|
@@ -21,10 +21,132 @@
|
|
|
*/
|
|
|
package python.lib;
|
|
|
|
|
|
-
|
|
|
@:pythonImport("random")
|
|
|
extern class Random {
|
|
|
+ /**
|
|
|
+ Initialize the random number generator.
|
|
|
+
|
|
|
+ If `a` is omitted or `null`, the current system time is used.
|
|
|
+ If randomness sources are provided by the operating system,
|
|
|
+ they are used instead of the system time (see the os.urandom()
|
|
|
+ function for details on availability).
|
|
|
+
|
|
|
+ If `a` is an int, it is used directly.
|
|
|
+
|
|
|
+ With `version` 2 (the default), a str, bytes, or bytearray object
|
|
|
+ gets converted to an int and all of its bits are used.
|
|
|
+ With version 1, the hash() of a is used instead.
|
|
|
+ **/
|
|
|
+ static function seed(?a:Int, ?version:Int):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Return an object capturing the current internal state of the generator.
|
|
|
+ This object can be passed to setstate() to restore the state.
|
|
|
+ **/
|
|
|
+ static function getstate():RandomState;
|
|
|
+
|
|
|
+ /**
|
|
|
+ `state` should have been obtained from a previous call to `getstate`(),
|
|
|
+ and `setstate`() restores the internal state of the generator to what
|
|
|
+ it was at the time `getstate`() was called.
|
|
|
+ **/
|
|
|
+ static function setstate(state:RandomState):Void;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Returns a Python integer with `k` random bits.
|
|
|
+ This method is supplied with the `MersenneTwister` generator and
|
|
|
+ some other generators may also provide it as an optional part of the API.
|
|
|
+ When available, `getrandbits`() enables `randrange`() to handle arbitrarily large ranges.
|
|
|
+ **/
|
|
|
+ static function getrandbits(k:Int):Int;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Return a randomly selected element from `range(start, stop, step)`.
|
|
|
+ This is equivalent to `choice(range(start, stop, step))`,
|
|
|
+ but doesn’t actually build a range object.
|
|
|
+ **/
|
|
|
+ @:overload(function(stop:Int):Int {})
|
|
|
+ static function randrange(start:Int, stop:Int, ?step:Int):Int;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Return a random integer N such that `a <= N <= b`. Alias for `randrange(a, b+1)`.
|
|
|
+ **/
|
|
|
+ static function randint(a:Int, b:Int):Int;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Return the next random floating point number in the range [0.0, 1.0).
|
|
|
+ **/
|
|
|
+ static function random():Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Return a random floating point number N such that
|
|
|
+ `a <= N <= b` for `a <= b` and `b <= N <= a` for `b < a`.
|
|
|
+ **/
|
|
|
+ static function uniform(a:Float, b:Float):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Return a random floating point number N such that
|
|
|
+ `low <= N <= high` and with the specified `mode` between those bounds.
|
|
|
+ The `low` and `high` bounds default to zero and one.
|
|
|
+ The `mode` argument defaults to the midpoint between the bounds,
|
|
|
+ giving a symmetric distribution.
|
|
|
+ **/
|
|
|
+ static function triangular(?low:Float, ?high:Float, ?mode:Float):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Beta distribution. Conditions on the parameters are `alpha > 0` and `beta > 0`.
|
|
|
+ Returned values range between 0 and 1.
|
|
|
+ **/
|
|
|
+ static function betavariate(alpha:Float, beta:Float):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Exponential distribution. `lambd` is 1.0 divided by the desired mean.
|
|
|
+ It should be nonzero. Returned values range from 0 to positive infinity if `lambd` is positive,
|
|
|
+ and from negative infinity to 0 if `lambd` is negative.
|
|
|
+ **/
|
|
|
+ static function expovariate(lambd:Float):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Gamma distribution. (Not the gamma function!)
|
|
|
+ Conditions on the parameters are `alpha > 0` and `beta > 0`.
|
|
|
+ **/
|
|
|
+ static function gammavariate(alpha:Float, beta:Float):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Gaussian distribution. `mu` is the mean, and `sigma` is the standard deviation.
|
|
|
+ This is slightly faster than the `normalvariate` function defined below.
|
|
|
+ **/
|
|
|
+ static function gauss(mu:Float, sigma:Float):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Log normal distribution. If you take the natural logarithm of this distribution,
|
|
|
+ you’ll get a normal distribution with mean `mu` and standard deviation `sigma`.
|
|
|
+ `mu` can have any value, and `sigma` must be greater than zero.
|
|
|
+ **/
|
|
|
+ static function lognormvariate(mu:Float, sigma:Float):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Normal distribution. `mu` is the mean, and `sigma` is the standard deviation.
|
|
|
+ **/
|
|
|
+ static function normalvariate(mu:Float, sigma:Float):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ `mu` is the mean angle, expressed in radians between 0 and 2*pi,
|
|
|
+ and `kappa` is the concentration parameter, which must be greater than or equal to zero.
|
|
|
+ If `kappa` is equal to zero, this distribution reduces to a uniform random angle
|
|
|
+ over the range 0 to 2*pi.
|
|
|
+ **/
|
|
|
+ static function vonmisesvariate(mu:Float, kappa:Float):Float;
|
|
|
+
|
|
|
+ /**
|
|
|
+ Pareto distribution. alpha is the `shape` parameter.
|
|
|
+ **/
|
|
|
+ static function paretovariate(alpha:Float):Float;
|
|
|
|
|
|
- public static function random ():Float;
|
|
|
+ /**
|
|
|
+ Weibull distribution. `alpha` is the scale parameter and `beta` is the shape parameter.
|
|
|
+ **/
|
|
|
+ static function weibullvariate(alpha:Float, beta:Float):Float;
|
|
|
+}
|
|
|
|
|
|
-}
|
|
|
+abstract RandomState({}) {}
|