loop e1)
-	| TEnumParameter (e1,_,i) ->
-		sprintf "%s[%i]" (loop e1) i
-	| TField (e,f) ->
-		let fstr = s_field_access s_type f in
-		sprintf "%s.%s" (loop e) fstr
-	| TTypeExpr m ->
-		sprintf "TypeExpr %s" (s_type_path (t_path m))
-	| TParenthesis e ->
-		sprintf "Parenthesis %s" (loop e)
-	| TObjectDecl fl ->
-		sprintf "ObjectDecl {%s}" (slist (fun ((f,_,qs),e) -> sprintf "%s : %s" (s_object_key_name f qs) (loop e)) fl)
-	| TArrayDecl el ->
-		sprintf "ArrayDecl [%s]" (slist loop el)
-	| TCall (e,el) ->
-		sprintf "Call %s(%s)" (loop e) (slist loop el)
-	| TNew (c,pl,el) ->
-		sprintf "New %s%s(%s)" (s_type_path c.cl_path) (match pl with [] -> "" | l -> sprintf "<%s>" (slist s_type l)) (slist loop el)
-	| TUnop (op,f,e) ->
-		(match f with
-		| Prefix -> sprintf "(%s %s)" (s_unop op) (loop e)
-		| Postfix -> sprintf "(%s %s)" (loop e) (s_unop op))
-	| TFunction f ->
-		let args = slist (fun (v,o) -> sprintf "%s : %s%s" (s_var v) (s_type v.v_type) (match o with None -> "" | Some c -> " = " ^ loop c)) f.tf_args in
-		sprintf "Function(%s) : %s = %s" args (s_type f.tf_type) (loop f.tf_expr)
-	| TVar (v,eo) ->
-		sprintf "Vars %s" (sprintf "%s : %s%s" (s_var v) (s_type v.v_type) (match eo with None -> "" | Some e -> " = " ^ loop e))
-	| TBlock el ->
-		sprintf "Block {\n%s}" (String.concat "" (List.map (fun e -> sprintf "%s;\n" (loop e)) el))
-	| TFor (v,econd,e) ->
-		sprintf "For (%s : %s in %s,%s)" (s_var v) (s_type v.v_type) (loop econd) (loop e)
-	| TIf (e,e1,e2) ->
-		sprintf "If (%s,%s%s)" (loop e) (loop e1) (match e2 with None -> "" | Some e -> "," ^ loop e)
-	| TWhile (econd,e,flag) ->
-		(match flag with
-		| NormalWhile -> sprintf "While (%s,%s)" (loop econd) (loop e)
-		| DoWhile -> sprintf "DoWhile (%s,%s)" (loop e) (loop econd))
-	| TSwitch (e,cases,def) ->
-		sprintf "Switch (%s,(%s)%s)" (loop e) (slist (fun (cl,e) -> sprintf "case %s: %s" (slist loop cl) (loop e)) cases) (match def with None -> "" | Some e -> "," ^ loop e)
-	| TTry (e,cl) ->
-		sprintf "Try %s(%s) " (loop e) (slist (fun (v,e) -> sprintf "catch( %s : %s ) %s" (s_var v) (s_type v.v_type) (loop e)) cl)
-	| TReturn None ->
-		"Return"
-	| TReturn (Some e) ->
-		sprintf "Return %s" (loop e)
-	| TBreak ->
-		"Break"
-	| TContinue ->
-		"Continue"
-	| TThrow e ->
-		"Throw " ^ (loop e)
-	| TCast (e,t) ->
-		sprintf "Cast %s%s" (match t with None -> "" | Some t -> s_type_path (t_path t) ^ ": ") (loop e)
-	| TMeta ((n,el,_),e) ->
-		sprintf "@%s%s %s" (Meta.to_string n) (match el with [] -> "" | _ -> "(" ^ (String.concat ", " (List.map Ast.Printer.s_expr el)) ^ ")") (loop e)
-	| TIdent s ->
-		"Ident " ^ s
-	) in
-	sprintf "(%s : %s)" str (s_type e.etype)
-
-let rec s_expr_pretty print_var_ids tabs top_level s_type e =
-	let sprintf = Printf.sprintf in
-	let loop = s_expr_pretty print_var_ids tabs false s_type in
-	let slist c f l = String.concat c (List.map f l) in
-	let clist f l = slist ", " f l in
-	let local v = if print_var_ids then sprintf "%s<%i>" v.v_name v.v_id else v.v_name in
-	match e.eexpr with
-	| TConst c -> s_const c
-	| TLocal v -> local v
-	| TArray (e1,e2) -> sprintf "%s[%s]" (loop e1) (loop e2)
-	| TBinop (op,e1,e2) -> sprintf "%s %s %s" (loop e1) (s_binop op) (loop e2)
-	| TEnumParameter (e1,_,i) -> sprintf "%s[%i]" (loop e1) i
-	| TEnumIndex e1 -> sprintf "enumIndex %s" (loop e1)
-	| TField (e1,s) -> sprintf "%s.%s" (loop e1) (field_name s)
-	| TTypeExpr mt -> (s_type_path (t_path mt))
-	| TParenthesis e1 -> sprintf "(%s)" (loop e1)
-	| TObjectDecl fl -> sprintf "{%s}" (clist (fun ((f,_,qs),e) -> sprintf "%s : %s" (s_object_key_name f qs) (loop e)) fl)
-	| TArrayDecl el -> sprintf "[%s]" (clist loop el)
-	| TCall (e1,el) -> sprintf "%s(%s)" (loop e1) (clist loop el)
-	| TNew (c,pl,el) ->
-		sprintf "new %s(%s)" (s_type_path c.cl_path) (clist loop el)
-	| TUnop (op,f,e) ->
-		(match f with
-		| Prefix -> sprintf "%s %s" (s_unop op) (loop e)
-		| Postfix -> sprintf "%s %s" (loop e) (s_unop op))
-	| TFunction f ->
-		let args = clist (fun (v,o) -> sprintf "%s:%s%s" (local v) (s_type v.v_type) (match o with None -> "" | Some c -> " = " ^ loop c)) f.tf_args in
-		sprintf "%s(%s) %s" (if top_level then "" else "function") args (loop f.tf_expr)
-	| TVar (v,eo) ->
-		sprintf "var %s" (sprintf "%s%s" (local v) (match eo with None -> "" | Some e -> " = " ^ loop e))
-	| TBlock el ->
-		let ntabs = tabs ^ "\t" in
-		let s = sprintf "{\n%s" (String.concat "" (List.map (fun e -> sprintf "%s%s;\n" ntabs (s_expr_pretty print_var_ids ntabs top_level s_type e)) el)) in
-		(match el with
-			| [] -> "{}"
-			| _ ->  s ^ tabs ^ "}")
-	| TFor (v,econd,e) ->
-		sprintf "for (%s in %s) %s" (local v) (loop econd) (loop e)
-	| TIf (e,e1,e2) ->
-		sprintf "if (%s) %s%s" (loop e) (loop e1) (match e2 with None -> "" | Some e -> " else " ^ loop e)
-	| TWhile (econd,e,flag) ->
-		(match flag with
-		| NormalWhile -> sprintf "while (%s) %s" (loop econd) (loop e)
-		| DoWhile -> sprintf "do (%s) while(%s)" (loop e) (loop econd))
-	| TSwitch (e,cases,def) ->
-		let ntabs = tabs ^ "\t" in
-		let s = sprintf "switch (%s) {\n%s%s" (loop e) (slist "" (fun (cl,e) -> sprintf "%scase %s: %s;\n" ntabs (clist loop cl) (s_expr_pretty print_var_ids ntabs top_level s_type e)) cases) (match def with None -> "" | Some e -> ntabs ^ "default: " ^ (s_expr_pretty print_var_ids ntabs top_level s_type e) ^ "\n") in
-		s ^ tabs ^ "}"
-	| TTry (e,cl) ->
-		sprintf "try %s%s" (loop e) (clist (fun (v,e) -> sprintf " catch (%s:%s) %s" (local v) (s_type v.v_type) (loop e)) cl)
-	| TReturn None ->
-		"return"
-	| TReturn (Some e) ->
-		sprintf "return %s" (loop e)
-	| TBreak ->
-		"break"
-	| TContinue ->
-		"continue"
-	| TThrow e ->
-		"throw " ^ (loop e)
-	| TCast (e,None) ->
-		sprintf "cast %s" (loop e)
-	| TCast (e,Some mt) ->
-		sprintf "cast (%s,%s)" (loop e) (s_type_path (t_path mt))
-	| TMeta ((n,el,_),e) ->
-		sprintf "@%s%s %s" (Meta.to_string n) (match el with [] -> "" | _ -> "(" ^ (String.concat ", " (List.map Ast.Printer.s_expr el)) ^ ")") (loop e)
-	| TIdent s ->
-		s
-
-let rec s_expr_ast print_var_ids tabs s_type e =
-	let sprintf = Printf.sprintf in
-	let loop ?(extra_tabs="") = s_expr_ast print_var_ids (tabs ^ "\t" ^ extra_tabs) s_type in
-	let tag_args tabs sl = match sl with
-		| [] -> ""
-		| [s] when not (String.contains s '\n') -> " " ^ s
-		| _ ->
-			let tabs = "\n" ^ tabs ^ "\t" in
-			tabs ^ (String.concat tabs sl)
-	in
-	let tag s ?(t=None) ?(extra_tabs="") sl =
-		let st = match t with
-			| None -> s_type e.etype
-			| Some t -> s_type t
-		in
-		sprintf "[%s:%s]%s" s st (tag_args (tabs ^ extra_tabs) sl)
-	in
-	let var_id v = if print_var_ids then v.v_id else 0 in
-	let const c t = tag "Const" ~t [s_const c] in
-	let local v t = sprintf "[Local %s(%i):%s%s]" v.v_name (var_id v) (s_type v.v_type) (match t with None -> "" | Some t -> ":" ^ (s_type t)) in
-	let var v sl = sprintf "[Var %s(%i):%s]%s" v.v_name (var_id v) (s_type v.v_type) (tag_args tabs sl) in
-	let module_type mt = sprintf "[TypeExpr %s:%s]" (s_type_path (t_path mt)) (s_type e.etype) in
-	match e.eexpr with
-	| TConst c -> const c (Some e.etype)
-	| TLocal v -> local v (Some e.etype)
-	| TArray (e1,e2) -> tag "Array" [loop e1; loop e2]
-	| TBinop (op,e1,e2) -> tag "Binop" [loop e1; s_binop op; loop e2]
-	| TUnop (op,flag,e1) -> tag "Unop" [s_unop op; if flag = Postfix then "Postfix" else "Prefix"; loop e1]
-	| TEnumParameter (e1,ef,i) -> tag "EnumParameter" [loop e1; ef.ef_name; string_of_int i]
-	| TEnumIndex e1 -> tag "EnumIndex" [loop e1]
-	| TField (e1,fa) ->
-		let sfa = match fa with
-			| FInstance(c,tl,cf) -> tag "FInstance" ~extra_tabs:"\t" [s_type (TInst(c,tl)); Printf.sprintf "%s:%s" cf.cf_name (s_type cf.cf_type)]
-			| FStatic(c,cf) -> tag "FStatic" ~extra_tabs:"\t" [s_type_path c.cl_path; Printf.sprintf "%s:%s" cf.cf_name (s_type cf.cf_type)]
-			| FClosure(co,cf) -> tag "FClosure" ~extra_tabs:"\t" [(match co with None -> "None" | Some (c,tl) -> s_type (TInst(c,tl))); Printf.sprintf "%s:%s" cf.cf_name (s_type cf.cf_type)]
-			| FAnon cf -> tag "FAnon" ~extra_tabs:"\t" [Printf.sprintf "%s:%s" cf.cf_name (s_type cf.cf_type)]
-			| FDynamic s -> tag "FDynamic" ~extra_tabs:"\t" [s]
-			| FEnum(en,ef) -> tag "FEnum" ~extra_tabs:"\t" [s_type_path en.e_path; ef.ef_name]
-		in
-		tag "Field" [loop e1; sfa]
-	| TTypeExpr mt -> module_type mt
-	| TParenthesis e1 -> tag "Parenthesis" [loop e1]
-	| TObjectDecl fl -> tag "ObjectDecl" (List.map (fun ((s,_,qs),e) -> sprintf "%s: %s" (s_object_key_name s qs) (loop e)) fl)
-	| TArrayDecl el -> tag "ArrayDecl" (List.map loop el)
-	| TCall (e1,el) -> tag "Call" (loop e1 :: (List.map loop el))
-	| TNew (c,tl,el) -> tag "New" ((s_type (TInst(c,tl))) :: (List.map loop el))
-	| TFunction f ->
-		let arg (v,cto) =
-			tag "Arg" ~t:(Some v.v_type) ~extra_tabs:"\t" (match cto with None -> [local v None] | Some ct -> [local v None;loop ct])
-		in
-		tag "Function" ((List.map arg f.tf_args) @ [loop f.tf_expr])
-	| TVar (v,eo) -> var v (match eo with None -> [] | Some e -> [loop e])
-	| TBlock el -> tag "Block" (List.map loop el)
-	| TIf (e,e1,e2) -> tag "If" (loop e :: (Printf.sprintf "[Then:%s] %s" (s_type e1.etype) (loop e1)) :: (match e2 with None -> [] | Some e -> [Printf.sprintf "[Else:%s] %s" (s_type e.etype) (loop e)]))
-	| TCast (e1,None) -> tag "Cast" [loop e1]
-	| TCast (e1,Some mt) -> tag "Cast" [loop e1; module_type mt]
-	| TThrow e1 -> tag "Throw" [loop e1]
-	| TBreak -> tag "Break" []
-	| TContinue -> tag "Continue" []
-	| TReturn None -> tag "Return" []
-	| TReturn (Some e1) -> tag "Return" [loop e1]
-	| TWhile (e1,e2,NormalWhile) -> tag "While" [loop e1; loop e2]
-	| TWhile (e1,e2,DoWhile) -> tag "Do" [loop e1; loop e2]
-	| TFor (v,e1,e2) -> tag "For" [local v None; loop e1; loop e2]
-	| TTry (e1,catches) ->
-		let sl = List.map (fun (v,e) ->
-			sprintf "Catch %s%s" (local v None) (tag_args (tabs ^ "\t") [loop ~extra_tabs:"\t" e]);
-		) catches in
-		tag "Try" ((loop e1) :: sl)
-	| TSwitch (e1,cases,eo) ->
-		let sl = List.map (fun (el,e) ->
-			tag "Case" ~t:(Some e.etype) ~extra_tabs:"\t" ((List.map loop el) @ [loop ~extra_tabs:"\t" e])
-		) cases in
-		let sl = match eo with
-			| None -> sl
-			| Some e -> sl @ [tag "Default" ~t:(Some e.etype) ~extra_tabs:"\t" [loop ~extra_tabs:"\t" e]]
-		in
-		tag "Switch" ((loop e1) :: sl)
-	| TMeta ((m,el,_),e1) ->
-		let s = Meta.to_string m in
-		let s = match el with
-			| [] -> s
-			| _ -> sprintf "%s(%s)" s (String.concat ", " (List.map Ast.Printer.s_expr el))
-		in
-		tag "Meta" [s; loop e1]
-	| TIdent s ->
-		tag "Ident" [s]
-
-let s_types ?(sep = ", ") tl =
-	let pctx = print_context() in
-	String.concat sep (List.map (s_type pctx) tl)
-
-let s_class_kind = function
-	| KNormal ->
-		"KNormal"
-	| KTypeParameter tl ->
-		Printf.sprintf "KTypeParameter [%s]" (s_types tl)
-	| KExpr _ ->
-		"KExpr"
-	| KGeneric ->
-		"KGeneric"
-	| KGenericInstance(c,tl) ->
-		Printf.sprintf "KGenericInstance %s<%s>" (s_type_path c.cl_path) (s_types tl)
-	| KMacroType ->
-		"KMacroType"
-	| KGenericBuild _ ->
-		"KGenericBuild"
-	| KAbstractImpl a ->
-		Printf.sprintf "KAbstractImpl %s" (s_type_path a.a_path)
-
-module Printer = struct
-
-	let s_type t =
-		s_type (print_context()) t
-
-	let s_pair s1 s2 =
-		Printf.sprintf "(%s,%s)" s1 s2
-
-	let s_record_field name value =
-		Printf.sprintf "%s = %s;" name value
-
-	let s_pos p =
-		Printf.sprintf "%s: %i-%i" p.pfile p.pmin p.pmax
-
-	let s_record_fields tabs fields =
-		let sl = List.map (fun (name,value) -> s_record_field name value) fields in
-		Printf.sprintf "{\n%s\t%s\n%s}" tabs (String.concat ("\n\t" ^ tabs) sl) tabs
-
-	let s_list sep f l =
-		"[" ^ (String.concat sep (List.map f l)) ^ "]"
-
-	let s_opt f o = match o with
-		| None -> "None"
-		| Some v -> f v
-
-	let s_pmap fk fv pm =
-		"{" ^ (String.concat ", " (PMap.foldi (fun k v acc -> (Printf.sprintf "%s = %s" (fk k) (fv v)) :: acc) pm [])) ^ "}"
-
-	let s_doc = s_opt (fun s -> s)
-
-	let s_metadata_entry (s,el,_) =
-		Printf.sprintf "@%s%s" (Meta.to_string s) (match el with [] -> "" | el -> "(" ^ (String.concat ", " (List.map Ast.Printer.s_expr el)) ^ ")")
-
-	let s_metadata metadata =
-		s_list " " s_metadata_entry metadata
-
-	let s_type_param (s,t) = match follow t with
-		| TInst({cl_kind = KTypeParameter tl1},tl2) ->
-			begin match tl1 with
-			| [] -> s
-			| _ -> Printf.sprintf "%s:%s" s (String.concat ", " (List.map s_type tl1))
-			end
-		| _ -> assert false
-
-	let s_type_params tl =
-		s_list ", " s_type_param tl
-
-	let s_tclass_field tabs cf =
-		s_record_fields tabs [
-			"cf_name",cf.cf_name;
-			"cf_doc",s_doc cf.cf_doc;
-			"cf_type",s_type_kind (follow cf.cf_type);
-			"cf_pos",s_pos cf.cf_pos;
-			"cf_name_pos",s_pos cf.cf_name_pos;
-			"cf_meta",s_metadata cf.cf_meta;
-			"cf_kind",s_kind cf.cf_kind;
-			"cf_params",s_type_params cf.cf_params;
-			"cf_expr",s_opt (s_expr_ast true "\t\t" s_type) cf.cf_expr;
-		]
-
-	let s_tclass tabs c =
-		s_record_fields tabs [
-			"cl_path",s_type_path c.cl_path;
-			"cl_module",s_type_path c.cl_module.m_path;
-			"cl_pos",s_pos c.cl_pos;
-			"cl_name_pos",s_pos c.cl_name_pos;
-			"cl_private",string_of_bool c.cl_private;
-			"cl_doc",s_doc c.cl_doc;
-			"cl_meta",s_metadata c.cl_meta;
-			"cl_params",s_type_params c.cl_params;
-			"cl_kind",s_class_kind c.cl_kind;
-			"cl_extern",string_of_bool c.cl_extern;
-			"cl_final",string_of_bool c.cl_final;
-			"cl_interface",string_of_bool c.cl_interface;
-			"cl_super",s_opt (fun (c,tl) -> s_type (TInst(c,tl))) c.cl_super;
-			"cl_implements",s_list ", " (fun (c,tl) -> s_type (TInst(c,tl))) c.cl_implements;
-			"cl_array_access",s_opt s_type c.cl_array_access;
-			"cl_overrides",s_list "," (fun cf -> cf.cf_name) c.cl_overrides;
-			"cl_init",s_opt (s_expr_ast true "" s_type) c.cl_init;
-			"cl_constructor",s_opt (s_tclass_field (tabs ^ "\t")) c.cl_constructor;
-			"cl_ordered_fields",s_list "\n\t" (s_tclass_field (tabs ^ "\t")) c.cl_ordered_fields;
-			"cl_ordered_statics",s_list "\n\t" (s_tclass_field (tabs ^ "\t")) c.cl_ordered_statics;
-		]
-
-	let s_tdef tabs t =
-		s_record_fields tabs [
-			"t_path",s_type_path t.t_path;
-			"t_module",s_type_path t.t_module.m_path;
-			"t_pos",s_pos t.t_pos;
-			"t_name_pos",s_pos t.t_name_pos;
-			"t_private",string_of_bool t.t_private;
-			"t_doc",s_doc t.t_doc;
-			"t_meta",s_metadata t.t_meta;
-			"t_params",s_type_params t.t_params;
-			"t_type",s_type_kind t.t_type
-		]
-
-	let s_tenum_field tabs ef =
-		s_record_fields tabs [
-			"ef_name",ef.ef_name;
-			"ef_doc",s_doc ef.ef_doc;
-			"ef_pos",s_pos ef.ef_pos;
-			"ef_name_pos",s_pos ef.ef_name_pos;
-			"ef_type",s_type_kind ef.ef_type;
-			"ef_index",string_of_int ef.ef_index;
-			"ef_params",s_type_params ef.ef_params;
-			"ef_meta",s_metadata ef.ef_meta
-		]
-
-	let s_tenum tabs en =
-		s_record_fields tabs [
-			"e_path",s_type_path en.e_path;
-			"e_module",s_type_path en.e_module.m_path;
-			"e_pos",s_pos en.e_pos;
-			"e_name_pos",s_pos en.e_name_pos;
-			"e_private",string_of_bool en.e_private;
-			"d_doc",s_doc en.e_doc;
-			"e_meta",s_metadata en.e_meta;
-			"e_params",s_type_params en.e_params;
-			"e_type",s_tdef "\t" en.e_type;
-			"e_extern",string_of_bool en.e_extern;
-			"e_constrs",s_list "\n\t" (s_tenum_field (tabs ^ "\t")) (PMap.fold (fun ef acc -> ef :: acc) en.e_constrs []);
-			"e_names",String.concat ", " en.e_names
-		]
-
-	let s_tabstract tabs a =
-		s_record_fields tabs [
-			"a_path",s_type_path a.a_path;
-			"a_modules",s_type_path a.a_module.m_path;
-			"a_pos",s_pos a.a_pos;
-			"a_name_pos",s_pos a.a_name_pos;
-			"a_private",string_of_bool a.a_private;
-			"a_doc",s_doc a.a_doc;
-			"a_meta",s_metadata a.a_meta;
-			"a_params",s_type_params a.a_params;
-			"a_ops",s_list ", " (fun (op,cf) -> Printf.sprintf "%s: %s" (s_binop op) cf.cf_name) a.a_ops;
-			"a_unops",s_list ", " (fun (op,flag,cf) -> Printf.sprintf "%s (%s): %s" (s_unop op) (if flag = Postfix then "postfix" else "prefix") cf.cf_name) a.a_unops;
-			"a_impl",s_opt (fun c -> s_type_path c.cl_path) a.a_impl;
-			"a_this",s_type_kind a.a_this;
-			"a_from",s_list ", " s_type_kind a.a_from;
-			"a_to",s_list ", " s_type_kind a.a_to;
-			"a_from_field",s_list ", " (fun (t,cf) -> Printf.sprintf "%s: %s" (s_type_kind t) cf.cf_name) a.a_from_field;
-			"a_to_field",s_list ", " (fun (t,cf) -> Printf.sprintf "%s: %s" (s_type_kind t) cf.cf_name) a.a_to_field;
-			"a_array",s_list ", " (fun cf -> cf.cf_name) a.a_array;
-			"a_read",s_opt (fun cf -> cf.cf_name) a.a_read;
-			"a_write",s_opt (fun cf -> cf.cf_name) a.a_write;
-		]
-
-	let s_tvar_extra (tl,eo) =
-		Printf.sprintf "Some(%s, %s)" (s_type_params tl) (s_opt (s_expr_ast true "" s_type) eo)
-
-	let s_tvar v =
-		s_record_fields "" [
-			"v_id",string_of_int v.v_id;
-			"v_name",v.v_name;
-			"v_type",s_type v.v_type;
-			"v_capture",string_of_bool v.v_capture;
-			"v_extra",s_opt s_tvar_extra v.v_extra;
-			"v_meta",s_metadata v.v_meta;
-		]
-
-	let s_module_kind = function
-		| MCode -> "MCode"
-		| MMacro -> "MMacro"
-		| MFake -> "MFake"
-		| MExtern -> "MExtern"
-		| MImport -> "MImport"
-
-	let s_module_def_extra tabs me =
-		s_record_fields tabs [
-			"m_file",me.m_file;
-			"m_sign",me.m_sign;
-			"m_time",string_of_float me.m_time;
-			"m_dirty",s_opt s_type_path me.m_dirty;
-			"m_added",string_of_int me.m_added;
-			"m_mark",string_of_int me.m_mark;
-			"m_deps",s_pmap string_of_int (fun m -> snd m.m_path) me.m_deps;
-			"m_processed",string_of_int me.m_processed;
-			"m_kind",s_module_kind me.m_kind;
-			"m_binded_res",""; (* TODO *)
-			"m_if_feature",""; (* TODO *)
-			"m_features",""; (* TODO *)
-		]
-
-	let s_module_def m =
-		s_record_fields "" [
-			"m_id",string_of_int m.m_id;
-			"m_path",s_type_path m.m_path;
-			"m_extra",s_module_def_extra "\t" m.m_extra
-		]
-
-	let s_type_path tp =
-		s_record_fields "" [
-			"tpackage",s_list "." (fun s -> s) tp.tpackage;
-			"tname",tp.tname;
-			"tparams","";
-			"tsub",s_opt (fun s -> s) tp.tsub;
-		]
-
-	let s_class_flag = function
-		| HInterface -> "HInterface"
-		| HExtern -> "HExtern"
-		| HPrivate -> "HPrivate"
-		| HExtends tp -> "HExtends " ^ (s_type_path (fst tp))
-		| HImplements tp -> "HImplements " ^ (s_type_path (fst tp))
-		| HFinal -> "HFinal"
-
-	let s_placed f (x,p) =
-		s_pair (f x) (s_pos p)
-
-	let s_class_field cff =
-		s_record_fields "" [
-			"cff_name",s_placed (fun s -> s) cff.cff_name;
-			"cff_doc",s_opt (fun s -> s) cff.cff_doc;
-			"cff_pos",s_pos cff.cff_pos;
-			"cff_meta",s_metadata cff.cff_meta;
-			"cff_access",s_list ", " Ast.s_placed_access cff.cff_access;
-		]
-end
-
-(* ======= Unification ======= *)
-
-module Monomorph = struct
-	let create () = {
-		tm_type = None;
-	}
-
-	let do_bind m t =
-		(* assert(m.tm_type = None); *) (* TODO: should be here, but matcher.ml does some weird bind handling at the moment. *)
-		m.tm_type <- Some t
-
-	let rec bind m t =
-		m.tm_type <- Some t
-
-	let unbind m =
-		m.tm_type <- None
-end
-
-let rec link e a b =
-	(* tell if setting a == b will create a type-loop *)
-	let rec loop t =
-		if t == a then
-			true
-		else match t with
-		| TMono t -> (match t.tm_type with None -> false | Some t -> loop t)
-		| TEnum (_,tl) -> List.exists loop tl
-		| TInst (_,tl) | TType (_,tl) | TAbstract (_,tl) -> List.exists loop tl
-		| TFun (tl,t) -> List.exists (fun (_,_,t) -> loop t) tl || loop t
-		| TDynamic t2 ->
-			if t == t2 then
-				false
-			else
-				loop t2
-		| TLazy f ->
-			loop (lazy_type f)
-		| TAnon a ->
-			try
-				PMap.iter (fun _ f -> if loop f.cf_type then raise Exit) a.a_fields;
-				false
-			with
-				Exit -> true
-	in
-	(* tell is already a ~= b *)
-	if loop b then
-		(follow b) == a
-	else if b == t_dynamic then
-		true
-	else begin
-		Monomorph.bind e b;
-		true
-	end
-
-let would_produce_recursive_anon field_acceptor field_donor =
-	try
-		(match !(field_acceptor.a_status) with
-		| Opened ->
-			PMap.iter (fun n field ->
-				match follow field.cf_type with
-				| TAnon a when field_acceptor == a -> raise Exit
-				| _ -> ()
-			) field_donor.a_fields;
-		| _ -> ());
-		false
-	with Exit -> true
-
-let link_dynamic a b = match follow a,follow b with
-	| TMono r,TDynamic _ -> Monomorph.bind r b
-	| TDynamic _,TMono r -> Monomorph.bind r a
-	| _ -> ()
-
-let fast_eq_check type_param_check a b =
-	if a == b then
-		true
-	else match a , b with
-	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
-		List.for_all2 (fun (_,_,t1) (_,_,t2) -> type_param_check t1 t2) l1 l2 && type_param_check r1 r2
-	| TType (t1,l1), TType (t2,l2) ->
-		t1 == t2 && List.for_all2 type_param_check l1 l2
-	| TEnum (e1,l1), TEnum (e2,l2) ->
-		e1 == e2 && List.for_all2 type_param_check l1 l2
-	| TInst (c1,l1), TInst (c2,l2) ->
-		c1 == c2 && List.for_all2 type_param_check l1 l2
-	| TAbstract (a1,l1), TAbstract (a2,l2) ->
-		a1 == a2 && List.for_all2 type_param_check l1 l2
-	| _ , _ ->
-		false
-
-let rec fast_eq a b = fast_eq_check fast_eq a b
-
-let rec fast_eq_mono ml a b =
-	if fast_eq_check (fast_eq_mono ml) a b then
-		true
-	else match a , b with
-	| TMono _, _ ->
-		List.memq a ml
-	| _ , _ ->
-		false
-
-let rec shallow_eq a b =
-	a == b
-	|| begin
-		let a = follow a
-		and b = follow b in
-		fast_eq_check shallow_eq a b
-		|| match a , b with
-			| t, TMono { tm_type = None } when t == t_dynamic -> true
-			| TMono { tm_type = None }, t when t == t_dynamic -> true
-			| TMono { tm_type = None }, TMono { tm_type = None } -> true
-			| TAnon a1, TAnon a2 ->
-				let fields_eq() =
-					let rec loop fields1 fields2 =
-						match fields1, fields2 with
-						| [], [] -> true
-						| _, [] | [], _ -> false
-						| f1 :: rest1, f2 :: rest2 ->
-							f1.cf_name = f2.cf_name
-							&& (try shallow_eq f1.cf_type f2.cf_type with Not_found -> false)
-							&& loop rest1 rest2
-					in
-					let fields1 = PMap.fold (fun field fields -> field :: fields) a1.a_fields []
-					and fields2 = PMap.fold (fun field fields -> field :: fields) a2.a_fields []
-					and sort_compare f1 f2 = compare f1.cf_name f2.cf_name in
-					loop (List.sort sort_compare fields1) (List.sort sort_compare fields2)
-				in
-				(match !(a2.a_status), !(a1.a_status) with
-				| Statics c, Statics c2 -> c == c2
-				| EnumStatics e, EnumStatics e2 -> e == e2
-				| AbstractStatics a, AbstractStatics a2 -> a == a2
-				| Extend tl1, Extend tl2 -> fields_eq() && List.for_all2 shallow_eq tl1 tl2
-				| Closed, Closed -> fields_eq()
-				| Opened, Opened -> fields_eq()
-				| Const, Const -> fields_eq()
-				| _ -> false
-				)
-			| _ , _ ->
-				false
-	end
-
-(* perform unification with subtyping.
-   the first type is always the most down in the class hierarchy
-   it's also the one that is pointed by the position.
-   It's actually a typecheck of  A :> B where some mutations can happen *)
-
-type unify_error =
-	| Cannot_unify of t * t
-	| Invalid_field_type of string
-	| Has_no_field of t * string
-	| Has_no_runtime_field of t * string
-	| Has_extra_field of t * string
-	| Invalid_kind of string * field_kind * field_kind
-	| Invalid_visibility of string
-	| Not_matching_optional of string
-	| Cant_force_optional
-	| Invariant_parameter of int
-	| Constraint_failure of string
-	| Missing_overload of tclass_field * t
-	| FinalInvariance (* nice band name *)
-	| Invalid_function_argument of int (* index *) * int (* total *)
-	| Invalid_return_type
-	| Unify_custom of string
-
-exception Unify_error of unify_error list
-
-let cannot_unify a b = Cannot_unify (a,b)
-let invalid_field n = Invalid_field_type n
-let invalid_kind n a b = Invalid_kind (n,a,b)
-let invalid_visibility n = Invalid_visibility n
-let has_no_field t n = Has_no_field (t,n)
-let has_extra_field t n = Has_extra_field (t,n)
-let error l = raise (Unify_error l)
-let has_meta m ml = List.exists (fun (m2,_,_) -> m = m2) ml
-let get_meta m ml = List.find (fun (m2,_,_) -> m = m2) ml
-let no_meta = []
-
-(*
-	we can restrict access as soon as both are runtime-compatible
-*)
-let unify_access a1 a2 =
-	a1 = a2 || match a1, a2 with
-	| _, AccNo | _, AccNever -> true
-	| AccInline, AccNormal -> true
-	| _ -> false
-
-let direct_access = function
-	| AccNo | AccNever | AccNormal | AccInline | AccRequire _ | AccCtor -> true
-	| AccResolve | AccCall -> false
-
-let unify_kind k1 k2 =
-	k1 = k2 || match k1, k2 with
-		| Var v1, Var v2 -> unify_access v1.v_read v2.v_read && unify_access v1.v_write v2.v_write
-		| Var v, Method m ->
-			(match v.v_read, v.v_write, m with
-			| AccNormal, _, MethNormal -> true
-			| AccNormal, AccNormal, MethDynamic -> true
-			| _ -> false)
-		| Method m, Var v ->
-			(match m with
-			| MethDynamic -> direct_access v.v_read && direct_access v.v_write
-			| MethMacro -> false
-			| MethNormal | MethInline ->
-				match v.v_read,v.v_write with
-				| AccNormal,(AccNo | AccNever) -> true
-				| _ -> false)
-		| Method m1, Method m2 ->
-			match m1,m2 with
-			| MethInline, MethNormal
-			| MethDynamic, MethNormal -> true
-			| _ -> false
-
-type 'a rec_stack = {
-	mutable rec_stack : 'a list;
-}
-
-let new_rec_stack() = { rec_stack = [] }
-let rec_stack_exists f s = List.exists f s.rec_stack
-let rec_stack_memq v s = List.memq v s.rec_stack
-let rec_stack_loop stack value f arg =
-	stack.rec_stack <- value :: stack.rec_stack;
-	try
-		let r = f arg in
-		stack.rec_stack <- List.tl stack.rec_stack;
-		r
-	with e ->
-		stack.rec_stack <- List.tl stack.rec_stack;
-		raise e
-
-let eq_stack = new_rec_stack()
-
-let rec_stack stack value fcheck frun ferror =
-	if not (rec_stack_exists fcheck stack) then begin
-		try
-			stack.rec_stack <- value :: stack.rec_stack;
-			let v = frun() in
-			stack.rec_stack <- List.tl stack.rec_stack;
-			v
-		with
-			Unify_error l ->
-				stack.rec_stack <- List.tl stack.rec_stack;
-				ferror l
-			| e ->
-				stack.rec_stack <- List.tl stack.rec_stack;
-				raise e
-	end
-
-let rec_stack_default stack value fcheck frun def =
-	if not (rec_stack_exists fcheck stack) then rec_stack_loop stack value frun () else def
-
-let rec_stack_bool stack value fcheck frun =
-	if (rec_stack_exists fcheck stack) then false else begin
-		try
-			stack.rec_stack <- value :: stack.rec_stack;
-			frun();
-			stack.rec_stack <- List.tl stack.rec_stack;
-			true
-		with
-			Unify_error l ->
-				stack.rec_stack <- List.tl stack.rec_stack;
-				false
-			| e ->
-				stack.rec_stack <- List.tl stack.rec_stack;
-				raise e
-	end
-
-type eq_kind =
-	| EqStrict
-	| EqCoreType
-	| EqRightDynamic
-	| EqBothDynamic
-	| EqDoNotFollowNull (* like EqStrict, but does not follow Null<T> *)
-
-let rec type_eq param a b =
-	let can_follow t = match param with
-		| EqCoreType -> false
-		| EqDoNotFollowNull -> not (is_explicit_null t)
-		| _ -> true
-	in
-	if a == b then
-		()
-	else match a , b with
-	| TLazy f , _ -> type_eq param (lazy_type f) b
-	| _ , TLazy f -> type_eq param a (lazy_type f)
-	| TMono t , _ ->
-		(match t.tm_type with
-		| None -> if param = EqCoreType || not (link t a b) then error [cannot_unify a b]
-		| Some t -> type_eq param t b)
-	| _ , TMono t ->
-		(match t.tm_type with
-		| None -> if param = EqCoreType || not (link t b a) then error [cannot_unify a b]
-		| Some t -> type_eq param a t)
-	| TAbstract ({a_path=[],"Null"},[t1]),TAbstract ({a_path=[],"Null"},[t2]) ->
-		type_eq param t1 t2
-	| TAbstract ({a_path=[],"Null"},[t]),_ when param <> EqDoNotFollowNull ->
-		type_eq param t b
-	| _,TAbstract ({a_path=[],"Null"},[t]) when param <> EqDoNotFollowNull ->
-		type_eq param a t
-	| TType (t1,tl1), TType (t2,tl2) when (t1 == t2 || (param = EqCoreType && t1.t_path = t2.t_path)) && List.length tl1 = List.length tl2 ->
-		type_eq_params param a b tl1 tl2
-	| TType (t,tl) , _ when can_follow a ->
-		type_eq param (apply_params t.t_params tl t.t_type) b
-	| _ , TType (t,tl) when can_follow b ->
-		rec_stack eq_stack (a,b)
-			(fun (a2,b2) -> fast_eq a a2 && fast_eq b b2)
-			(fun() -> type_eq param a (apply_params t.t_params tl t.t_type))
-			(fun l -> error (cannot_unify a b :: l))
-	| TEnum (e1,tl1) , TEnum (e2,tl2) ->
-		if e1 != e2 && not (param = EqCoreType && e1.e_path = e2.e_path) then error [cannot_unify a b];
-		type_eq_params param a b tl1 tl2
-	| TInst (c1,tl1) , TInst (c2,tl2) ->
-		if c1 != c2 && not (param = EqCoreType && c1.cl_path = c2.cl_path) && (match c1.cl_kind, c2.cl_kind with KExpr _, KExpr _ -> false | _ -> true) then error [cannot_unify a b];
-		type_eq_params param a b tl1 tl2
-	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
-		let i = ref 0 in
-		(try
-			type_eq param r1 r2;
-			List.iter2 (fun (n,o1,t1) (_,o2,t2) ->
-				incr i;
-				if o1 <> o2 then error [Not_matching_optional n];
-				type_eq param t1 t2
-			) l1 l2
-		with
-			Unify_error l ->
-				let msg = if !i = 0 then Invalid_return_type else Invalid_function_argument(!i,List.length l1) in
-				error (cannot_unify a b :: msg :: l)
-		)
-	| TDynamic a , TDynamic b ->
-		type_eq param a b
-	| TAbstract (a1,tl1) , TAbstract (a2,tl2) ->
-		if a1 != a2 && not (param = EqCoreType && a1.a_path = a2.a_path) then error [cannot_unify a b];
-		type_eq_params param a b tl1 tl2
-	| TAnon a1, TAnon a2 ->
-		(try
-			(match !(a2.a_status) with
-			| Statics c -> (match !(a1.a_status) with Statics c2 when c == c2 -> () | _ -> error [])
-			| EnumStatics e -> (match !(a1.a_status) with EnumStatics e2 when e == e2 -> () | _ -> error [])
-			| AbstractStatics a -> (match !(a1.a_status) with AbstractStatics a2 when a == a2 -> () | _ -> error [])
-			| _ -> ()
-			);
-			if would_produce_recursive_anon a1 a2 || would_produce_recursive_anon a2 a1 then error [cannot_unify a b];
-			PMap.iter (fun n f1 ->
-				try
-					let f2 = PMap.find n a2.a_fields in
-					if f1.cf_kind <> f2.cf_kind && (param = EqStrict || param = EqCoreType || not (unify_kind f1.cf_kind f2.cf_kind)) then error [invalid_kind n f1.cf_kind f2.cf_kind];
-					let a = f1.cf_type and b = f2.cf_type in
-					(try type_eq param a b with Unify_error l -> error (invalid_field n :: l));
-					if (has_class_field_flag f1 CfPublic) != (has_class_field_flag f2 CfPublic) then error [invalid_visibility n];
-				with
-					Not_found ->
-						if is_closed a2 then error [has_no_field b n];
-						if not (link (Monomorph.create()) b f1.cf_type) then error [cannot_unify a b];
-						a2.a_fields <- PMap.add n f1 a2.a_fields
-			) a1.a_fields;
-			PMap.iter (fun n f2 ->
-				if not (PMap.mem n a1.a_fields) then begin
-					if is_closed a1 then error [has_no_field a n];
-					if not (link (Monomorph.create()) a f2.cf_type) then error [cannot_unify a b];
-					a1.a_fields <- PMap.add n f2 a1.a_fields
-				end;
-			) a2.a_fields;
-		with
-			Unify_error l -> error (cannot_unify a b :: l))
-	| _ , _ ->
-		if b == t_dynamic && (param = EqRightDynamic || param = EqBothDynamic) then
-			()
-		else if a == t_dynamic && param = EqBothDynamic then
-			()
-		else
-			error [cannot_unify a b]
-
-and type_eq_params param a b tl1 tl2 =
-	let i = ref 0 in
-	List.iter2 (fun t1 t2 ->
-		incr i;
-		try
-			type_eq param t1 t2
-		with Unify_error l ->
-			let err = cannot_unify a b in
-			error (err :: (Invariant_parameter !i) :: l)
-		) tl1 tl2
-
-let type_iseq a b =
-	try
-		type_eq EqStrict a b;
-		true
-	with
-		Unify_error _ -> false
-
-let type_iseq_strict a b =
-	try
-		type_eq EqDoNotFollowNull a b;
-		true
-	with Unify_error _ ->
-		false
-
-let unify_stack = new_rec_stack()
-let abstract_cast_stack = new_rec_stack()
-let unify_new_monos = new_rec_stack()
-
-let print_stacks() =
-	let ctx = print_context() in
-	let st = s_type ctx in
-	print_endline "unify_stack";
-	List.iter (fun (a,b) -> Printf.printf "\t%s , %s\n" (st a) (st b)) unify_stack.rec_stack;
-	print_endline "monos";
-	List.iter (fun m -> print_endline ("\t" ^ st m)) unify_new_monos.rec_stack;
-	print_endline "abstract_cast_stack";
-	List.iter (fun (a,b) -> Printf.printf "\t%s , %s\n" (st a) (st b)) abstract_cast_stack.rec_stack
-
-let rec unify a b =
-	if a == b then
-		()
-	else match a, b with
-	| TLazy f , _ -> unify (lazy_type f) b
-	| _ , TLazy f -> unify a (lazy_type f)
-	| TMono t , _ ->
-		(match t.tm_type with
-		| None -> if not (link t a b) then error [cannot_unify a b]
-		| Some t -> unify t b)
-	| _ , TMono t ->
-		(match t.tm_type with
-		| None -> if not (link t b a) then error [cannot_unify a b]
-		| Some t -> unify a t)
-	| TType (t,tl) , _ ->
-		rec_stack unify_stack (a,b)
-			(fun(a2,b2) -> fast_eq a a2 && fast_eq b b2)
-			(fun() -> try_apply_params_rec t.t_params tl t.t_type (fun a -> unify a b))
-			(fun l -> error (cannot_unify a b :: l))
-	| _ , TType (t,tl) ->
-		rec_stack unify_stack (a,b)
-			(fun(a2,b2) -> fast_eq a a2 && fast_eq b b2)
-			(fun() -> try_apply_params_rec t.t_params tl t.t_type (unify a))
-			(fun l -> error (cannot_unify a b :: l))
-	| TEnum (ea,tl1) , TEnum (eb,tl2) ->
-		if ea != eb then error [cannot_unify a b];
-		unify_type_params a b tl1 tl2
-	| TAbstract ({a_path=[],"Null"},[t]),_ ->
-		begin try unify t b
-		with Unify_error l -> error (cannot_unify a b :: l) end
-	| _,TAbstract ({a_path=[],"Null"},[t]) ->
-		begin try unify a t
-		with Unify_error l -> error (cannot_unify a b :: l) end
-	| TAbstract (a1,tl1) , TAbstract (a2,tl2) when a1 == a2 ->
-		begin try
-			unify_type_params a b tl1 tl2
-		with Unify_error _ as err ->
-			(* the type could still have a from/to relation to itself (issue #3494) *)
-			begin try
-				unify_abstracts a b a1 tl1 a2 tl2
-			with Unify_error _ ->
-				raise err
-			end
-		end
-	| TAbstract ({a_path=[],"Void"},_) , _
-	| _ , TAbstract ({a_path=[],"Void"},_) ->
-		error [cannot_unify a b]
-	| TAbstract (a1,tl1) , TAbstract (a2,tl2) ->
-		unify_abstracts a b a1 tl1 a2 tl2
-	| TInst (c1,tl1) , TInst (c2,tl2) ->
-		let rec loop c tl =
-			if c == c2 then begin
-				unify_type_params a b tl tl2;
-				true
-			end else (match c.cl_super with
-				| None -> false
-				| Some (cs,tls) ->
-					loop cs (List.map (apply_params c.cl_params tl) tls)
-			) || List.exists (fun (cs,tls) ->
-				loop cs (List.map (apply_params c.cl_params tl) tls)
-			) c.cl_implements
-			|| (match c.cl_kind with
-			| KTypeParameter pl -> List.exists (fun t ->
-				match follow t with
-				| TInst (cs,tls) -> loop cs (List.map (apply_params c.cl_params tl) tls)
-				| TAbstract(aa,tl) -> List.exists (unify_to aa tl b) aa.a_to
-				| _ -> false
-			) pl
-			| _ -> false)
-		in
-		if not (loop c1 tl1) then error [cannot_unify a b]
-	| TFun (l1,r1) , TFun (l2,r2) when List.length l1 = List.length l2 ->
-		let i = ref 0 in
-		(try
-			(match follow r2 with
-			| TAbstract ({a_path=[],"Void"},_) -> incr i
-			| _ -> unify r1 r2; incr i);
-			List.iter2 (fun (_,o1,t1) (_,o2,t2) ->
-				if o1 && not o2 then error [Cant_force_optional];
-				unify t1 t2;
-				incr i
-			) l2 l1 (* contravariance *)
-		with
-			Unify_error l ->
-				let msg = if !i = 0 then Invalid_return_type else Invalid_function_argument(!i,List.length l1) in
-				error (cannot_unify a b :: msg :: l))
-	| TInst (c,tl) , TAnon an ->
-		if PMap.is_empty an.a_fields then (match c.cl_kind with
-			| KTypeParameter pl ->
-				(* one of the constraints must unify with { } *)
-				if not (List.exists (fun t -> match follow t with TInst _ | TAnon _ -> true | _ -> false) pl) then error [cannot_unify a b]
-			| _ -> ());
-		(try
-			PMap.iter (fun n f2 ->
-				(*
-					introducing monomorphs while unifying might create infinite loops - see #2315
-					let's store these monomorphs and make sure we reach a fixed point
-				*)
-				let monos = ref [] in
-				let make_type f =
-					match f.cf_params with
-					| [] -> f.cf_type
-					| l ->
-						let ml = List.map (fun _ -> mk_mono()) l in
-						monos := ml;
-						apply_params f.cf_params ml f.cf_type
-				in
-				let _, ft, f1 = (try raw_class_field make_type c tl n with Not_found -> error [has_no_field a n]) in
-				let ft = apply_params c.cl_params tl ft in
-				if not (unify_kind f1.cf_kind f2.cf_kind) then error [invalid_kind n f1.cf_kind f2.cf_kind];
-				if (has_class_field_flag f2 CfPublic) && not (has_class_field_flag f1 CfPublic) then error [invalid_visibility n];
-
-				(match f2.cf_kind with
-				| Var { v_read = AccNo } | Var { v_read = AccNever } ->
-					(* we will do a recursive unification, so let's check for possible recursion *)
-					let old_monos = unify_new_monos.rec_stack in
-					unify_new_monos.rec_stack <- !monos @ unify_new_monos.rec_stack;
-					rec_stack unify_stack (ft,f2.cf_type)
-						(fun (a2,b2) -> fast_eq b2 f2.cf_type && fast_eq_mono unify_new_monos.rec_stack ft a2)
-						(fun() -> try unify_with_access f1 ft f2 with e -> unify_new_monos.rec_stack <- old_monos; raise e)
-						(fun l -> error (invalid_field n :: l));
-					unify_new_monos.rec_stack <- old_monos;
-				| Method MethNormal | Method MethInline | Var { v_write = AccNo } | Var { v_write = AccNever } ->
-					(* same as before, but unification is reversed (read-only var) *)
-					let old_monos = unify_new_monos.rec_stack in
-					unify_new_monos.rec_stack <- !monos @ unify_new_monos.rec_stack;
-					rec_stack unify_stack (f2.cf_type,ft)
-						(fun(a2,b2) -> fast_eq_mono unify_new_monos.rec_stack b2 ft && fast_eq f2.cf_type a2)
-						(fun() -> try unify_with_access f1 ft f2 with e -> unify_new_monos.rec_stack <- old_monos; raise e)
-						(fun l -> error (invalid_field n :: l));
-					unify_new_monos.rec_stack <- old_monos;
-				| _ ->
-					(* will use fast_eq, which have its own stack *)
-					try
-						unify_with_access f1 ft f2
-					with
-						Unify_error l ->
-							error (invalid_field n :: l));
-
-				List.iter (fun f2o ->
-					if not (List.exists (fun f1o -> type_iseq f1o.cf_type f2o.cf_type) (f1 :: f1.cf_overloads))
-					then error [Missing_overload (f1, f2o.cf_type)]
-				) f2.cf_overloads;
-				(* we mark the field as :?used because it might be used through the structure *)
-				if not (Meta.has Meta.MaybeUsed f1.cf_meta) then begin
-					f1.cf_meta <- (Meta.MaybeUsed,[],f1.cf_pos) :: f1.cf_meta;
-					match f2.cf_kind with
-					| Var vk ->
-						let check name =
-							try
-								let _,_,cf = raw_class_field make_type c tl name in
-								if not (Meta.has Meta.MaybeUsed cf.cf_meta) then
-									cf.cf_meta <- (Meta.MaybeUsed,[],f1.cf_pos) :: cf.cf_meta
-							with Not_found ->
-								()
-						in
-						(match vk.v_read with AccCall -> check ("get_" ^ f1.cf_name) | _ -> ());
-						(match vk.v_write with AccCall -> check ("set_" ^ f1.cf_name) | _ -> ());
-					| _ -> ()
-				end;
-				(match f1.cf_kind with
-				| Method MethInline ->
-					if (c.cl_extern || has_class_field_flag f1 CfExtern) && not (Meta.has Meta.Runtime f1.cf_meta) then error [Has_no_runtime_field (a,n)];
-				| _ -> ());
-			) an.a_fields;
-			(match !(an.a_status) with
-			| Opened -> an.a_status := Closed;
-			| Statics _ | EnumStatics _ | AbstractStatics _ -> error []
-			| Closed | Extend _ | Const -> ())
-		with
-			Unify_error l -> error (cannot_unify a b :: l))
-	| TAnon a1, TAnon a2 ->
-		unify_anons a b a1 a2
-	| TAnon an, TAbstract ({ a_path = [],"Class" },[pt]) ->
-		(match !(an.a_status) with
-		| Statics cl -> unify (TInst (cl,List.map (fun _ -> mk_mono()) cl.cl_params)) pt
-		| _ -> error [cannot_unify a b])
-	| TAnon an, TAbstract ({ a_path = [],"Enum" },[pt]) ->
-		(match !(an.a_status) with
-		| EnumStatics e -> unify (TEnum (e,List.map (fun _ -> mk_mono()) e.e_params)) pt
-		| _ -> error [cannot_unify a b])
-	| TEnum _, TAbstract ({ a_path = [],"EnumValue" },[]) ->
-		()
-	| TEnum(en,_), TAbstract ({ a_path = ["haxe"],"FlatEnum" },[]) when Meta.has Meta.FlatEnum en.e_meta ->
-		()
-	| TFun _, TAbstract ({ a_path = ["haxe"],"Function" },[]) ->
-		()
-	| TInst(c,tl),TAbstract({a_path = ["haxe"],"Constructible"},[t1]) ->
-		begin try
-			begin match c.cl_kind with
-				| KTypeParameter tl ->
-					(* type parameters require an equal Constructible constraint *)
-					if not (List.exists (fun t -> match follow t with TAbstract({a_path = ["haxe"],"Constructible"},[t2]) -> type_iseq t1 t2 | _ -> false) tl) then error [cannot_unify a b]
-				| _ ->
-					let _,t,cf = class_field c tl "new" in
-					if not (has_class_field_flag cf CfPublic) then error [invalid_visibility "new"];
-					begin try unify t t1
-					with Unify_error l -> error (cannot_unify a b :: l) end
-			end
-		with Not_found ->
-			error [has_no_field a "new"]
-		end
-	| TDynamic t , _ ->
-		if t == a then
-			()
-		else (match b with
-		| TDynamic t2 ->
-			if t2 != b then
-				(try
-					type_eq EqRightDynamic t t2
-				with
-					Unify_error l -> error (cannot_unify a b :: l));
-		| TAbstract(bb,tl) when (List.exists (unify_from bb tl a b) bb.a_from) ->
-			()
-		| _ ->
-			error [cannot_unify a b])
-	| _ , TDynamic t ->
-		if t == b then
-			()
-		else (match a with
-		| TDynamic t2 ->
-			if t2 != a then
-				(try
-					type_eq EqRightDynamic t t2
-				with
-					Unify_error l -> error (cannot_unify a b :: l));
-		| TAnon an ->
-			(try
-				(match !(an.a_status) with
-				| Statics _ | EnumStatics _ -> error []
-				| Opened -> an.a_status := Closed
-				| _ -> ());
-				PMap.iter (fun _ f ->
-					try
-						type_eq EqStrict (field_type f) t
-					with Unify_error l ->
-						error (invalid_field f.cf_name :: l)
-				) an.a_fields
-			with Unify_error l ->
-				error (cannot_unify a b :: l))
-		| TAbstract(aa,tl) when (List.exists (unify_to aa tl b) aa.a_to) ->
-			()
-		| _ ->
-			error [cannot_unify a b])
-	| TAbstract (aa,tl), _  ->
-		if not (List.exists (unify_to aa tl b) aa.a_to) then error [cannot_unify a b];
-	| TInst ({ cl_kind = KTypeParameter ctl } as c,pl), TAbstract (bb,tl) ->
-		(* one of the constraints must satisfy the abstract *)
-		if not (List.exists (fun t ->
-			let t = apply_params c.cl_params pl t in
-			try unify t b; true with Unify_error _ -> false
-		) ctl) && not (List.exists (unify_from bb tl a b) bb.a_from) then error [cannot_unify a b];
-	| _, TAbstract (bb,tl) ->
-		if not (List.exists (unify_from bb tl a b) bb.a_from) then error [cannot_unify a b]
-	| _ , _ ->
-		error [cannot_unify a b]
-
-and unify_abstracts a b a1 tl1 a2 tl2 =
-	let f1 = unify_to a1 tl1 b in
-		let f2 = unify_from a2 tl2 a b in
-		if (List.exists (f1 ~allow_transitive_cast:false) a1.a_to)
-		|| (List.exists (f2 ~allow_transitive_cast:false) a2.a_from)
-		|| (((Meta.has Meta.CoreType a1.a_meta) || (Meta.has Meta.CoreType a2.a_meta))
-			&& ((List.exists f1 a1.a_to) || (List.exists f2 a2.a_from))) then
-			()
-		else
-			error [cannot_unify a b]
-
-and unify_anons a b a1 a2 =
-	if would_produce_recursive_anon a1 a2 then error [cannot_unify a b];
-	(try
-		PMap.iter (fun n f2 ->
-		try
-			let f1 = PMap.find n a1.a_fields in
-			if not (unify_kind f1.cf_kind f2.cf_kind) then
-				(match !(a1.a_status), f1.cf_kind, f2.cf_kind with
-				| Opened, Var { v_read = AccNormal; v_write = AccNo }, Var { v_read = AccNormal; v_write = AccNormal } ->
-					f1.cf_kind <- f2.cf_kind;
-				| _ -> error [invalid_kind n f1.cf_kind f2.cf_kind]);
-			if (has_class_field_flag f2 CfPublic) && not (has_class_field_flag f1 CfPublic) then error [invalid_visibility n];
-			try
-				let f1_type =
-					if fast_eq f1.cf_type f2.cf_type then f1.cf_type
-					else field_type f1
-				in
-				unify_with_access f1 f1_type f2;
-				(match !(a1.a_status) with
-				| Statics c when not (Meta.has Meta.MaybeUsed f1.cf_meta) -> f1.cf_meta <- (Meta.MaybeUsed,[],f1.cf_pos) :: f1.cf_meta
-				| _ -> ());
-			with
-				Unify_error l -> error (invalid_field n :: l)
-		with
-			Not_found ->
-				match !(a1.a_status) with
-				| Opened ->
-					if not (link (Monomorph.create()) a f2.cf_type) then error [];
-					a1.a_fields <- PMap.add n f2 a1.a_fields
-				| Const when Meta.has Meta.Optional f2.cf_meta ->
-					()
-				| _ ->
-					error [has_no_field a n];
-		) a2.a_fields;
-		(match !(a1.a_status) with
-		| Const when not (PMap.is_empty a2.a_fields) ->
-			PMap.iter (fun n _ -> if not (PMap.mem n a2.a_fields) then error [has_extra_field a n]) a1.a_fields;
-		| Opened ->
-			a1.a_status := Closed
-		| _ -> ());
-		(match !(a2.a_status) with
-		| Statics c -> (match !(a1.a_status) with Statics c2 when c == c2 -> () | _ -> error [])
-		| EnumStatics e -> (match !(a1.a_status) with EnumStatics e2 when e == e2 -> () | _ -> error [])
-		| AbstractStatics a -> (match !(a1.a_status) with AbstractStatics a2 when a == a2 -> () | _ -> error [])
-		| Opened -> a2.a_status := Closed
-		| Const | Extend _ | Closed -> ())
-	with
-		Unify_error l -> error (cannot_unify a b :: l))
-
-and unify_from ab tl a b ?(allow_transitive_cast=true) t =
-	rec_stack_bool abstract_cast_stack (a,b)
-		(fun (a2,b2) -> fast_eq a a2 && fast_eq b b2)
-		(fun() ->
-			let t = apply_params ab.a_params tl t in
-			let unify_func = if allow_transitive_cast then unify else type_eq EqRightDynamic in
-			unify_func a t)
-
-and unify_to ab tl b ?(allow_transitive_cast=true) t =
-	let t = apply_params ab.a_params tl t in
-	let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
-	try
-		unify_func t b;
-		true
-	with Unify_error _ ->
-		false
-
-and unify_from_field ab tl a b ?(allow_transitive_cast=true) (t,cf) =
-	rec_stack_bool abstract_cast_stack (a,b)
-		(fun (a2,b2) -> fast_eq a a2 && fast_eq b b2)
-		(fun() ->
-			let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
-			match follow cf.cf_type with
-			| TFun(_,r) ->
-				let monos = List.map (fun _ -> mk_mono()) cf.cf_params in
-				let map t = apply_params ab.a_params tl (apply_params cf.cf_params monos t) in
-				unify_func a (map t);
-				List.iter2 (fun m (name,t) -> match follow t with
-					| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] ->
-						List.iter (fun tc -> match follow m with TMono _ -> raise (Unify_error []) | _ -> unify m (map tc) ) constr
-					| _ -> ()
-				) monos cf.cf_params;
-				unify_func (map r) b;
-				true
-			| _ -> assert false)
-
-and unify_to_field ab tl b ?(allow_transitive_cast=true) (t,cf) =
-	let a = TAbstract(ab,tl) in
-	rec_stack_bool abstract_cast_stack (b,a)
-		(fun (b2,a2) -> fast_eq a a2 && fast_eq b b2)
-		(fun() ->
-			let unify_func = if allow_transitive_cast then unify else type_eq EqStrict in
-			match follow cf.cf_type with
-			| TFun((_,_,ta) :: _,_) ->
-				let monos = List.map (fun _ -> mk_mono()) cf.cf_params in
-				let map t = apply_params ab.a_params tl (apply_params cf.cf_params monos t) in
-				let athis = map ab.a_this in
-				(* we cannot allow implicit casts when the this type is not completely known yet *)
-				(* if has_mono athis then raise (Unify_error []); *)
-				with_variance (type_eq EqStrict) athis (map ta);
-				(* immediate constraints checking is ok here because we know there are no monomorphs *)
-				List.iter2 (fun m (name,t) -> match follow t with
-					| TInst ({ cl_kind = KTypeParameter constr },_) when constr <> [] ->
-						List.iter (fun tc -> match follow m with TMono _ -> raise (Unify_error []) | _ -> unify m (map tc) ) constr
-					| _ -> ()
-				) monos cf.cf_params;
-				unify_func (map t) b;
-			| _ -> assert false)
-
-and unify_with_variance f t1 t2 =
-	let allows_variance_to t tf = type_iseq tf t in
-	match follow t1,follow t2 with
-	| TInst(c1,tl1),TInst(c2,tl2) when c1 == c2 ->
-		List.iter2 f tl1 tl2
-	| TEnum(en1,tl1),TEnum(en2,tl2) when en1 == en2 ->
-		List.iter2 f tl1 tl2
-	| TAbstract(a1,tl1),TAbstract(a2,tl2) when a1 == a2 && Meta.has Meta.CoreType a1.a_meta ->
-		List.iter2 f tl1 tl2
-	| TAbstract(a1,pl1),TAbstract(a2,pl2) ->
-		if (Meta.has Meta.CoreType a1.a_meta) && (Meta.has Meta.CoreType a2.a_meta) then begin
-			let ta1 = apply_params a1.a_params pl1 a1.a_this in
-			let ta2 = apply_params a2.a_params pl2 a2.a_this in
-			type_eq EqStrict ta1 ta2;
-		end;
-		if not (List.exists (allows_variance_to t2) a1.a_to) && not (List.exists (allows_variance_to t1) a2.a_from) then
-			error [cannot_unify t1 t2]
-	| TAbstract(a,pl),t ->
-		type_eq EqBothDynamic (apply_params a.a_params pl a.a_this) t;
-		if not (List.exists (fun t2 -> allows_variance_to t (apply_params a.a_params pl t2)) a.a_to) then error [cannot_unify t1 t2]
-	| t,TAbstract(a,pl) ->
-		type_eq EqBothDynamic t (apply_params a.a_params pl a.a_this);
-		if not (List.exists (fun t2 -> allows_variance_to t (apply_params a.a_params pl t2)) a.a_from) then error [cannot_unify t1 t2]
-	| (TAnon a1 as t1), (TAnon a2 as t2) ->
-		rec_stack unify_stack (t1,t2)
-			(fun (a,b) -> fast_eq a t1 && fast_eq b t2)
-			(fun() -> unify_anons t1 t2 a1 a2)
-			(fun l -> error l)
-	| _ ->
-		error [cannot_unify t1 t2]
-
-and unify_type_params a b tl1 tl2 =
-	let i = ref 0 in
-	List.iter2 (fun t1 t2 ->
-		incr i;
-		try
-			with_variance (type_eq EqRightDynamic) t1 t2
-		with Unify_error l ->
-			let err = cannot_unify a b in
-			error (err :: (Invariant_parameter !i) :: l)
-	) tl1 tl2
-
-and with_variance f t1 t2 =
-	try
-		f t1 t2
-	with Unify_error l -> try
-		unify_with_variance (with_variance f) t1 t2
-	with Unify_error _ ->
-		raise (Unify_error l)
-
-and unify_with_access f1 t1 f2 =
-	match f2.cf_kind with
-	(* write only *)
-	| Var { v_read = AccNo } | Var { v_read = AccNever } -> unify f2.cf_type t1
-	(* read only *)
-	| Method MethNormal | Method MethInline | Var { v_write = AccNo } | Var { v_write = AccNever } ->
-		if (has_class_field_flag f1 CfFinal) <> (has_class_field_flag f2 CfFinal) then raise (Unify_error [FinalInvariance]);
-		unify t1 f2.cf_type
-	(* read/write *)
-	| _ -> with_variance (type_eq EqBothDynamic) t1 f2.cf_type
-
-let does_unify a b =
-	try
-		unify a b;
-		true
-	with Unify_error _ ->
-		false
-
-(* ======= Mapping and iterating ======= *)
-
-let iter f e =
-	match e.eexpr with
-	| TConst _
-	| TLocal _
-	| TBreak
-	| TContinue
-	| TTypeExpr _
-	| TIdent _ ->
-		()
-	| TArray (e1,e2)
-	| TBinop (_,e1,e2)
-	| TFor (_,e1,e2)
-	| TWhile (e1,e2,_) ->
-		f e1;
-		f e2;
-	| TThrow e
-	| TField (e,_)
-	| TEnumParameter (e,_,_)
-	| TEnumIndex e
-	| TParenthesis e
-	| TCast (e,_)
-	| TUnop (_,_,e)
-	| TMeta(_,e) ->
-		f e
-	| TArrayDecl el
-	| TNew (_,_,el)
-	| TBlock el ->
-		List.iter f el
-	| TObjectDecl fl ->
-		List.iter (fun (_,e) -> f e) fl
-	| TCall (e,el) ->
-		f e;
-		List.iter f el
-	| TVar (v,eo) ->
-		(match eo with None -> () | Some e -> f e)
-	| TFunction fu ->
-		f fu.tf_expr
-	| TIf (e,e1,e2) ->
-		f e;
-		f e1;
-		(match e2 with None -> () | Some e -> f e)
-	| TSwitch (e,cases,def) ->
-		f e;
-		List.iter (fun (el,e2) -> List.iter f el; f e2) cases;
-		(match def with None -> () | Some e -> f e)
-	| TTry (e,catches) ->
-		f e;
-		List.iter (fun (_,e) -> f e) catches
-	| TReturn eo ->
-		(match eo with None -> () | Some e -> f e)
-
-(**
-	Returns `true` if `predicate` is evaluated to `true` for at least one of sub-expressions.
-	Returns `false` otherwise.
-	Does not evaluate `predicate` for the `e` expression.
-*)
-let check_expr predicate e =
-	match e.eexpr with
-		| TConst _ | TLocal _ | TBreak | TContinue | TTypeExpr _ | TIdent _ ->
-			false
-		| TArray (e1,e2) | TBinop (_,e1,e2) | TFor (_,e1,e2) | TWhile (e1,e2,_) ->
-			predicate e1 || predicate e2;
-		| TThrow e | TField (e,_) | TEnumParameter (e,_,_) | TEnumIndex e | TParenthesis e
-		| TCast (e,_) | TUnop (_,_,e) | TMeta(_,e) ->
-			predicate e
-		| TArrayDecl el | TNew (_,_,el) | TBlock el ->
-			List.exists predicate el
-		| TObjectDecl fl ->
-			List.exists (fun (_,e) -> predicate e) fl
-		| TCall (e,el) ->
-			predicate e ||  List.exists predicate el
-		| TVar (_,eo) | TReturn eo ->
-			(match eo with None -> false | Some e -> predicate e)
-		| TFunction fu ->
-			predicate fu.tf_expr
-		| TIf (e,e1,e2) ->
-			predicate e || predicate e1 || (match e2 with None -> false | Some e -> predicate e)
-		| TSwitch (e,cases,def) ->
-			predicate e
-			|| List.exists (fun (el,e2) -> List.exists predicate el || predicate e2) cases
-			|| (match def with None -> false | Some e -> predicate e)
-		| TTry (e,catches) ->
-			predicate e || List.exists (fun (_,e) -> predicate e) catches
-
-let map_expr f e =
-	match e.eexpr with
-	| TConst _
-	| TLocal _
-	| TBreak
-	| TContinue
-	| TTypeExpr _
-	| TIdent _ ->
-		e
-	| TArray (e1,e2) ->
-		let e1 = f e1 in
-		{ e with eexpr = TArray (e1,f e2) }
-	| TBinop (op,e1,e2) ->
-		let e1 = f e1 in
-		{ e with eexpr = TBinop (op,e1,f e2) }
-	| TFor (v,e1,e2) ->
-		let e1 = f e1 in
-		{ e with eexpr = TFor (v,e1,f e2) }
-	| TWhile (e1,e2,flag) ->
-		let e1 = f e1 in
-		{ e with eexpr = TWhile (e1,f e2,flag) }
-	| TThrow e1 ->
-		{ e with eexpr = TThrow (f e1) }
-	| TEnumParameter (e1,ef,i) ->
-		{ e with eexpr = TEnumParameter(f e1,ef,i) }
-	| TEnumIndex e1 ->
-		{ e with eexpr = TEnumIndex (f e1) }
-	| TField (e1,v) ->
-		{ e with eexpr = TField (f e1,v) }
-	| TParenthesis e1 ->
-		{ e with eexpr = TParenthesis (f e1) }
-	| TUnop (op,pre,e1) ->
-		{ e with eexpr = TUnop (op,pre,f e1) }
-	| TArrayDecl el ->
-		{ e with eexpr = TArrayDecl (List.map f el) }
-	| TNew (t,pl,el) ->
-		{ e with eexpr = TNew (t,pl,List.map f el) }
-	| TBlock el ->
-		{ e with eexpr = TBlock (List.map f el) }
-	| TObjectDecl el ->
-		{ e with eexpr = TObjectDecl (List.map (fun (v,e) -> v, f e) el) }
-	| TCall (e1,el) ->
-		let e1 = f e1 in
-		{ e with eexpr = TCall (e1, List.map f el) }
-	| TVar (v,eo) ->
-		{ e with eexpr = TVar (v, match eo with None -> None | Some e -> Some (f e)) }
-	| TFunction fu ->
-		{ e with eexpr = TFunction { fu with tf_expr = f fu.tf_expr } }
-	| TIf (ec,e1,e2) ->
-		let ec = f ec in
-		let e1 = f e1 in
-		{ e with eexpr = TIf (ec,e1,match e2 with None -> None | Some e -> Some (f e)) }
-	| TSwitch (e1,cases,def) ->
-		let e1 = f e1 in
-		let cases = List.map (fun (el,e2) -> List.map f el, f e2) cases in
-		{ e with eexpr = TSwitch (e1, cases, match def with None -> None | Some e -> Some (f e)) }
-	| TTry (e1,catches) ->
-		let e1 = f e1 in
-		{ e with eexpr = TTry (e1, List.map (fun (v,e) -> v, f e) catches) }
-	| TReturn eo ->
-		{ e with eexpr = TReturn (match eo with None -> None | Some e -> Some (f e)) }
-	| TCast (e1,t) ->
-		{ e with eexpr = TCast (f e1,t) }
-	| TMeta (m,e1) ->
-		 {e with eexpr = TMeta(m,f e1)}
-
-let map_expr_type f ft fv e =
-	match e.eexpr with
-	| TConst _
-	| TBreak
-	| TContinue
-	| TTypeExpr _
-	| TIdent _ ->
-		{ e with etype = ft e.etype }
-	| TLocal v ->
-		{ e with eexpr = TLocal (fv v); etype = ft e.etype }
-	| TArray (e1,e2) ->
-		let e1 = f e1 in
-		{ e with eexpr = TArray (e1,f e2); etype = ft e.etype }
-	| TBinop (op,e1,e2) ->
-		let e1 = f e1 in
-		{ e with eexpr = TBinop (op,e1,f e2); etype = ft e.etype }
-	| TFor (v,e1,e2) ->
-		let v = fv v in
-		let e1 = f e1 in
-		{ e with eexpr = TFor (v,e1,f e2); etype = ft e.etype }
-	| TWhile (e1,e2,flag) ->
-		let e1 = f e1 in
-		{ e with eexpr = TWhile (e1,f e2,flag); etype = ft e.etype }
-	| TThrow e1 ->
-		{ e with eexpr = TThrow (f e1); etype = ft e.etype }
-	| TEnumParameter (e1,ef,i) ->
-		{ e with eexpr = TEnumParameter (f e1,ef,i); etype = ft e.etype }
-	| TEnumIndex e1 ->
-		{ e with eexpr = TEnumIndex (f e1); etype = ft e.etype }
-	| TField (e1,v) ->
-		let e1 = f e1 in
-		let v = try
-			let n = match v with
-				| FClosure _ -> raise Not_found
-				| FAnon f | FInstance (_,_,f) | FStatic (_,f) -> f.cf_name
-				| FEnum (_,f) -> f.ef_name
-				| FDynamic n -> n
-			in
-			quick_field e1.etype n
-		with Not_found ->
-			v
-		in
-		{ e with eexpr = TField (e1,v); etype = ft e.etype }
-	| TParenthesis e1 ->
-		{ e with eexpr = TParenthesis (f e1); etype = ft e.etype }
-	| TUnop (op,pre,e1) ->
-		{ e with eexpr = TUnop (op,pre,f e1); etype = ft e.etype }
-	| TArrayDecl el ->
-		{ e with eexpr = TArrayDecl (List.map f el); etype = ft e.etype }
-	| TNew (c,pl,el) ->
-		let et = ft e.etype in
-		(* make sure that we use the class corresponding to the replaced type *)
-		let t = match c.cl_kind with
-			| KTypeParameter _ | KGeneric ->
-				et
-			| _ ->
-				ft (TInst(c,pl))
-		in
-		let c, pl = (match follow t with TInst (c,pl) -> (c,pl) | TAbstract({a_impl = Some c},pl) -> c,pl | t -> error [has_no_field t "new"]) in
-		{ e with eexpr = TNew (c,pl,List.map f el); etype = et }
-	| TBlock el ->
-		{ e with eexpr = TBlock (List.map f el); etype = ft e.etype }
-	| TObjectDecl el ->
-		{ e with eexpr = TObjectDecl (List.map (fun (v,e) -> v, f e) el); etype = ft e.etype }
-	| TCall (e1,el) ->
-		let e1 = f e1 in
-		{ e with eexpr = TCall (e1, List.map f el); etype = ft e.etype }
-	| TVar (v,eo) ->
-		{ e with eexpr = TVar (fv v, match eo with None -> None | Some e -> Some (f e)); etype = ft e.etype }
-	| TFunction fu ->
-		let fu = {
-			tf_expr = f fu.tf_expr;
-			tf_args = List.map (fun (v,o) -> fv v, o) fu.tf_args;
-			tf_type = ft fu.tf_type;
-		} in
-		{ e with eexpr = TFunction fu; etype = ft e.etype }
-	| TIf (ec,e1,e2) ->
-		let ec = f ec in
-		let e1 = f e1 in
-		{ e with eexpr = TIf (ec,e1,match e2 with None -> None | Some e -> Some (f e)); etype = ft e.etype }
-	| TSwitch (e1,cases,def) ->
-		let e1 = f e1 in
-		let cases = List.map (fun (el,e2) -> List.map f el, f e2) cases in
-		{ e with eexpr = TSwitch (e1, cases, match def with None -> None | Some e -> Some (f e)); etype = ft e.etype }
-	| TTry (e1,catches) ->
-		let e1 = f e1 in
-		{ e with eexpr = TTry (e1, List.map (fun (v,e) -> fv v, f e) catches); etype = ft e.etype }
-	| TReturn eo ->
-		{ e with eexpr = TReturn (match eo with None -> None | Some e -> Some (f e)); etype = ft e.etype }
-	| TCast (e1,t) ->
-		{ e with eexpr = TCast (f e1,t); etype = ft e.etype }
-	| TMeta (m,e1) ->
-		{e with eexpr = TMeta(m, f e1); etype = ft e.etype }
-
-let resolve_typedef t =
-	match t with
-	| TClassDecl _ | TEnumDecl _ | TAbstractDecl _ -> t
-	| TTypeDecl td ->
-		match follow td.t_type with
-		| TEnum (e,_) -> TEnumDecl e
-		| TInst (c,_) -> TClassDecl c
-		| TAbstract (a,_) -> TAbstractDecl a
-		| _ -> t
-
-module TExprToExpr = struct
-	let tpath p mp pl =
-		if snd mp = snd p then
-			CTPath {
-				tpackage = fst p;
-				tname = snd p;
-				tparams = pl;
-				tsub = None;
-			}
-		else CTPath {
-				tpackage = fst mp;
-				tname = snd mp;
-				tparams = pl;
-				tsub = Some (snd p);
-			}
-
-	let rec convert_type = function
-		| TMono r ->
-			(match r.tm_type with
-			| None -> raise Exit
-			| Some t -> convert_type t)
-		| TInst ({cl_private = true; cl_path=_,name},tl)
-		| TEnum ({e_private = true; e_path=_,name},tl)
-		| TType ({t_private = true; t_path=_,name},tl)
-		| TAbstract ({a_private = true; a_path=_,name},tl) ->
-			CTPath {
-				tpackage = [];
-				tname = name;
-				tparams = List.map tparam tl;
-				tsub = None;
-			}
-		| TEnum (e,pl) ->
-			tpath e.e_path e.e_module.m_path (List.map tparam pl)
-		| TInst({cl_kind = KExpr e} as c,pl) ->
-			tpath ([],snd c.cl_path) ([],snd c.cl_path) (List.map tparam pl)
-		| TInst({cl_kind = KTypeParameter _} as c,pl) ->
-			tpath ([],snd c.cl_path) ([],snd c.cl_path) (List.map tparam pl)
-		| TInst (c,pl) ->
-			tpath c.cl_path c.cl_module.m_path (List.map tparam pl)
-		| TType (t,pl) as tf ->
-			(* recurse on type-type *)
-			if (snd t.t_path).[0] = '#' then convert_type (follow tf) else tpath t.t_path t.t_module.m_path (List.map tparam pl)
-		| TAbstract (a,pl) ->
-			tpath a.a_path a.a_module.m_path (List.map tparam pl)
-		| TFun (args,ret) ->
-			CTFunction (List.map (fun (_,_,t) -> convert_type' t) args, (convert_type' ret))
-		| TAnon a ->
-			begin match !(a.a_status) with
-			| Statics c -> tpath ([],"Class") ([],"Class") [TPType (tpath c.cl_path c.cl_path [],null_pos)]
-			| EnumStatics e -> tpath ([],"Enum") ([],"Enum") [TPType (tpath e.e_path e.e_path [],null_pos)]
-			| _ ->
-				CTAnonymous (PMap.foldi (fun _ f acc ->
-					{
-						cff_name = f.cf_name,null_pos;
-						cff_kind = FVar (mk_type_hint f.cf_type null_pos,None);
-						cff_pos = f.cf_pos;
-						cff_doc = f.cf_doc;
-						cff_meta = f.cf_meta;
-						cff_access = [];
-					} :: acc
-				) a.a_fields [])
-			end
-		| (TDynamic t2) as t ->
-			tpath ([],"Dynamic") ([],"Dynamic") (if t == t_dynamic then [] else [tparam t2])
-		| TLazy f ->
-			convert_type (lazy_type f)
-
-	and convert_type' t =
-		convert_type t,null_pos
-
-	and tparam = function
-		| TInst ({cl_kind = KExpr e}, _) -> TPExpr e
-		| t -> TPType (convert_type' t)
-
-	and mk_type_hint t p =
-		match follow t with
-		| TMono _ -> None
-		| _ -> (try Some (convert_type t,p) with Exit -> None)
-
-	let rec convert_expr e =
-		let full_type_path t =
-			let mp,p = match t with
-			| TClassDecl c -> c.cl_module.m_path,c.cl_path
-			| TEnumDecl en -> en.e_module.m_path,en.e_path
-			| TAbstractDecl a -> a.a_module.m_path,a.a_path
-			| TTypeDecl t -> t.t_module.m_path,t.t_path
-			in
-			if snd mp = snd p then p else (fst mp) @ [snd mp],snd p
-		in
-		let mk_path = expr_of_type_path in
-		let mk_ident = function
-			| "`trace" -> Ident "trace"
-			| n -> Ident n
-		in
-		let eopt = function None -> None | Some e -> Some (convert_expr e) in
-		((match e.eexpr with
-		| TConst c ->
-			EConst (tconst_to_const c)
-		| TLocal v -> EConst (mk_ident v.v_name)
-		| TArray (e1,e2) -> EArray (convert_expr e1,convert_expr e2)
-		| TBinop (op,e1,e2) -> EBinop (op, convert_expr e1, convert_expr e2)
-		| TField (e,f) -> EField (convert_expr e, field_name f)
-		| TTypeExpr t -> fst (mk_path (full_type_path t) e.epos)
-		| TParenthesis e -> EParenthesis (convert_expr e)
-		| TObjectDecl fl -> EObjectDecl (List.map (fun (k,e) -> k, convert_expr e) fl)
-		| TArrayDecl el -> EArrayDecl (List.map convert_expr el)
-		| TCall (e,el) -> ECall (convert_expr e,List.map convert_expr el)
-		| TNew (c,pl,el) -> ENew ((match (try convert_type (TInst (c,pl)) with Exit -> convert_type (TInst (c,[]))) with CTPath p -> p,null_pos | _ -> assert false),List.map convert_expr el)
-		| TUnop (op,p,e) -> EUnop (op,p,convert_expr e)
-		| TFunction f ->
-			let arg (v,c) = (v.v_name,v.v_pos), false, v.v_meta, mk_type_hint v.v_type null_pos, (match c with None -> None | Some c -> Some (convert_expr c)) in
-			EFunction (FKAnonymous,{ f_params = []; f_args = List.map arg f.tf_args; f_type = mk_type_hint f.tf_type null_pos; f_expr = Some (convert_expr f.tf_expr) })
-		| TVar (v,eo) ->
-			EVars ([(v.v_name,v.v_pos), v.v_final, mk_type_hint v.v_type v.v_pos, eopt eo])
-		| TBlock el -> EBlock (List.map convert_expr el)
-		| TFor (v,it,e) ->
-			let ein = (EBinop (OpIn,(EConst (Ident v.v_name),it.epos),convert_expr it),it.epos) in
-			EFor (ein,convert_expr e)
-		| TIf (e,e1,e2) -> EIf (convert_expr e,convert_expr e1,eopt e2)
-		| TWhile (e1,e2,flag) -> EWhile (convert_expr e1, convert_expr e2, flag)
-		| TSwitch (e,cases,def) ->
-			let cases = List.map (fun (vl,e) ->
-				List.map convert_expr vl,None,(match e.eexpr with TBlock [] -> None | _ -> Some (convert_expr e)),e.epos
-			) cases in
-			let def = match eopt def with None -> None | Some (EBlock [],_) -> Some (None,null_pos) | Some e -> Some (Some e,pos e) in
-			ESwitch (convert_expr e,cases,def)
-		| TEnumIndex _
-		| TEnumParameter _ ->
-			(* these are considered complex, so the AST is handled in TMeta(Meta.Ast) *)
-			assert false
-		| TTry (e,catches) ->
-			let e1 = convert_expr e in
-			let catches = List.map (fun (v,e) ->
-				let ct = try convert_type v.v_type,null_pos with Exit -> assert false in
-				let e = convert_expr e in
-				(v.v_name,v.v_pos),ct,e,(pos e)
-			) catches in
-			ETry (e1,catches)
-		| TReturn e -> EReturn (eopt e)
-		| TBreak -> EBreak
-		| TContinue -> EContinue
-		| TThrow e -> EThrow (convert_expr e)
-		| TCast (e,t) ->
-			let t = (match t with
-				| None -> None
-				| Some t ->
-					let t = (match t with TClassDecl c -> TInst (c,[]) | TEnumDecl e -> TEnum (e,[]) | TTypeDecl t -> TType (t,[]) | TAbstractDecl a -> TAbstract (a,[])) in
-					Some (try convert_type t,null_pos with Exit -> assert false)
-			) in
-			ECast (convert_expr e,t)
-		| TMeta ((Meta.Ast,[e1,_],_),_) -> e1
-		| TMeta (m,e) -> EMeta(m,convert_expr e)
-		| TIdent s -> EConst (Ident s))
-		,e.epos)
-
-end
-
-module ExtType = struct
-	let is_mono = function
-		| TMono { tm_type = None } -> true
-		| _ -> false
-
-	let is_void = function
-		| TAbstract({a_path=[],"Void"},_) -> true
-		| _ -> false
-
-	let is_int t = match t with
-		| TAbstract({a_path=[],"Int"},_) -> true
-		| _ -> false
-
-	let is_float t = match t with
-		| TAbstract({a_path=[],"Float"},_) -> true
-		| _ -> false
-
-	let is_numeric t = match t with
-		| TAbstract({a_path=[],"Float"},_) -> true
-		| TAbstract({a_path=[],"Int"},_) -> true
-		| _ -> false
-
-	let is_string t = match t with
-		| TInst({cl_path=[],"String"},_) -> true
-		| _ -> false
-
-	let is_bool t = match t with
-		| TAbstract({a_path=[],"Bool"},_) -> true
-		| _ -> false
-
-	type semantics =
-		| VariableSemantics
-		| ReferenceSemantics
-		| ValueSemantics
-
-	let semantics_name = function
-		| VariableSemantics -> "variable"
-		| ReferenceSemantics -> "reference"
-		| ValueSemantics -> "value"
-
-	let has_semantics t sem =
-		let name = semantics_name sem in
-		let check meta =
-			has_meta_option meta Meta.Semantics name
-		in
-		let rec loop t = match t with
-			| TInst(c,_) -> check c.cl_meta
-			| TEnum(en,_) -> check en.e_meta
-			| TType(t,tl) -> check t.t_meta || (loop (apply_params t.t_params tl t.t_type))
-			| TAbstract(a,_) -> check a.a_meta
-			| TLazy f -> loop (lazy_type f)
-			| TMono r ->
-				(match r.tm_type with
-				| Some t -> loop t
-				| _ -> false)
-			| _ ->
-				false
-		in
-		loop t
-
-	let has_variable_semantics t = has_semantics t VariableSemantics
-	let has_reference_semantics t = has_semantics t ReferenceSemantics
-	let has_value_semantics t = has_semantics t ValueSemantics
-end
-
-let class_module_type c = {
-	t_path = [],"Class<" ^ (s_type_path c.cl_path) ^ ">" ;
-	t_module = c.cl_module;
-	t_doc = None;
-	t_pos = c.cl_pos;
-	t_name_pos = null_pos;
-	t_type = TAnon {
-		a_fields = c.cl_statics;
-		a_status = ref (Statics c);
-	};
-	t_private = true;
-	t_params = [];
-	t_using = [];
-	t_meta = no_meta;
-}
-
-let enum_module_type m path p  = {
-	t_path = [], "Enum<" ^ (s_type_path path) ^ ">";
-	t_module = m;
-	t_doc = None;
-	t_pos = p;
-	t_name_pos = null_pos;
-	t_type = mk_mono();
-	t_private = true;
-	t_params = [];
-	t_using = [];
-	t_meta = [];
-}
-
-let abstract_module_type a tl = {
-	t_path = [],Printf.sprintf "Abstract<%s%s>" (s_type_path a.a_path) (s_type_params (ref []) tl);
-	t_module = a.a_module;
-	t_doc = None;
-	t_pos = a.a_pos;
-	t_name_pos = null_pos;
-	t_type = TAnon {
-		a_fields = PMap.empty;
-		a_status = ref (AbstractStatics a);
-	};
-	t_private = true;
-	t_params = [];
-	t_using = [];
-	t_meta = no_meta;
-}
-
-module TClass = struct
-	let get_member_fields' self_too c0 tl =
-		let rec loop acc c tl =
-			let apply = apply_params c.cl_params tl in
-			let maybe_add acc cf =
-				if not (PMap.mem cf.cf_name acc) then begin
-					let cf = if tl = [] then cf else {cf with cf_type = apply cf.cf_type} in
-					PMap.add cf.cf_name (c,cf) acc
-				end else acc
-			in
-			let acc = if self_too || c != c0 then List.fold_left maybe_add acc c.cl_ordered_fields else acc in
-			if c.cl_interface then
-				List.fold_left (fun acc (i,tl) -> loop acc i (List.map apply tl)) acc c.cl_implements
-			else
-				match c.cl_super with
-				| Some(c,tl) -> loop acc c (List.map apply tl)
-				| None -> acc
-		in
-		loop PMap.empty c0 tl
-
-	let get_all_super_fields c =
-		get_member_fields' false c (List.map snd c.cl_params)
-
-	let get_all_fields c tl =
-		get_member_fields' true c tl
-
-	let get_overridden_fields c cf =
-		let rec loop acc c = match c.cl_super with
-			| None ->
-				acc
-			| Some(c,_) ->
-				begin try
-					let cf' = PMap.find cf.cf_name c.cl_fields in
-					loop (cf' :: acc) c
-				with Not_found ->
-					loop acc c
-				end
-		in
-		loop [] c
-end
-
-let s_class_path c =
-	let path = match c.cl_kind with
-		| KAbstractImpl a -> a.a_path
-		| _ -> c.cl_path
-	in
-	s_type_path path
 ;;
 monomorph_bind_ref := Monomorph.bind;;
 monomorph_create_ref := Monomorph.create;;