(* * Haxe Compiler * Copyright (c)2005-2008 Nicolas Cannasse * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) open Ast open Type open Common open Typecore let type_constant ctx c p = match c with | Int s -> (try mk (TConst (TInt (Int32.of_string s))) ctx.api.tint p with _ -> mk (TConst (TFloat s)) ctx.api.tfloat p) | Float f -> mk (TConst (TFloat f)) ctx.api.tfloat p | String s -> mk (TConst (TString s)) ctx.api.tstring p | Ident "true" -> mk (TConst (TBool true)) ctx.api.tbool p | Ident "false" -> mk (TConst (TBool false)) ctx.api.tbool p | Ident "null" -> mk (TConst TNull) (ctx.api.tnull (mk_mono())) p | _ -> assert false let type_function_param ctx t c opt p = match c with | None -> if opt then ctx.api.tnull t, Some TNull else t, None | Some c -> let c = (try type_constant ctx c p with _ -> error "Parameter default value should be constant" p) in unify ctx t c.etype p; match c.eexpr with | TConst c -> t, Some c | _ -> assert false let exc_protect f = let rec r = ref (fun() -> try f r with | Error (Protect _,_) as e -> raise e | Error (m,p) -> raise (Error (Protect m,p)) ) in r let type_static_var ctx t e p = ctx.in_static <- true; let e = type_expr ctx e true in unify ctx e.etype t p; e (** since load_type is used in PASS2 , it cannot access the structure of a type **) let load_type_def ctx p tpath = let no_pack = fst tpath = [] in try List.find (fun t -> let tp = t_path t in tp = tpath || (no_pack && snd tp = snd tpath) ) ctx.local_types with Not_found -> let tpath, m = (try if not no_pack then raise Exit; (match fst ctx.current.mpath with | [] -> raise Exit | x :: _ -> (* this can occur due to haxe remoting : a module can be already defined in the "js" package and is not allowed to access the js classes *) try (match PMap.find x ctx.com.package_rules with | Forbidden -> raise Exit | _ -> ()) with Not_found -> ()); let tpath2 = fst ctx.current.mpath , snd tpath in tpath2, ctx.api.load_module tpath2 p with | Error (Module_not_found _,p2) when p == p2 -> tpath, ctx.api.load_module tpath p | Exit -> tpath, ctx.api.load_module tpath p ) in try List.find (fun t -> not (t_private t) && t_path t = tpath) m.mtypes with Not_found -> error ("Module " ^ s_type_path tpath ^ " does not define type " ^ snd tpath) p let rec load_normal_type ctx t p allow_no_params = try if t.tpackage <> [] then raise Not_found; let pt = List.assoc t.tname ctx.type_params in if t.tparams <> [] then error ("Class type parameter " ^ t.tname ^ " can't have parameters") p; pt with Not_found -> let types , path , f = ctx.api.build_instance (load_type_def ctx p (t.tpackage,t.tname)) p in if allow_no_params && t.tparams = [] then f (List.map (fun (name,t) -> match follow t with | TInst (c,_) -> if c.cl_implements = [] then mk_mono() else error ("Type parameter " ^ name ^ " need constraint") p | _ -> assert false ) types) else if path = ([],"Dynamic") then match t.tparams with | [] -> t_dynamic | [TPType t] -> TDynamic (load_type ctx p t) | _ -> error "Too many parameters for Dynamic" p else begin if List.length types <> List.length t.tparams then error ("Invalid number of type parameters for " ^ s_type_path path) p; let tparams = List.map (fun t -> match t with | TPConst c -> let name, const = (match c with | String s -> "S" ^ s, TString s | Int i -> "I" ^ i, TInt (Int32.of_string i) | Float f -> "F" ^ f, TFloat f | _ -> assert false ) in let c = mk_class ([],name) p None false in c.cl_kind <- KConstant const; TInst (c,[]) | TPType t -> load_type ctx p t ) t.tparams in let params = List.map2 (fun t (name,t2) -> let isconst = (match t with TInst ({ cl_kind = KConstant _ },_) -> true | _ -> false) in if isconst <> (name = "Const") && t != t_dynamic then error (if isconst then "Constant value unexpected here" else "Constant value excepted as type parameter") p; match follow t2 with | TInst ({ cl_implements = [] }, []) -> t | TInst (c,[]) -> let r = exc_protect (fun r -> r := (fun() -> t); List.iter (fun (i,params) -> unify ctx t (apply_params types tparams (TInst (i,params))) p ) c.cl_implements; t ) in ctx.delays := [(fun () -> ignore(!r()))] :: !(ctx.delays); TLazy r | _ -> assert false ) tparams types in f params end and load_type ctx p t = match t with | TPParent t -> load_type ctx p t | TPNormal t -> load_normal_type ctx t p false | TPExtend (t,l) -> (match load_type ctx p (TPAnonymous l) with | TAnon a -> let rec loop t = match follow t with | TInst (c,tl) -> let c2 = mk_class (fst c.cl_path,"+" ^ snd c.cl_path) p None true in PMap.iter (fun f _ -> try ignore(class_field c f); error ("Cannot redefine field " ^ f) p with Not_found -> () ) a.a_fields; (* do NOT tag as extern - for protect *) c2.cl_kind <- KExtension (c,tl); c2.cl_super <- Some (c,tl); c2.cl_fields <- a.a_fields; TInst (c2,[]) | TMono _ -> error "Please ensure correct initialization of cascading signatures" p | TAnon a2 -> PMap.iter (fun f _ -> if PMap.mem f a2.a_fields then error ("Cannot redefine field " ^ f) p ) a.a_fields; mk_anon (PMap.foldi PMap.add a.a_fields a2.a_fields) | _ -> error "Cannot only extend classes and anonymous" p in loop (load_normal_type ctx t p false) | _ -> assert false) | TPAnonymous l -> let rec loop acc (n,pub,f,p) = if PMap.mem n acc then error ("Duplicate field declaration : " ^ n) p; let t , get, set = (match f with | AFVar t -> load_type ctx p t, NormalAccess, NormalAccess | AFFun (tl,t) -> let t = load_type ctx p t in let args = List.map (fun (name,o,t) -> name , o, load_type ctx p t) tl in TFun (args,t), NormalAccess, MethodCantAccess | AFProp (t,i1,i2) -> let access m get = match m with | "null" -> NoAccess | "default" -> NormalAccess | "dynamic" -> MethodAccess ((if get then "get_" else "set_") ^ n) | _ -> MethodAccess m in load_type ctx p t, access i1 true, access i2 false ) in PMap.add n { cf_name = n; cf_type = t; cf_public = (match pub with None -> true | Some p -> p); cf_get = get; cf_set = set; cf_params = []; cf_expr = None; cf_doc = None; } acc in mk_anon (List.fold_left loop PMap.empty l) | TPFunction (args,r) -> match args with | [TPNormal { tpackage = []; tparams = []; tname = "Void" }] -> TFun ([],load_type ctx p r) | _ -> TFun (List.map (fun t -> "",false,load_type ctx p t) args,load_type ctx p r) let hide_types ctx = let old_locals = ctx.local_types in let old_type_params = ctx.type_params in ctx.local_types <- ctx.std.mtypes; ctx.type_params <- []; (fun() -> ctx.local_types <- old_locals; ctx.type_params <- old_type_params; ) let load_core_type ctx name = let show = hide_types ctx in let t = load_normal_type ctx { tpackage = []; tname = name; tparams = [] } null_pos false in show(); t let t_array_access ctx = let show = hide_types ctx in match load_type_def ctx null_pos ([],"ArrayAccess") with | TClassDecl c -> show(); if List.length c.cl_types <> 1 then assert false; let pt = mk_mono() in TInst (c,[pt]) , pt | _ -> assert false let t_iterator ctx = let show = hide_types ctx in match load_type_def ctx null_pos ([],"Iterator") with | TTypeDecl t -> show(); if List.length t.t_types <> 1 then assert false; let pt = mk_mono() in apply_params t.t_types [pt] t.t_type, pt | _ -> assert false let load_type_opt ?(opt=false) ctx p t = let t = (match t with None -> mk_mono() | Some t -> load_type ctx p t) in if opt then ctx.api.tnull t else t (* ---------------------------------------------------------------------- *) (* Structure check *) let valid_redefinition ctx f1 t1 f2 t2 = let valid t1 t2 = type_eq EqStrict t1 t2; if is_null t1 <> is_null t2 then raise (Unify_error [Cannot_unify (t1,t2)]); in let t1, t2 = (match f1.cf_params, f2.cf_params with | [], [] -> t1, t2 | l1, l2 when List.length l1 = List.length l2 -> let monos = List.map (fun _ -> mk_mono()) l1 in apply_params l1 monos t1, apply_params l2 monos t2 | _ -> t1, t2 ) in match follow t1, follow t2 with | TFun (args1,r1) , TFun (args2,r2) when List.length args1 = List.length args2 -> List.iter2 (fun (n,o1,a1) (_,o2,a2) -> if o1 <> o2 then raise (Unify_error [Not_matching_optional n]); valid a1 a2; ) args1 args2; valid r1 r2; | _ , _ -> (* in case args differs, or if an interface var *) valid t1 t2 let check_overriding ctx c p () = match c.cl_super with | None -> (match c.cl_overrides with | [] -> () | i :: _ -> display_error ctx ("Field " ^ i ^ " is declared 'override' but doesn't override any field") p) | Some (csup,params) -> PMap.iter (fun i f -> try let t , f2 = raw_class_field (fun f -> f.cf_type) csup i in ignore(follow f.cf_type); (* force evaluation *) let p = (match f.cf_expr with None -> p | Some e -> e.epos) in if not (List.mem i c.cl_overrides) then display_error ctx ("Field " ^ i ^ " should be declared with 'override' since it is inherited from superclass") p else if f.cf_public <> f2.cf_public then display_error ctx ("Field " ^ i ^ " has different visibility (public/private) than superclass one") p else if f2.cf_get = InlineAccess then display_error ctx ("Field " ^ i ^ " is inlined and cannot be overridden") p else if f2.cf_get <> f.cf_get || f2.cf_set <> f.cf_set then display_error ctx ("Field " ^ i ^ " has different property access than in superclass") p else try let t = apply_params csup.cl_types params t in valid_redefinition ctx f f.cf_type f2 t with Unify_error l -> display_error ctx ("Field " ^ i ^ " overload parent class with different or incomplete type") p; display_error ctx (error_msg (Unify l)) p; with Not_found -> if List.mem i c.cl_overrides then display_error ctx ("Field " ^ i ^ " is declared 'override' but doesn't override any field") p ) c.cl_fields let class_field_no_interf c i = try let f = PMap.find i c.cl_fields in f.cf_type , f with Not_found -> match c.cl_super with | None -> raise Not_found | Some (c,tl) -> (* rec over class_field *) let t , f = raw_class_field (fun f -> f.cf_type) c i in apply_params c.cl_types tl t , f let rec check_interface ctx c p intf params = PMap.iter (fun i f -> try let t2, f2 = class_field_no_interf c i in ignore(follow f2.cf_type); (* force evaluation *) let p = (match f2.cf_expr with None -> p | Some e -> e.epos) in if f.cf_public && not f2.cf_public then display_error ctx ("Field " ^ i ^ " should be public as requested by " ^ s_type_path intf.cl_path) p else if not(unify_access f2.cf_get f.cf_get) then display_error ctx ("Field " ^ i ^ " has different property access than in " ^ s_type_path intf.cl_path) p else try valid_redefinition ctx f2 t2 f (apply_params intf.cl_types params f.cf_type) with Unify_error l -> display_error ctx ("Field " ^ i ^ " has different type than in " ^ s_type_path intf.cl_path) p; display_error ctx (error_msg (Unify l)) p; with Not_found -> if not c.cl_interface then display_error ctx ("Field " ^ i ^ " needed by " ^ s_type_path intf.cl_path ^ " is missing") p ) intf.cl_fields; List.iter (fun (i2,p2) -> check_interface ctx c p i2 (List.map (apply_params intf.cl_types params) p2) ) intf.cl_implements let check_interfaces ctx c p () = match c.cl_path with | "Proxy" :: _ , _ -> () | _ -> List.iter (fun (intf,params) -> check_interface ctx c p intf params) c.cl_implements let rec return_flow ctx e = let error() = display_error ctx "A return is missing here" e.epos; raise Exit in let return_flow = return_flow ctx in match e.eexpr with | TReturn _ | TThrow _ -> () | TParenthesis e -> return_flow e | TBlock el -> let rec loop = function | [] -> error() | [e] -> return_flow e | { eexpr = TReturn _ } :: _ | { eexpr = TThrow _ } :: _ -> () | _ :: l -> loop l in loop el | TIf (_,e1,Some e2) -> return_flow e1; return_flow e2; | TSwitch (v,cases,Some e) -> List.iter (fun (_,e) -> return_flow e) cases; return_flow e | TSwitch (e,cases,None) when (match follow e.etype with TEnum _ -> true | _ -> false) -> List.iter (fun (_,e) -> return_flow e) cases; | TMatch (_,_,cases,def) -> List.iter (fun (_,_,e) -> return_flow e) cases; (match def with None -> () | Some e -> return_flow e) | TTry (e,cases) -> return_flow e; List.iter (fun (_,_,e) -> return_flow e) cases; | _ -> error() (* ---------------------------------------------------------------------- *) (* PASS 1 & 2 : Module and Class Structure *) let set_heritance ctx c herits p = let rec loop = function | HPrivate | HExtern | HInterface -> () | HExtends t -> if c.cl_super <> None then error "Cannot extend several classes" p; let t = load_normal_type ctx t p false in (match follow t with | TInst (cl,params) -> if is_parent c cl then error "Recursive class" p; if c.cl_interface then error "Cannot extend an interface" p; if cl.cl_interface then error "Cannot extend by using an interface" p; c.cl_super <- Some (cl,params) | _ -> error "Should extend by using a class" p) | HImplements t -> let t = load_normal_type ctx t p false in (match follow t with | TInst (cl,params) -> if is_parent c cl then error "Recursive class" p; c.cl_implements <- (cl, params) :: c.cl_implements | TDynamic t -> if c.cl_dynamic <> None then error "Cannot have several dynamics" p; c.cl_dynamic <- Some t | _ -> error "Should implement by using an interface or a class" p) in List.iter loop (List.filter ((!build_inheritance) ctx c p) herits) let type_type_params ctx path p (n,flags) = let c = mk_class (fst path @ [snd path],n) p None false in c.cl_kind <- KTypeParameter; let t = TInst (c,[]) in match flags with | [] -> n, t | _ -> let r = exc_protect (fun r -> r := (fun _ -> t); set_heritance ctx c (List.map (fun t -> HImplements t) flags) p; t ) in ctx.delays := [(fun () -> ignore(!r()))] :: !(ctx.delays); n, TLazy r let type_function ctx args ret static constr f p = let locals = save_locals ctx in let fargs = List.map (fun (n,c,t) -> add_local ctx n t, c, t) args in let old_ret = ctx.ret in let old_static = ctx.in_static in let old_constr = ctx.in_constructor in let old_opened = ctx.opened in ctx.in_static <- static; ctx.in_constructor <- constr; ctx.ret <- ret; ctx.opened <- []; let e = type_expr ctx f.f_expr false in let rec loop e = match e.eexpr with | TReturn (Some _) -> raise Exit | TFunction _ -> () | _ -> Type.iter loop e in let have_ret = (try loop e; false with Exit -> true) in if have_ret then (try return_flow ctx e with Exit -> ()) else unify ctx ret ctx.api.tvoid p; let rec loop e = match e.eexpr with | TCall ({ eexpr = TConst TSuper },_) -> raise Exit | TFunction _ -> () | _ -> Type.iter loop e in if constr && (match ctx.curclass.cl_super with None -> false | Some (cl,_) -> cl.cl_constructor <> None) then (try loop e; error "Missing super constructor call" p with Exit -> ()); locals(); List.iter (fun r -> r := Closed) ctx.opened; ctx.ret <- old_ret; ctx.in_static <- old_static; ctx.in_constructor <- old_constr; ctx.opened <- old_opened; e , fargs let init_class ctx c p herits fields = ctx.type_params <- c.cl_types; c.cl_extern <- List.mem HExtern herits; c.cl_interface <- List.mem HInterface herits; set_heritance ctx c herits p; let tthis = TInst (c,List.map snd c.cl_types) in let rec extends_public c = List.exists (fun (c,_) -> c.cl_path = (["haxe"],"Public") || extends_public c) c.cl_implements || match c.cl_super with | None -> false | Some (c,_) -> extends_public c in let extends_public = extends_public c in let is_public access parent = if List.mem APrivate access then false else if List.mem APublic access then true else match parent with | Some { cf_public = p } -> p | _ -> c.cl_extern || c.cl_interface || extends_public in let rec get_parent c name = match c.cl_super with | None -> None | Some (csup,_) -> try Some (PMap.find name csup.cl_fields) with Not_found -> get_parent csup name in let type_opt ctx p t = match t with | None when c.cl_extern || c.cl_interface -> display_error ctx "Type required for extern classes and interfaces" p; t_dynamic | _ -> load_type_opt ctx p t in let rec has_field f = function | None -> false | Some (c,_) -> PMap.exists f c.cl_fields || has_field f c.cl_super || List.exists (fun i -> has_field f (Some i)) c.cl_implements in let loop_cf f p = match f with | FVar (name,doc,access,t,e) -> let stat = List.mem AStatic access in let inline = List.mem AInline access in if not stat && has_field name c.cl_super then error ("Redefinition of variable " ^ name ^ " in subclass is not allowed") p; if inline && not stat then error "Inline variable must be static" p; if inline && e = None then error "Inline variable must be initialized" p; let t = (match t with | None -> if not stat then display_error ctx ("Type required for member variable " ^ name) p; mk_mono() | Some t -> let old = ctx.type_params in if stat then ctx.type_params <- []; let t = load_type ctx p t in if stat then ctx.type_params <- old; t ) in let cf = { cf_name = name; cf_doc = doc; cf_type = t; cf_get = if inline then InlineAccess else NormalAccess; cf_set = if inline then NeverAccess else NormalAccess; cf_expr = None; cf_public = is_public access None; cf_params = []; } in let delay = (match e with | None -> (fun() -> ()) | Some e -> let ctx = { ctx with curclass = c; tthis = tthis } in let r = exc_protect (fun r -> r := (fun() -> t); if ctx.com.verbose then print_endline ("Typing " ^ s_type_path c.cl_path ^ "." ^ name); cf.cf_expr <- Some (type_static_var ctx t e p); t ) in cf.cf_type <- TLazy r; (fun () -> ignore(!r())) ) in access, false, cf, delay | FFun (name,doc,access,params,f) -> let params = List.map (fun (n,flags) -> match flags with | [] -> type_type_params ctx ([],name) p (n,[]) | _ -> error "This notation is not allowed because it can't be checked" p ) params in let stat = List.mem AStatic access in let inline = List.mem AInline access in let parent = (if not stat then get_parent c name else None) in let dynamic = List.mem ADynamic access || (match parent with Some { cf_set = NormalAccess } -> true | _ -> false) in let ctx = { ctx with curclass = c; curmethod = name; tthis = tthis; type_params = if stat then params else params @ ctx.type_params; } in let ret = type_opt ctx p f.f_type in let args = List.map (fun (name,opt,t,c) -> let t, c = type_function_param ctx (type_opt ctx p t) c opt p in name, c, t ) f.f_args in let t = TFun (fun_args args,ret) in let constr = (name = "new") in if constr && c.cl_interface then error "An interface cannot have a constructor" p; if c.cl_interface && not stat && (match f.f_expr with EBlock [] , _ -> false | _ -> true) then error "An interface method cannot have a body" p; if constr then (match f.f_type with | None | Some (TPNormal { tpackage = []; tname = "Void" }) -> () | _ -> error "A class constructor can't have a return value" p ); let cf = { cf_name = name; cf_doc = doc; cf_type = t; cf_get = if inline then InlineAccess else NormalAccess; cf_set = (if inline then NeverAccess else if dynamic then NormalAccess else MethodCantAccess); cf_expr = None; cf_public = is_public access parent; cf_params = params; } in let r = exc_protect (fun r -> r := (fun() -> t); if ctx.com.verbose then print_endline ("Typing " ^ s_type_path c.cl_path ^ "." ^ name); let e , fargs = type_function ctx args ret stat constr f p in let f = { tf_args = fargs; tf_type = ret; tf_expr = e; } in if stat && name = "__init__" then c.cl_init <- Some e; cf.cf_expr <- Some (mk (TFunction f) t p); t ) in let delay = ( if (c.cl_extern || c.cl_interface) && cf.cf_name <> "__init__" then (fun() -> ()) else begin cf.cf_type <- TLazy r; (fun() -> ignore((!r)())) end ) in access, constr, cf, delay | FProp (name,doc,access,get,set,t) -> let ret = load_type ctx p t in let check_get = ref (fun() -> ()) in let check_set = ref (fun() -> ()) in let check_method m t () = try let t2 = (if List.mem AStatic access then (PMap.find m c.cl_statics).cf_type else fst (class_field c m)) in unify_raise ctx t2 t p; with | Error (Unify l,_) -> raise (Error (Stack (Custom ("In method " ^ m ^ " required by property " ^ name),Unify l),p)) | Not_found -> if not c.cl_interface then error ("Method " ^ m ^ " required by property " ^ name ^ " is missing") p in let get = (match get with | "null" -> NoAccess | "dynamic" -> MethodAccess ("get_" ^ name) | "default" -> NormalAccess | _ -> check_get := check_method get (TFun ([],ret)); MethodAccess get ) in let set = (match set with | "null" -> (* standard flash library read-only variables can't be accessed for writing, even in subclasses *) if c.cl_extern && (match c.cl_path with "flash" :: _ , _ -> true | _ -> false) && Common.defined ctx.com "flash9" then NeverAccess else NoAccess | "dynamic" -> MethodAccess ("set_" ^ name) | "default" -> NormalAccess | _ -> check_set := check_method set (TFun (["",false,ret],ret)); MethodAccess set ) in if set = NormalAccess && (match get with MethodAccess _ -> true | _ -> false) then error "Unsupported property combination" p; let cf = { cf_name = name; cf_doc = doc; cf_get = get; cf_set = set; cf_expr = None; cf_type = ret; cf_public = is_public access None; cf_params = []; } in access, false, cf, (fun() -> (!check_get)(); (!check_set)()) in let fl = List.map (fun (f,p) -> let access , constr, f , delayed = loop_cf f p in let is_static = List.mem AStatic access in if is_static && f.cf_name = "name" && Common.defined ctx.com "js" then error "This identifier cannot be used in Javascript for statics" p; if (is_static || constr) && c.cl_interface && f.cf_name <> "__init__" then error "You can't declare static fields in interfaces" p; if constr then begin if c.cl_constructor <> None then error "Duplicate constructor" p; c.cl_constructor <- Some f; end else if not is_static || f.cf_name <> "__init__" then begin if PMap.mem f.cf_name (if is_static then c.cl_statics else c.cl_fields) then error ("Duplicate class field declaration : " ^ f.cf_name) p; if is_static then begin c.cl_statics <- PMap.add f.cf_name f c.cl_statics; c.cl_ordered_statics <- f :: c.cl_ordered_statics; end else begin c.cl_fields <- PMap.add f.cf_name f c.cl_fields; c.cl_ordered_fields <- f :: c.cl_ordered_fields; if List.mem AOverride access then c.cl_overrides <- f.cf_name :: c.cl_overrides; end; end; delayed ) fields in c.cl_ordered_statics <- List.rev c.cl_ordered_statics; c.cl_ordered_fields <- List.rev c.cl_ordered_fields; (* define a default inherited constructor. This is actually pretty tricky since we can't assume that the constructor of the superclass has been defined yet because type structure is not stabilized wrt recursion. *) let rec define_constructor ctx c = try Some (Hashtbl.find ctx.constructs c.cl_path) with Not_found -> match c.cl_super with | None -> None | Some (csuper,_) -> match define_constructor ctx csuper with | None -> None | Some (acc,pl,f) as infos -> let p = c.cl_pos in let esuper = (ECall ((EConst (Ident "super"),p),List.map (fun (n,_,_,_) -> (EConst (Ident n),p)) f.f_args),p) in let acc = (if csuper.cl_extern && acc = [] then [APublic] else acc) in let fnew = { f with f_expr = esuper; f_args = List.map (fun (a,opt,t,def) -> (* we are removing the type and letting the type inference work because the current package is not the same as the superclass one or there might be private and/or imported types if we are an extern class then we need a type if the type is Dynamic also because it would not propagate if we have a package declaration, we are sure it's fully qualified *) let rec is_qualified = function | TPNormal t -> is_qual_name t | TPParent t -> is_qualified t | TPFunction (tl,t) -> List.for_all is_qualified tl && is_qualified t | TPAnonymous fl -> List.for_all (fun (_,_,f,_) -> is_qual_field f) fl | TPExtend (t,fl) -> is_qual_name t && List.for_all (fun (_,_,f,_) -> is_qual_field f) fl and is_qual_field = function | AFVar t -> is_qualified t | AFProp (t,_,_) -> is_qualified t | AFFun (pl,t) -> List.for_all (fun (_,_,t) -> is_qualified t) pl && is_qualified t and is_qual_name t = match t.tpackage with | [] -> t.tname = "Dynamic" && List.for_all is_qual_param t.tparams | _ :: _ -> true and is_qual_param = function | TPType t -> is_qualified t | TPConst _ -> false (* prevent multiple incompatible types *) in let t = (match t with | Some t when c.cl_extern || is_qualified t -> Some t | _ -> None ) in a,opt,t,def ) f.f_args } in let _, _, cf, delayed = loop_cf (FFun ("new",None,acc,pl,fnew)) p in c.cl_constructor <- Some cf; Hashtbl.add ctx.constructs c.cl_path (acc,pl,f); ctx.delays := [delayed] :: !(ctx.delays); infos in ignore(define_constructor ctx c); fl let type_module ctx m tdecls loadp = (* PASS 1 : build module structure - does not load any module or type - should be atomic ! *) let decls = ref [] in let decl_with_name name p priv = let tpath = if priv then (fst m @ ["_" ^ snd m], name) else (fst m, name) in if priv then begin if List.exists (fun t -> tpath = t_path t) (!decls) then error ("Type name " ^ name ^ " is alreday defined in this module") p; tpath end else try let m2 = Hashtbl.find ctx.types_module tpath in if m <> m2 && String.lowercase (s_type_path m2) = String.lowercase (s_type_path m) then error ("Module " ^ s_type_path m2 ^ " is loaded with a different case than " ^ s_type_path m) loadp; error ("Type name " ^ s_type_path tpath ^ " is redefined from module " ^ s_type_path m2) p with Not_found -> Hashtbl.add ctx.types_module (fst m,name) m; tpath in List.iter (fun (d,p) -> match d with | EImport _ -> () | EClass d -> let priv = List.mem HPrivate d.d_flags in let path = decl_with_name d.d_name p priv in let c = mk_class path p d.d_doc priv in (* store the constructor for later usage *) List.iter (fun (cf,_) -> match cf with | FFun ("new",_,acc,pl,f) -> Hashtbl.add ctx.constructs path (acc,pl,f) | _ -> () ) d.d_data; decls := TClassDecl c :: !decls | EEnum d -> let priv = List.mem EPrivate d.d_flags in let path = decl_with_name d.d_name p priv in let e = { e_path = path; e_pos = p; e_doc = d.d_doc; e_types = []; e_private = priv; e_extern = List.mem EExtern d.d_flags || d.d_data = []; e_constrs = PMap.empty; e_names = []; } in decls := TEnumDecl e :: !decls | ETypedef d -> let priv = List.mem EPrivate d.d_flags in let path = decl_with_name d.d_name p priv in let t = { t_path = path; t_pos = p; t_doc = d.d_doc; t_private = priv; t_types = []; t_type = mk_mono(); } in decls := TTypeDecl t :: !decls ) tdecls; let m = { mpath = m; mtypes = List.rev !decls; mimports = []; } in Hashtbl.add ctx.modules m.mpath m; (* PASS 2 : build types structure - does not type any expression ! *) let ctx = { com = ctx.com; api = ctx.api; modules = ctx.modules; delays = ctx.delays; constructs = ctx.constructs; types_module = ctx.types_module; curclass = ctx.curclass; tthis = ctx.tthis; std = ctx.std; ret = ctx.ret; doinline = ctx.doinline; current = m; locals = PMap.empty; locals_map = PMap.empty; locals_map_inv = PMap.empty; local_types = ctx.std.mtypes @ m.mtypes; type_params = []; curmethod = ""; super_call = false; in_constructor = false; in_static = false; in_display = false; in_loop = false; untyped = false; opened = []; param_type = None; } in let delays = ref [] in let get_class name = let c = List.find (fun d -> match d with TClassDecl { cl_path = _ , n } -> n = name | _ -> false) m.mtypes in match c with TClassDecl c -> c | _ -> assert false in let get_enum name = let e = List.find (fun d -> match d with TEnumDecl { e_path = _ , n } -> n = name | _ -> false) m.mtypes in match e with TEnumDecl e -> e | _ -> assert false in let get_tdef name = let s = List.find (fun d -> match d with TTypeDecl { t_path = _ , n } -> n = name | _ -> false) m.mtypes in match s with TTypeDecl s -> s | _ -> assert false in (* here is an additional PASS 1 phase, which handle the type parameters declaration, with lazy contraints *) List.iter (fun (d,p) -> match d with | EImport _ -> () | EClass d -> let c = get_class d.d_name in c.cl_types <- List.map (type_type_params ctx c.cl_path p) d.d_params; | EEnum d -> let e = get_enum d.d_name in e.e_types <- List.map (type_type_params ctx e.e_path p) d.d_params; | ETypedef d -> let t = get_tdef d.d_name in t.t_types <- List.map (type_type_params ctx t.t_path p) d.d_params; ) tdecls; (* back to PASS2 *) List.iter (fun (d,p) -> match d with | EImport (pack,name,topt) -> let md = ctx.api.load_module (pack,name) p in let types = List.filter (fun t -> not (t_private t)) md.mtypes in (match topt with | None -> ctx.local_types <- ctx.local_types @ types | Some t -> try let t = List.find (fun tdecl -> snd (t_path tdecl) = t) types in ctx.local_types <- ctx.local_types @ [t] with Not_found -> error ("Module " ^ s_type_path (pack,name) ^ " does not define type " ^ t) p ); m.mimports <- (md,topt) :: m.mimports; | EClass d -> let c = get_class d.d_name in delays := !delays @ check_overriding ctx c p :: check_interfaces ctx c p :: init_class ctx c p d.d_flags d.d_data | EEnum d -> let e = get_enum d.d_name in ctx.type_params <- e.e_types; let et = TEnum (e,List.map snd e.e_types) in let names = ref [] in let index = ref 0 in List.iter (fun (c,doc,t,p) -> if c = "name" && Common.defined ctx.com "js" then error "This identifier cannot be used in Javascript" p; let t = (match t with | [] -> et | l -> TFun (List.map (fun (s,opt,t) -> s, opt, load_type_opt ~opt ctx p (Some t)) l, et) ) in if PMap.mem c e.e_constrs then error ("Duplicate constructor " ^ c) p; e.e_constrs <- PMap.add c { ef_name = c; ef_type = t; ef_pos = p; ef_doc = doc; ef_index = !index; } e.e_constrs; incr index; names := c :: !names; ) d.d_data; e.e_names <- List.rev !names; | ETypedef d -> let t = get_tdef d.d_name in ctx.type_params <- t.t_types; let tt = load_type ctx p d.d_data in if t.t_type == follow tt then error "Recursive typedef is not allowed" p; (match t.t_type with | TMono r -> (match !r with | None -> r := Some tt; | Some _ -> assert false); | _ -> assert false); ) tdecls; (* PASS 3 : type checking, delayed until all modules and types are built *) ctx.delays := !delays :: !(ctx.delays); m.mimports <- List.rev m.mimports; m let parse_module ctx m p = let remap = ref (fst m) in let file = (match m with | [] , name -> name | x :: l , name -> let x = (try match PMap.find x ctx.com.package_rules with | Forbidden -> error ("You can't access the " ^ x ^ " package with current compilation flags (for " ^ s_type_path m ^ ")") p; | Directory d -> d | Remap d -> remap := d :: l; d with Not_found -> x ) in String.concat "/" (x :: l) ^ "/" ^ name ) ^ ".hx" in let file = (try Common.find_file ctx.com file with Not_found -> raise (Error (Module_not_found m,p))) in let ch = (try open_in_bin file with _ -> error ("Could not open " ^ file) p) in let t = Common.timer "parsing" in let pack , decls = (try Parser.parse ctx.com (Lexing.from_channel ch) file with e -> close_in ch; t(); raise e) in t(); close_in ch; if ctx.com.verbose then print_endline ("Parsed " ^ file); if pack <> !remap then begin let spack m = if m = [] then "" else String.concat "." m in if p == Ast.null_pos then error ("Invalid commandline class : " ^ s_type_path m ^ " should be " ^ s_type_path (pack,snd m)) p else error ("Invalid package : " ^ spack (fst m) ^ " should be " ^ spack pack) p end; if !remap <> fst m then (* build typedefs to redirect to real package *) List.rev (List.fold_left (fun acc (t,p) -> let build f d = let priv = List.mem f d.d_flags in let params = List.map fst d.d_params in (ETypedef { d_name = d.d_name; d_doc = None; d_params = List.map (fun s -> s, []) params; d_flags = if priv then [EPrivate] else []; d_data = TPNormal (if priv then { tpackage = []; tname = "Dynamic"; tparams = []; } else { tpackage = !remap; tname = d.d_name; tparams = List.map (fun s -> TPType (TPNormal { tpackage = []; tname = s; tparams = [] }) ) params; }); },p) :: acc in match t with | EClass d -> build HPrivate d | EEnum d -> build EPrivate d | ETypedef d -> build EPrivate d | EImport _ -> acc ) [(EImport (!remap, snd m, None),null_pos)] decls) else decls let load_module ctx m p = try Hashtbl.find ctx.modules m with Not_found -> let decls = parse_module ctx m p in type_module ctx m decls p