|
@@ -0,0 +1,207 @@
|
|
|
|
+// constants
|
|
|
|
+var zero = 0.0;
|
|
|
|
+var one = 1.0;
|
|
|
|
+//1.0 / zero == Math.POSITIVE_INFINITY;
|
|
|
|
+//-1.0 / zero == Math.NEGATIVE_INFINITY;
|
|
|
|
+(Math.NaN == Math.NaN) == false;
|
|
|
|
+Math.isNaN(Math.NaN) == true;
|
|
|
|
+Math.isNaN(Math.sqrt( -1)) == true;
|
|
|
|
+Math.NEGATIVE_INFINITY == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.POSITIVE_INFINITY == Math.POSITIVE_INFINITY;
|
|
|
|
+// +
|
|
|
|
+Math.POSITIVE_INFINITY + Math.POSITIVE_INFINITY == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.NEGATIVE_INFINITY + Math.NEGATIVE_INFINITY == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.POSITIVE_INFINITY + one == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.NEGATIVE_INFINITY + one == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY + Math.NEGATIVE_INFINITY) == true;
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY + Math.NaN) == true;
|
|
|
|
+Math.isNaN(Math.NEGATIVE_INFINITY + Math.NaN) == true;
|
|
|
|
+// -
|
|
|
|
+one - Math.POSITIVE_INFINITY == Math.NEGATIVE_INFINITY;
|
|
|
|
+one - Math.NEGATIVE_INFINITY == Math.POSITIVE_INFINITY;
|
|
|
|
+-Math.POSITIVE_INFINITY == Math.NEGATIVE_INFINITY;
|
|
|
|
+-Math.NEGATIVE_INFINITY == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.POSITIVE_INFINITY - one == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.NEGATIVE_INFINITY - one == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY - Math.POSITIVE_INFINITY ) == true;
|
|
|
|
+Math.isNaN(Math.NEGATIVE_INFINITY - Math.NEGATIVE_INFINITY) == true;
|
|
|
|
+Math.POSITIVE_INFINITY - Math.NEGATIVE_INFINITY == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.NEGATIVE_INFINITY - Math.POSITIVE_INFINITY == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY - Math.NaN) == true;
|
|
|
|
+Math.isNaN(Math.NEGATIVE_INFINITY - Math.NaN) == true;
|
|
|
|
+Math.isNaN(Math.NaN - Math.POSITIVE_INFINITY) == true;
|
|
|
|
+Math.isNaN(Math.NaN - Math.NEGATIVE_INFINITY) == true;
|
|
|
|
+// *
|
|
|
|
+Math.POSITIVE_INFINITY * one == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.NEGATIVE_INFINITY * one == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY * zero) == true;
|
|
|
|
+Math.isNaN(Math.NEGATIVE_INFINITY * zero) == true;
|
|
|
|
+Math.POSITIVE_INFINITY * Math.POSITIVE_INFINITY == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.NEGATIVE_INFINITY * Math.NEGATIVE_INFINITY == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.POSITIVE_INFINITY * Math.NEGATIVE_INFINITY == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY * Math.NaN) == true;
|
|
|
|
+Math.isNaN(Math.NEGATIVE_INFINITY * Math.NaN) == true;
|
|
|
|
+// /
|
|
|
|
+Math.POSITIVE_INFINITY / one == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.NEGATIVE_INFINITY / one == Math.NEGATIVE_INFINITY;
|
|
|
|
+//Math.POSITIVE_INFINITY / zero == Math.POSITIVE_INFINITY;
|
|
|
|
+//Math.NEGATIVE_INFINITY / zero == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY / Math.POSITIVE_INFINITY);
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY / Math.NEGATIVE_INFINITY);
|
|
|
|
+Math.isNaN(Math.NEGATIVE_INFINITY / Math.POSITIVE_INFINITY);
|
|
|
|
+Math.isNaN(Math.NEGATIVE_INFINITY / Math.NEGATIVE_INFINITY);
|
|
|
|
+Math.isNaN(Math.NaN / Math.POSITIVE_INFINITY);
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY / Math.NaN);
|
|
|
|
+Math.isNaN(Math.NaN / Math.POSITIVE_INFINITY);
|
|
|
|
+Math.isNaN(Math.NEGATIVE_INFINITY / Math.NaN);
|
|
|
|
+
|
|
|
|
+// abs
|
|
|
|
+Math.abs(-1.223) == 1.223;
|
|
|
|
+Math.abs(1.223) == 1.223;
|
|
|
|
+Math.abs(0) == 0;
|
|
|
|
+Math.isNaN(Math.abs(Math.NaN)) == true;
|
|
|
|
+Math.abs(Math.NEGATIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.abs(Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+
|
|
|
|
+// min
|
|
|
|
+Math.min(0.0, 1.0) == 0.0;
|
|
|
|
+Math.min(0.0, -1.0) == -1.0;
|
|
|
|
+Math.min(0.0, 0.0) == 0.0;
|
|
|
|
+Math.min(1.0, 1.0) == 1.0;
|
|
|
|
+Math.min(Math.NEGATIVE_INFINITY, Math.NEGATIVE_INFINITY) == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.min(Math.NEGATIVE_INFINITY, Math.POSITIVE_INFINITY) == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.min(Math.POSITIVE_INFINITY, Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.min(Math.POSITIVE_INFINITY, zero) == zero;
|
|
|
|
+Math.min(Math.NEGATIVE_INFINITY, zero) == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.min(Math.NEGATIVE_INFINITY, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.min(Math.POSITIVE_INFINITY, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.min(Math.NaN, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.min(one, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.min(zero, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.min(Math.NaN, Math.NEGATIVE_INFINITY)) == true;
|
|
|
|
+Math.isNaN(Math.min(Math.NaN,Math.POSITIVE_INFINITY)) == true;
|
|
|
|
+Math.isNaN(Math.min(Math.NaN, one)) == true;
|
|
|
|
+Math.isNaN(Math.min(Math.NaN, zero)) == true;
|
|
|
|
+
|
|
|
|
+// max
|
|
|
|
+Math.max(0.0, 1.0) == 1.0;
|
|
|
|
+Math.max(0.0, -1.0) == 0.0;
|
|
|
|
+Math.max(0.0, 0.0) == 0.0;
|
|
|
|
+Math.max(1.0, 1.0) == 1.0;
|
|
|
|
+Math.max(Math.NEGATIVE_INFINITY, Math.NEGATIVE_INFINITY) == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.max(Math.NEGATIVE_INFINITY, Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.max(Math.POSITIVE_INFINITY, Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.max(Math.POSITIVE_INFINITY, zero) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.max(Math.NEGATIVE_INFINITY, zero) == 0;
|
|
|
|
+Math.isNaN(Math.max(Math.NEGATIVE_INFINITY, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.max(Math.POSITIVE_INFINITY, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.max(Math.NaN, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.max(one, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.max(zero, Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.max(Math.NaN, Math.NEGATIVE_INFINITY)) == true;
|
|
|
|
+Math.isNaN(Math.max(Math.NaN,Math.POSITIVE_INFINITY)) == true;
|
|
|
|
+Math.isNaN(Math.max(Math.NaN, one)) == true;
|
|
|
|
+Math.isNaN(Math.max(Math.NaN, zero)) == true;
|
|
|
|
+
|
|
|
|
+// sin
|
|
|
|
+Math.sin(0.0) == 0.0;
|
|
|
|
+Math.sin(Math.PI / 2) == 1.0;
|
|
|
|
+Math.sin(Math.PI) == 0.0;
|
|
|
|
+Math.sin(Math.PI * 3 / 2) == -1.0;
|
|
|
|
+Math.isNaN(Math.sin(Math.POSITIVE_INFINITY)) == true;
|
|
|
|
+Math.isNaN(Math.sin(Math.NEGATIVE_INFINITY)) == true;
|
|
|
|
+Math.isNaN(Math.sin(Math.NaN)) == true;
|
|
|
|
+
|
|
|
|
+// cos
|
|
|
|
+Math.cos(0.0) == 1.0;
|
|
|
|
+Math.cos(Math.PI / 2) == 0.0;
|
|
|
|
+Math.cos(Math.PI) == -1.0;
|
|
|
|
+Math.cos(Math.PI * 3 / 2) == 0.0;
|
|
|
|
+Math.isNaN(Math.cos(Math.POSITIVE_INFINITY)) == true;
|
|
|
|
+Math.isNaN(Math.cos(Math.NEGATIVE_INFINITY)) == true;
|
|
|
|
+Math.isNaN(Math.cos(Math.NaN)) == true;
|
|
|
|
+
|
|
|
|
+// exp
|
|
|
|
+Math.exp(0.0) == 1.0;
|
|
|
|
+Math.exp(1.0) == 2.7182818284590452353602874713527;
|
|
|
|
+Math.exp(Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.exp(Math.NEGATIVE_INFINITY) == 0.0;
|
|
|
|
+Math.isNaN(Math.exp(Math.NaN)) == true;
|
|
|
|
+
|
|
|
|
+// log
|
|
|
|
+Math.log(0.0) == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.log(2.7182818284590452353602874713527) == 1.0;
|
|
|
|
+Math.isNaN(Math.log( -1.0)) == true;
|
|
|
|
+Math.isNaN(Math.log(Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.log(Math.NEGATIVE_INFINITY)) == true;
|
|
|
|
+Math.log(Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+
|
|
|
|
+// exp + log
|
|
|
|
+var floats = [1.33, 39232.911, 12.0, -112.999992, 99999.99999, 0.0, Math.NEGATIVE_INFINITY, Math.POSITIVE_INFINITY];
|
|
|
|
+for (f in floats) {
|
|
|
|
+ Math.log(Math.exp(f)) == f;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// sqrt
|
|
|
|
+Math.sqrt(4.0) == 2;
|
|
|
|
+Math.sqrt(0.0) == 0.0;
|
|
|
|
+Math.sqrt(Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.sqrt(Math.NEGATIVE_INFINITY)) == true;
|
|
|
|
+Math.isNaN(Math.sqrt(Math.NaN)) == true;
|
|
|
|
+Math.isNaN(Math.sqrt( -1.0)) == true;
|
|
|
|
+
|
|
|
|
+// round
|
|
|
|
+Math.round(0.0) == 0;
|
|
|
|
+Math.round(0.1) == 0;
|
|
|
|
+Math.round(0.4999) == 0;
|
|
|
|
+Math.round(0.5) == 1;
|
|
|
|
+Math.round(1.0) == 1;
|
|
|
|
+Math.round(1.499) == 1;
|
|
|
|
+Math.round(-0.1) == 0;
|
|
|
|
+Math.round(-0.4999) == 0;
|
|
|
|
+Math.round(-0.5) == 0;
|
|
|
|
+Math.round(-0.50001) == -1;
|
|
|
|
+Math.round(-1.0) == -1;
|
|
|
|
+Math.round(-1.499) == -1;
|
|
|
|
+Math.round(-1.5) == -1;
|
|
|
|
+Math.round( -1.50001) == -2;
|
|
|
|
+Math.round(Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.round(Math.NEGATIVE_INFINITY) == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.round(Math.NaN)) == true;
|
|
|
|
+
|
|
|
|
+// floor
|
|
|
|
+Math.floor(0.0) == 0;
|
|
|
|
+Math.floor(0.9999) == 0;
|
|
|
|
+Math.floor(1.0) == 1;
|
|
|
|
+Math.floor( -0.0001) == -1;
|
|
|
|
+Math.floor( -1.0) == -1;
|
|
|
|
+Math.floor( -1.0001) == -2;
|
|
|
|
+Math.floor(Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.floor(Math.NEGATIVE_INFINITY) == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.floor(Math.NaN)) == true;
|
|
|
|
+
|
|
|
|
+// ceil
|
|
|
|
+Math.ceil(0.0) == 0;
|
|
|
|
+Math.ceil(-0.9999) == 0;
|
|
|
|
+Math.ceil(-1.0) == -1;
|
|
|
|
+Math.ceil( 0.0001) == 1;
|
|
|
|
+Math.ceil( 1.0) == 1;
|
|
|
|
+Math.ceil( 1.0001) == 2;
|
|
|
|
+Math.ceil(Math.POSITIVE_INFINITY) == Math.POSITIVE_INFINITY;
|
|
|
|
+Math.ceil(Math.NEGATIVE_INFINITY) == Math.NEGATIVE_INFINITY;
|
|
|
|
+Math.isNaN(Math.ceil(Math.NaN)) == true;
|
|
|
|
+
|
|
|
|
+// random
|
|
|
|
+// not much to test here...
|
|
|
|
+
|
|
|
|
+// isFinite
|
|
|
|
+Math.isFinite(Math.POSITIVE_INFINITY) == false;
|
|
|
|
+Math.isFinite(Math.NEGATIVE_INFINITY) == false;
|
|
|
|
+Math.isFinite(Math.NaN) == false;
|
|
|
|
+Math.isFinite(0.0) == true;
|
|
|
|
+
|
|
|
|
+// isNaN
|
|
|
|
+Math.isNaN(Math.POSITIVE_INFINITY) == false;
|
|
|
|
+Math.isNaN(Math.NEGATIVE_INFINITY) == false;
|
|
|
|
+Math.isNaN(Math.NaN) == true;
|
|
|
|
+Math.isNaN(0.0) == false;
|