(* The Haxe Compiler Copyright (C) 2005-2015 Haxe Foundation This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *) open Ast open Type open Common open Typecore let locate_macro_error = ref true let transform_abstract_field ctx this_t a_t a f = let stat = List.mem AStatic f.cff_access in let p = f.cff_pos in match f.cff_kind with | FProp (("get" | "never"),("set" | "never"),_,_) when not stat -> (* TODO: hack to avoid issues with abstract property generation on As3 *) if Common.defined ctx.com Define.As3 then f.cff_meta <- (Meta.Extern,[],p) :: f.cff_meta; { f with cff_access = AStatic :: f.cff_access; cff_meta = (Meta.Impl,[],p) :: f.cff_meta } | FProp _ when not stat -> display_error ctx "Member property accessors must be get/set or never" p; f | FFun fu when f.cff_name = "new" && not stat -> let init p = (EVars ["this",Some this_t,None],p) in let cast e = (ECast(e,None)),pos e in let check_type e ct = (ECheckType(e,ct)),pos e in let ret p = (EReturn (Some (cast (EConst (Ident "this"),p))),p) in if Meta.has Meta.MultiType a.a_meta then begin if List.mem AInline f.cff_access then error "MultiType constructors cannot be inline" f.cff_pos; if fu.f_expr <> None then error "MultiType constructors cannot have a body" f.cff_pos; end; let has_call e = let rec loop e = match fst e with | ECall _ -> raise Exit | _ -> Ast.map_expr loop e in try ignore(loop e); false with Exit -> true in let fu = { fu with f_expr = (match fu.f_expr with | None -> if Meta.has Meta.MultiType a.a_meta then Some (EConst (Ident "null"),p) else None | Some (EBlock [EBinop (OpAssign,(EConst (Ident "this"),_),e),_],_ | EBinop (OpAssign,(EConst (Ident "this"),_),e),_) when not (has_call e) -> Some (EReturn (Some (cast (check_type e this_t))), pos e) | Some (EBlock el,p) -> Some (EBlock (init p :: el @ [ret p]),p) | Some e -> Some (EBlock [init p;e;ret p],p) ); f_type = Some a_t; } in { f with cff_name = "_new"; cff_access = AStatic :: f.cff_access; cff_kind = FFun fu; cff_meta = (Meta.Impl,[],p) :: f.cff_meta } | FFun fu when not stat -> if Meta.has Meta.From f.cff_meta then error "@:from cast functions must be static" f.cff_pos; let fu = { fu with f_args = (if List.mem AMacro f.cff_access then fu.f_args else ("this",false,Some this_t,None) :: fu.f_args) } in { f with cff_kind = FFun fu; cff_access = AStatic :: f.cff_access; cff_meta = (Meta.Impl,[],p) :: f.cff_meta } | _ -> f (* Build module structure : should be atomic - no type loading is possible *) let make_module ctx mpath file tdecls loadp = let decls = ref [] in let make_path name priv = if List.exists (fun (t,_) -> snd (t_path t) = name) !decls then error ("Type name " ^ name ^ " is already defined in this module") loadp; if priv then (fst mpath @ ["_" ^ snd mpath], name) else (fst mpath, name) in let m = { m_id = alloc_mid(); m_path = mpath; m_types = []; m_extra = module_extra (Common.unique_full_path file) (Common.get_signature ctx.com) (file_time file) (if ctx.in_macro then MMacro else MCode); } in let pt = ref None in let rec make_decl acc decl = let p = snd decl in let acc = (match fst decl with | EImport _ | EUsing _ -> (match !pt with | None -> acc | Some pt -> display_error ctx "import and using may not appear after a type declaration" p; error "Previous type declaration found here" pt) | EClass d -> if String.length d.d_name > 0 && d.d_name.[0] = '$' then error "Type names starting with a dollar are not allowed" p; pt := Some p; let priv = List.mem HPrivate d.d_flags in let path = make_path d.d_name priv in let c = mk_class m path p in c.cl_module <- m; c.cl_private <- priv; c.cl_doc <- d.d_doc; c.cl_meta <- d.d_meta; decls := (TClassDecl c, decl) :: !decls; acc | EEnum d -> if String.length d.d_name > 0 && d.d_name.[0] = '$' then error "Type names starting with a dollar are not allowed" p; pt := Some p; let priv = List.mem EPrivate d.d_flags in let path = make_path d.d_name priv in let e = { e_path = path; e_module = m; e_pos = p; e_doc = d.d_doc; e_meta = d.d_meta; e_params = []; e_private = priv; e_extern = List.mem EExtern d.d_flags; e_constrs = PMap.empty; e_names = []; e_type = { t_path = [], "Enum<" ^ (s_type_path path) ^ ">"; t_module = m; t_doc = None; t_pos = p; t_type = mk_mono(); t_private = true; t_params = []; t_meta = []; }; } in decls := (TEnumDecl e, decl) :: !decls; acc | ETypedef d -> if String.length d.d_name > 0 && d.d_name.[0] = '$' then error "Type names starting with a dollar are not allowed" p; pt := Some p; let priv = List.mem EPrivate d.d_flags in let path = make_path d.d_name priv in let t = { t_path = path; t_module = m; t_pos = p; t_doc = d.d_doc; t_private = priv; t_params = []; t_type = mk_mono(); t_meta = d.d_meta; } in decls := (TTypeDecl t, decl) :: !decls; acc | EAbstract d -> if String.length d.d_name > 0 && d.d_name.[0] = '$' then error "Type names starting with a dollar are not allowed" p; let priv = List.mem APrivAbstract d.d_flags in let path = make_path d.d_name priv in let a = { a_path = path; a_private = priv; a_module = m; a_pos = p; a_doc = d.d_doc; a_params = []; a_meta = d.d_meta; a_from = []; a_to = []; a_from_field = []; a_to_field = []; a_ops = []; a_unops = []; a_impl = None; a_array = []; a_this = mk_mono(); a_resolve = None; } in decls := (TAbstractDecl a, decl) :: !decls; match d.d_data with | [] when Meta.has Meta.CoreType a.a_meta -> a.a_this <- t_dynamic; acc | fields -> let a_t = let params = List.map (fun t -> TPType (CTPath { tname = t.tp_name; tparams = []; tsub = None; tpackage = [] })) d.d_params in CTPath { tpackage = []; tname = d.d_name; tparams = params; tsub = None } in let rec loop = function | [] -> a_t | AIsType t :: _ -> t | _ :: l -> loop l in let this_t = loop d.d_flags in let fields = List.map (transform_abstract_field ctx this_t a_t a) fields in let meta = ref [] in if has_meta Meta.Dce a.a_meta then meta := (Meta.Dce,[],p) :: !meta; let acc = make_decl acc (EClass { d_name = d.d_name ^ "_Impl_"; d_flags = [HPrivate]; d_data = fields; d_doc = None; d_params = []; d_meta = !meta },p) in (match !decls with | (TClassDecl c,_) :: _ -> List.iter (fun m -> match m with | ((Meta.Build | Meta.CoreApi | Meta.Allow | Meta.Access | Meta.Enum | Meta.Dce | Meta.Native | Meta.Expose),_,_) -> c.cl_meta <- m :: c.cl_meta; | _ -> () ) a.a_meta; a.a_impl <- Some c; c.cl_kind <- KAbstractImpl a | _ -> assert false); acc ) in decl :: acc in let tdecls = List.fold_left make_decl [] tdecls in let decls = List.rev !decls in m.m_types <- List.map fst decls; m, decls, List.rev tdecls let parse_file com file p = let ch = (try open_in_bin file with _ -> error ("Could not open " ^ file) p) in let t = Common.timer "parsing" in Lexer.init file true; incr stats.s_files_parsed; let data = (try Parser.parse com (Lexing.from_channel ch) with e -> close_in ch; t(); raise e) in close_in ch; t(); Common.log com ("Parsed " ^ file); data let parse_hook = ref parse_file let type_module_hook = ref (fun _ _ _ -> None) let type_function_params_rec = ref (fun _ _ _ _ -> assert false) let return_partial_type = ref false let type_function_arg ctx t e opt p = if opt then let e = (match e with None -> Some (EConst (Ident "null"),p) | _ -> e) in ctx.t.tnull t, e else let t = match e with Some (EConst (Ident "null"),p) -> ctx.t.tnull t | _ -> t in t, e let type_var_field ctx t e stat p = if stat then ctx.curfun <- FunStatic else ctx.curfun <- FunMember; let e = type_expr ctx e (WithType t) in let e = (!cast_or_unify_ref) ctx t e p in match t with | TType ({ t_path = ([],"UInt") },[]) | TAbstract ({ a_path = ([],"UInt") },[]) when stat -> { e with etype = t } | _ -> e let apply_macro ctx mode path el p = let cpath, meth = (match List.rev (ExtString.String.nsplit path ".") with | meth :: name :: pack -> (List.rev pack,name), meth | _ -> error "Invalid macro path" p ) in ctx.g.do_macro ctx mode cpath meth el p (** since load_type_def and load_instance are used in PASS2, they should not access the structure of a type **) (* load a type or a subtype definition *) let rec load_type_def ctx p t = let no_pack = t.tpackage = [] in let tname = (match t.tsub with None -> t.tname | Some n -> n) in try if t.tsub <> None then raise Not_found; List.find (fun t2 -> let tp = t_path t2 in tp = (t.tpackage,tname) || (no_pack && snd tp = tname) ) (ctx.m.curmod.m_types @ ctx.m.module_types) with Not_found -> let next() = let t, m = (try t, ctx.g.do_load_module ctx (t.tpackage,t.tname) p with Error (Module_not_found _,p2) as e when p == p2 -> match t.tpackage with | "std" :: l -> let t = { t with tpackage = l } in t, ctx.g.do_load_module ctx (t.tpackage,t.tname) p | _ -> raise e ) in let tpath = (t.tpackage,tname) in try List.find (fun t -> not (t_infos t).mt_private && t_path t = tpath) m.m_types with Not_found -> raise (Error (Type_not_found (m.m_path,tname),p)) in (* lookup in wildcard imported packages *) try if not no_pack then raise Exit; let rec loop = function | [] -> raise Exit | wp :: l -> try load_type_def ctx p { t with tpackage = wp } with | Error (Module_not_found _,p2) | Error (Type_not_found _,p2) when p == p2 -> loop l in loop ctx.m.wildcard_packages with Exit -> (* lookup in our own package - and its upper packages *) let rec loop = function | [] -> raise Exit | (_ :: lnext) as l -> try load_type_def ctx p { t with tpackage = List.rev l } with | Error (Module_not_found _,p2) | Error (Type_not_found _,p2) when p == p2 -> loop lnext in try if not no_pack then raise Exit; (match fst ctx.m.curmod.m_path with | [] -> raise Exit | x :: _ -> (* this can occur due to haxe remoting : a module can be already defined in the "js" package and is not allowed to access the js classes *) try (match PMap.find x ctx.com.package_rules with | Forbidden -> raise Exit | _ -> ()) with Not_found -> ()); loop (List.rev (fst ctx.m.curmod.m_path)); with Exit -> next() let check_param_constraints ctx types t pl c p = match follow t with | TMono _ -> () | _ -> let ctl = (match c.cl_kind with KTypeParameter l -> l | _ -> []) in List.iter (fun ti -> let ti = apply_params types pl ti in let ti = (match follow ti with | TInst ({ cl_kind = KGeneric } as c,pl) -> (* if we solve a generic contraint, let's substitute with the actual generic instance before unifying *) let _,_, f = ctx.g.do_build_instance ctx (TClassDecl c) p in f pl | _ -> ti ) in try unify_raise ctx t ti p with Error(Unify l,p) -> if not ctx.untyped then display_error ctx (error_msg (Unify (Constraint_failure (s_type_path c.cl_path) :: l))) p; ) ctl let requires_value_meta com co = Common.defined com Define.DocGen || (match co with | None -> false | Some c -> c.cl_extern || Meta.has Meta.Rtti c.cl_meta) let generate_value_meta com co cf args = if requires_value_meta com co then begin let values = List.fold_left (fun acc (name,_,_,eo) -> match eo with Some e -> (name,e) :: acc | _ -> acc) [] args in match values with | [] -> () | _ -> cf.cf_meta <- ((Meta.Value,[EObjectDecl values,cf.cf_pos],cf.cf_pos) :: cf.cf_meta) end (* build an instance from a full type *) let rec load_instance ctx t p allow_no_params = try if t.tpackage <> [] || t.tsub <> None then raise Not_found; let pt = List.assoc t.tname ctx.type_params in if t.tparams <> [] then error ("Class type parameter " ^ t.tname ^ " can't have parameters") p; pt with Not_found -> let mt = load_type_def ctx p t in let is_generic,is_generic_build = match mt with | TClassDecl {cl_kind = KGeneric} -> true,false | TClassDecl {cl_kind = KGenericBuild _} -> false,true | _ -> false,false in let types , path , f = ctx.g.do_build_instance ctx mt p in let is_rest = is_generic_build && (match types with ["Rest",_] -> true | _ -> false) in if allow_no_params && t.tparams = [] && not is_rest then begin let pl = ref [] in pl := List.map (fun (name,t) -> match follow t with | TInst (c,_) -> let t = mk_mono() in if c.cl_kind <> KTypeParameter [] || is_generic then delay ctx PCheckConstraint (fun() -> check_param_constraints ctx types t (!pl) c p); t; | _ -> assert false ) types; f (!pl) end else if path = ([],"Dynamic") then match t.tparams with | [] -> t_dynamic | [TPType t] -> TDynamic (load_complex_type ctx p t) | _ -> error "Too many parameters for Dynamic" p else begin if not is_rest && List.length types <> List.length t.tparams then error ("Invalid number of type parameters for " ^ s_type_path path) p; let tparams = List.map (fun t -> match t with | TPExpr e -> let name = (match fst e with | EConst (String s) -> "S" ^ s | EConst (Int i) -> "I" ^ i | EConst (Float f) -> "F" ^ f | _ -> "Expr" ) in let c = mk_class null_module ([],name) p in c.cl_kind <- KExpr e; TInst (c,[]) | TPType t -> load_complex_type ctx p t ) t.tparams in let rec loop tl1 tl2 is_rest = match tl1,tl2 with | t :: tl1,(name,t2) :: tl2 -> let check_const c = let is_expression = (match t with TInst ({ cl_kind = KExpr _ },_) -> true | _ -> false) in let expects_expression = name = "Const" || Meta.has Meta.Const c.cl_meta in let accepts_expression = name = "Rest" in if is_expression then begin if not expects_expression && not accepts_expression then error "Constant value unexpected here" p end else if expects_expression then error "Constant value excepted as type parameter" p in let is_rest = is_rest || name = "Rest" && is_generic_build in let t = match follow t2 with | TInst ({ cl_kind = KTypeParameter [] } as c, []) when not is_generic -> check_const c; t | TInst (c,[]) -> check_const c; let r = exc_protect ctx (fun r -> r := (fun() -> t); delay ctx PCheckConstraint (fun() -> check_param_constraints ctx types t tparams c p); t ) "constraint" in delay ctx PForce (fun () -> ignore(!r())); TLazy r | _ -> assert false in t :: loop tl1 tl2 is_rest | [],[] -> [] | [],["Rest",_] when is_generic_build -> [] | [],_ -> error ("Not enough type parameters for " ^ s_type_path path) p | t :: tl,[] -> if is_rest then t :: loop tl [] true else error ("Too many parameters for " ^ s_type_path path) p in let params = loop tparams types false in f params end (* build an instance from a complex type *) and load_complex_type ctx p t = match t with | CTParent t -> load_complex_type ctx p t | CTPath t -> load_instance ctx t p false | CTOptional _ -> error "Optional type not allowed here" p | CTExtend (tl,l) -> (match load_complex_type ctx p (CTAnonymous l) with | TAnon a as ta -> let is_redefined cf1 a2 = try let cf2 = PMap.find cf1.cf_name a2.a_fields in let st = s_type (print_context()) in if not (type_iseq cf1.cf_type cf2.cf_type) then begin display_error ctx ("Cannot redefine field " ^ cf1.cf_name ^ " with different type") p; display_error ctx ("First type was " ^ (st cf1.cf_type)) cf1.cf_pos; error ("Second type was " ^ (st cf2.cf_type)) cf2.cf_pos end else true with Not_found -> false in let mk_extension t = match follow t with | TInst ({cl_kind = KTypeParameter _},_) -> error "Cannot structurally extend type parameters" p | TInst (c,tl) -> ctx.com.warning "Structurally extending classes is deprecated and will be removed" p; let c2 = mk_class null_module (fst c.cl_path,"+" ^ snd c.cl_path) p in c2.cl_private <- true; PMap.iter (fun f _ -> try ignore(class_field c tl f); error ("Cannot redefine field " ^ f) p with Not_found -> () ) a.a_fields; (* do NOT tag as extern - for protect *) c2.cl_kind <- KExtension (c,tl); c2.cl_super <- Some (c,tl); c2.cl_fields <- a.a_fields; TInst (c2,[]) | TMono _ -> error "Loop found in cascading signatures definitions. Please change order/import" p | TAnon a2 -> PMap.iter (fun _ cf -> ignore(is_redefined cf a2)) a.a_fields; TAnon { a_fields = (PMap.foldi PMap.add a.a_fields a2.a_fields); a_status = ref (Extend [t]); } | _ -> error "Can only extend classes and structures" p in let loop t = match follow t with | TAnon a2 -> PMap.iter (fun f cf -> if not (is_redefined cf a) then a.a_fields <- PMap.add f cf a.a_fields ) a2.a_fields | _ -> error "Multiple structural extension is only allowed for structures" p in let il = List.map (fun t -> load_instance ctx t p false) tl in let tr = ref None in let t = TMono tr in let r = exc_protect ctx (fun r -> r := (fun _ -> t); tr := Some (match il with | [i] -> mk_extension i | _ -> List.iter loop il; a.a_status := Extend il; ta); t ) "constraint" in delay ctx PForce (fun () -> ignore(!r())); TLazy r | _ -> assert false) | CTAnonymous l -> let rec loop acc f = let n = f.cff_name in let p = f.cff_pos in if PMap.mem n acc then error ("Duplicate field declaration : " ^ n) p; let topt = function | None -> error ("Explicit type required for field " ^ n) p | Some t -> load_complex_type ctx p t in let no_expr = function | None -> () | Some (_,p) -> error "Expression not allowed here" p in let pub = ref true in let dyn = ref false in let params = ref [] in List.iter (fun a -> match a with | APublic -> () | APrivate -> pub := false; | ADynamic when (match f.cff_kind with FFun _ -> true | _ -> false) -> dyn := true | AStatic | AOverride | AInline | ADynamic | AMacro -> error ("Invalid access " ^ Ast.s_access a) p ) f.cff_access; let t , access = (match f.cff_kind with | FVar (Some (CTPath({tpackage=[];tname="Void"})), _) | FProp (_,_,Some (CTPath({tpackage=[];tname="Void"})),_) -> error "Fields of type Void are not allowed in structures" p | FVar (t, e) -> no_expr e; topt t, Var { v_read = AccNormal; v_write = AccNormal } | FFun fd -> params := (!type_function_params_rec) ctx fd f.cff_name p; no_expr fd.f_expr; let old = ctx.type_params in ctx.type_params <- !params @ old; let args = List.map (fun (name,o,t,e) -> no_expr e; name, o, topt t) fd.f_args in let t = TFun (args,topt fd.f_type), Method (if !dyn then MethDynamic else MethNormal) in ctx.type_params <- old; t | FProp (i1,i2,t,e) -> no_expr e; let access m get = match m with | "null" -> AccNo | "never" -> AccNever | "default" -> AccNormal | "dynamic" -> AccCall | "get" when get -> AccCall | "set" when not get -> AccCall | x when get && x = "get_" ^ n -> AccCall | x when not get && x = "set_" ^ n -> AccCall | _ -> error "Custom property access is no longer supported in Haxe 3" f.cff_pos; in let t = (match t with None -> error "Type required for structure property" p | Some t -> t) in load_complex_type ctx p t, Var { v_read = access i1 true; v_write = access i2 false } ) in let t = if Meta.has Meta.Optional f.cff_meta then ctx.t.tnull t else t in let cf = { cf_name = n; cf_type = t; cf_pos = p; cf_public = !pub; cf_kind = access; cf_params = !params; cf_expr = None; cf_doc = f.cff_doc; cf_meta = f.cff_meta; cf_overloads = []; } in init_meta_overloads ctx None cf; PMap.add n cf acc in mk_anon (List.fold_left loop PMap.empty l) | CTFunction (args,r) -> match args with | [CTPath { tpackage = []; tparams = []; tname = "Void" }] -> TFun ([],load_complex_type ctx p r) | _ -> TFun (List.map (fun t -> let t, opt = (match t with CTOptional t -> t, true | _ -> t,false) in "",opt,load_complex_type ctx p t ) args,load_complex_type ctx p r) and init_meta_overloads ctx co cf = let overloads = ref [] in let filter_meta m = match m with | ((Meta.Overload | Meta.Value),_,_) -> false | _ -> true in let cf_meta = List.filter filter_meta cf.cf_meta in cf.cf_meta <- List.filter (fun m -> match m with | (Meta.Overload,[(EFunction (fname,f),p)],_) -> if fname <> None then error "Function name must not be part of @:overload" p; (match f.f_expr with Some (EBlock [], _) -> () | _ -> error "Overload must only declare an empty method body {}" p); let old = ctx.type_params in (match cf.cf_params with | [] -> () | l -> ctx.type_params <- List.filter (fun t -> not (List.mem t l)) ctx.type_params); let params = (!type_function_params_rec) ctx f cf.cf_name p in ctx.type_params <- params @ ctx.type_params; let topt = function None -> error "Explicit type required" p | Some t -> load_complex_type ctx p t in let args = List.map (fun (a,opt,t,_) -> a,opt,topt t) f.f_args in let cf = { cf with cf_type = TFun (args,topt f.f_type); cf_params = params; cf_meta = cf_meta} in generate_value_meta ctx.com co cf f.f_args; overloads := cf :: !overloads; ctx.type_params <- old; false | (Meta.Overload,[],_) when ctx.com.config.pf_overload -> let topt (n,_,t) = match t with | TMono t when !t = None -> error ("Explicit type required for overload functions\nFor function argument '" ^ n ^ "'") cf.cf_pos | _ -> () in (match follow cf.cf_type with | TFun (args,_) -> List.iter topt args | _ -> () (* could be a variable *)); true | (Meta.Overload,[],p) -> error "This platform does not support this kind of overload declaration. Try @:overload(function()... {}) instead" p | (Meta.Overload,_,p) -> error "Invalid @:overload metadata format" p | _ -> true ) cf.cf_meta; cf.cf_overloads <- (List.rev !overloads) let hide_params ctx = let old_m = ctx.m in let old_type_params = ctx.type_params in let old_deps = ctx.g.std.m_extra.m_deps in ctx.m <- { curmod = ctx.g.std; module_types = []; module_using = []; module_globals = PMap.empty; wildcard_packages = []; module_imports = []; }; ctx.type_params <- []; (fun() -> ctx.m <- old_m; ctx.type_params <- old_type_params; (* restore dependencies that might be have been wronly inserted *) ctx.g.std.m_extra.m_deps <- old_deps; ) (* load a type while ignoring the current imports or local types *) let load_core_type ctx name = let show = hide_params ctx in let t = load_instance ctx { tpackage = []; tname = name; tparams = []; tsub = None; } null_pos false in show(); add_dependency ctx.m.curmod (match t with | TInst (c,_) -> c.cl_module | TType (t,_) -> t.t_module | TAbstract (a,_) -> a.a_module | TEnum (e,_) -> e.e_module | _ -> assert false); t let t_iterator ctx = let show = hide_params ctx in match load_type_def ctx null_pos { tpackage = []; tname = "Iterator"; tparams = []; tsub = None } with | TTypeDecl t -> show(); add_dependency ctx.m.curmod t.t_module; if List.length t.t_params <> 1 then assert false; let pt = mk_mono() in apply_params t.t_params [pt] t.t_type, pt | _ -> assert false (* load either a type t or Null if not defined *) let load_type_opt ?(opt=false) ctx p t = let t = (match t with None -> mk_mono() | Some t -> load_complex_type ctx p t) in if opt then ctx.t.tnull t else t (* ---------------------------------------------------------------------- *) (* Structure check *) let valid_redefinition ctx f1 t1 f2 t2 = let valid t1 t2 = Type.unify t1 t2; if is_null t1 <> is_null t2 then raise (Unify_error [Cannot_unify (t1,t2)]); in let t1, t2 = (match f1.cf_params, f2.cf_params with | [], [] -> t1, t2 | l1, l2 when List.length l1 = List.length l2 -> let to_check = ref [] in let monos = List.map2 (fun (name,p1) (_,p2) -> (match follow p1, follow p2 with | TInst ({ cl_kind = KTypeParameter ct1 } as c1,pl1), TInst ({ cl_kind = KTypeParameter ct2 } as c2,pl2) -> (match ct1, ct2 with | [], [] -> () | _, _ when List.length ct1 = List.length ct2 -> (* if same constraints, they are the same type *) let check monos = List.iter2 (fun t1 t2 -> try let t1 = apply_params l1 monos (apply_params c1.cl_params pl1 t1) in let t2 = apply_params l2 monos (apply_params c2.cl_params pl2 t2) in type_eq EqStrict t1 t2 with Unify_error l -> raise (Unify_error (Unify_custom "Constraints differ" :: l)) ) ct1 ct2 in to_check := check :: !to_check; | _ -> raise (Unify_error [Unify_custom "Different number of constraints"])) | _ -> ()); TInst (mk_class null_module ([],name) Ast.null_pos,[]) ) l1 l2 in List.iter (fun f -> f monos) !to_check; apply_params l1 monos t1, apply_params l2 monos t2 | _ -> (* ignore type params, will create other errors later *) t1, t2 ) in match f1.cf_kind,f2.cf_kind with | Method m1, Method m2 when not (m1 = MethDynamic) && not (m2 = MethDynamic) -> begin match follow t1, follow t2 with | TFun (args1,r1) , TFun (args2,r2) -> ( if not (List.length args1 = List.length args2) then raise (Unify_error [Unify_custom "Different number of function arguments"]); try List.iter2 (fun (n,o1,a1) (_,o2,a2) -> if o1 <> o2 then raise (Unify_error [Not_matching_optional n]); (try valid a2 a1 with Unify_error _ -> raise (Unify_error [Cannot_unify(a1,a2)])) ) args1 args2; valid r1 r2 with Unify_error l -> raise (Unify_error (Cannot_unify (t1,t2) :: l))) | _ -> assert false end | _,(Var { v_write = AccNo | AccNever }) -> (* write variance *) valid t2 t1 | _,(Var { v_read = AccNo | AccNever }) -> (* read variance *) valid t1 t2 | _ , _ -> (* in case args differs, or if an interface var *) type_eq EqStrict t1 t2; if is_null t1 <> is_null t2 then raise (Unify_error [Cannot_unify (t1,t2)]) let copy_meta meta_src meta_target sl = let meta = ref meta_target in List.iter (fun (m,e,p) -> if List.mem m sl then meta := (m,e,p) :: !meta ) meta_src; !meta let same_overload_args ?(get_vmtype) t1 t2 f1 f2 = let get_vmtype = match get_vmtype with | None -> (fun f -> f) | Some f -> f in if List.length f1.cf_params <> List.length f2.cf_params then false else let rec follow_skip_null t = match t with | TMono r -> (match !r with | Some t -> follow_skip_null t | _ -> t) | TLazy f -> follow_skip_null (!f()) | TType ({ t_path = [],"Null" } as t, [p]) -> TType(t,[follow p]) | TType (t,tl) -> follow_skip_null (apply_params t.t_params tl t.t_type) | _ -> t in let same_arg t1 t2 = let t1 = get_vmtype (follow_skip_null t1) in let t2 = get_vmtype (follow_skip_null t2) in match t1, t2 with | TType _, TType _ -> type_iseq t1 t2 | TType _, _ | _, TType _ -> false | _ -> type_iseq t1 t2 in match follow (apply_params f1.cf_params (List.map (fun (_,t) -> t) f2.cf_params) t1), follow t2 with | TFun(a1,_), TFun(a2,_) -> (try List.for_all2 (fun (_,_,t1) (_,_,t2) -> same_arg t1 t2) a1 a2 with | Invalid_argument("List.for_all2") -> false) | _ -> assert false (** retrieves all overloads from class c and field i, as (Type.t * tclass_field) list *) let rec get_overloads c i = let ret = try let f = PMap.find i c.cl_fields in match f.cf_kind with | Var _ -> (* @:libType may generate classes that have a variable field in a superclass of an overloaded method *) [] | Method _ -> (f.cf_type, f) :: (List.map (fun f -> f.cf_type, f) f.cf_overloads) with | Not_found -> [] in let rsup = match c.cl_super with | None when c.cl_interface -> let ifaces = List.concat (List.map (fun (c,tl) -> List.map (fun (t,f) -> apply_params c.cl_params tl t, f) (get_overloads c i) ) c.cl_implements) in ret @ ifaces | None -> ret | Some (c,tl) -> ret @ ( List.map (fun (t,f) -> apply_params c.cl_params tl t, f) (get_overloads c i) ) in ret @ (List.filter (fun (t,f) -> not (List.exists (fun (t2,f2) -> same_overload_args t t2 f f2) ret)) rsup) let check_overloads ctx c = (* check if field with same signature was declared more than once *) List.iter (fun f -> if Meta.has Meta.Overload f.cf_meta then List.iter (fun f2 -> try ignore (List.find (fun f3 -> f3 != f2 && same_overload_args f2.cf_type f3.cf_type f2 f3) (f :: f.cf_overloads)); display_error ctx ("Another overloaded field of same signature was already declared : " ^ f2.cf_name) f2.cf_pos with | Not_found -> () ) (f :: f.cf_overloads)) (c.cl_ordered_fields @ c.cl_ordered_statics) let check_overriding ctx c = match c.cl_super with | None -> (match c.cl_overrides with | [] -> () | i :: _ -> display_error ctx ("Field " ^ i.cf_name ^ " is declared 'override' but doesn't override any field") i.cf_pos) | _ when c.cl_extern && Meta.has Meta.CsNative c.cl_meta -> () (* -net-lib specific: do not check overrides on extern CsNative classes *) | Some (csup,params) -> PMap.iter (fun i f -> let p = f.cf_pos in let check_field f get_super_field is_overload = try (if is_overload && not (Meta.has Meta.Overload f.cf_meta) then display_error ctx ("Missing @:overload declaration for field " ^ i) p); let t, f2 = get_super_field csup i in (* allow to define fields that are not defined for this platform version in superclass *) (match f2.cf_kind with | Var { v_read = AccRequire _ } -> raise Not_found; | _ -> ()); if ctx.com.config.pf_overload && (Meta.has Meta.Overload f2.cf_meta && not (Meta.has Meta.Overload f.cf_meta)) then display_error ctx ("Field " ^ i ^ " should be declared with @:overload since it was already declared as @:overload in superclass") p else if not (List.memq f c.cl_overrides) then display_error ctx ("Field " ^ i ^ " should be declared with 'override' since it is inherited from superclass " ^ Ast.s_type_path csup.cl_path) p else if not f.cf_public && f2.cf_public then display_error ctx ("Field " ^ i ^ " has less visibility (public/private) than superclass one") p else (match f.cf_kind, f2.cf_kind with | _, Method MethInline -> display_error ctx ("Field " ^ i ^ " is inlined and cannot be overridden") p | a, b when a = b -> () | Method MethInline, Method MethNormal -> () (* allow to redefine a method as inlined *) | _ -> display_error ctx ("Field " ^ i ^ " has different property access than in superclass") p); if has_meta Meta.Final f2.cf_meta then display_error ctx ("Cannot override @:final method " ^ i) p; try let t = apply_params csup.cl_params params t in valid_redefinition ctx f f.cf_type f2 t with Unify_error l -> display_error ctx ("Field " ^ i ^ " overloads parent class with different or incomplete type") p; display_error ctx (error_msg (Unify l)) p; with Not_found -> if List.memq f c.cl_overrides then let msg = if is_overload then ("Field " ^ i ^ " is declared 'override' but no compatible overload was found") else ("Field " ^ i ^ " is declared 'override' but doesn't override any field") in display_error ctx msg p in if ctx.com.config.pf_overload && Meta.has Meta.Overload f.cf_meta then begin let overloads = get_overloads csup i in List.iter (fun (t,f2) -> (* check if any super class fields are vars *) match f2.cf_kind with | Var _ -> display_error ctx ("A variable named '" ^ f2.cf_name ^ "' was already declared in a superclass") f.cf_pos | _ -> () ) overloads; List.iter (fun f -> (* find the exact field being overridden *) check_field f (fun csup i -> List.find (fun (t,f2) -> same_overload_args f.cf_type (apply_params csup.cl_params params t) f f2 ) overloads ) true ) (f :: f.cf_overloads) end else check_field f (fun csup i -> let _, t, f2 = raw_class_field (fun f -> f.cf_type) csup params i in t, f2) false ) c.cl_fields let class_field_no_interf c i = try let f = PMap.find i c.cl_fields in f.cf_type , f with Not_found -> match c.cl_super with | None -> raise Not_found | Some (c,tl) -> (* rec over class_field *) let _, t , f = raw_class_field (fun f -> f.cf_type) c tl i in apply_params c.cl_params tl t , f let rec check_interface ctx c intf params = let p = c.cl_pos in let rec check_field i f = (if ctx.com.config.pf_overload then List.iter (function | f2 when f != f2 -> check_field i f2 | _ -> ()) f.cf_overloads); let is_overload = ref false in try let t2, f2 = class_field_no_interf c i in let t2, f2 = if ctx.com.config.pf_overload && (f2.cf_overloads <> [] || Meta.has Meta.Overload f2.cf_meta) then let overloads = get_overloads c i in is_overload := true; let t = (apply_params intf.cl_params params f.cf_type) in List.find (fun (t1,f1) -> same_overload_args t t1 f f1) overloads else t2, f2 in ignore(follow f2.cf_type); (* force evaluation *) let p = (match f2.cf_expr with None -> p | Some e -> e.epos) in let mkind = function | MethNormal | MethInline -> 0 | MethDynamic -> 1 | MethMacro -> 2 in if f.cf_public && not f2.cf_public && not (Meta.has Meta.CompilerGenerated f.cf_meta) then display_error ctx ("Field " ^ i ^ " should be public as requested by " ^ s_type_path intf.cl_path) p else if not (unify_kind f2.cf_kind f.cf_kind) || not (match f.cf_kind, f2.cf_kind with Var _ , Var _ -> true | Method m1, Method m2 -> mkind m1 = mkind m2 | _ -> false) then display_error ctx ("Field " ^ i ^ " has different property access than in " ^ s_type_path intf.cl_path ^ " (" ^ s_kind f2.cf_kind ^ " should be " ^ s_kind f.cf_kind ^ ")") p else try valid_redefinition ctx f2 t2 f (apply_params intf.cl_params params f.cf_type) with Unify_error l -> if not (Meta.has Meta.CsNative c.cl_meta && c.cl_extern) then begin display_error ctx ("Field " ^ i ^ " has different type than in " ^ s_type_path intf.cl_path) p; display_error ctx (error_msg (Unify l)) p; end with | Not_found when not c.cl_interface -> let msg = if !is_overload then let ctx = print_context() in let args = match follow f.cf_type with | TFun(args,_) -> String.concat ", " (List.map (fun (n,o,t) -> (if o then "?" else "") ^ n ^ " : " ^ (s_type ctx t)) args) | _ -> assert false in "No suitable overload for " ^ i ^ "( " ^ args ^ " ), as needed by " ^ s_type_path intf.cl_path ^ " was found" else ("Field " ^ i ^ " needed by " ^ s_type_path intf.cl_path ^ " is missing") in display_error ctx msg p | Not_found -> () in PMap.iter check_field intf.cl_fields; List.iter (fun (i2,p2) -> check_interface ctx c i2 (List.map (apply_params intf.cl_params params) p2) ) intf.cl_implements let check_interfaces ctx c = match c.cl_path with | "Proxy" :: _ , _ -> () | _ when c.cl_extern && Meta.has Meta.CsNative c.cl_meta -> () | _ -> List.iter (fun (intf,params) -> check_interface ctx c intf params) c.cl_implements let rec return_flow ctx e = let error() = display_error ctx (Printf.sprintf "Missing return: %s" (s_type (print_context()) ctx.ret)) e.epos; raise Exit in let return_flow = return_flow ctx in let rec uncond e = match e.eexpr with | TIf _ | TWhile _ | TSwitch _ | TTry _ -> () | TReturn _ | TThrow _ -> raise Exit | _ -> Type.iter uncond e in let has_unconditional_flow e = try uncond e; false with Exit -> true in match e.eexpr with | TReturn _ | TThrow _ -> () | TParenthesis e | TMeta(_,e) -> return_flow e | TBlock el -> let rec loop = function | [] -> error() | [e] -> return_flow e | e :: _ when has_unconditional_flow e -> () | _ :: l -> loop l in loop el | TIf (_,e1,Some e2) -> return_flow e1; return_flow e2; | TSwitch (v,cases,Some e) -> List.iter (fun (_,e) -> return_flow e) cases; return_flow e | TSwitch ({eexpr = TMeta((Meta.Exhaustive,_,_),_)},cases,None) -> List.iter (fun (_,e) -> return_flow e) cases; | TTry (e,cases) -> return_flow e; List.iter (fun (_,e) -> return_flow e) cases; | TWhile({eexpr = (TConst (TBool true))},e,_) -> (* a special case for "inifite" while loops that have no break *) let rec loop e = match e.eexpr with (* ignore nested loops to not accidentally get one of its breaks *) | TWhile _ | TFor _ -> () | TBreak -> error() | _ -> Type.iter loop e in loop e | _ -> error() (* ---------------------------------------------------------------------- *) (* PASS 1 & 2 : Module and Class Structure *) let is_generic_parameter ctx c = (* first check field parameters, then class parameters *) try ignore (List.assoc (snd c.cl_path) ctx.curfield.cf_params); Meta.has Meta.Generic ctx.curfield.cf_meta with Not_found -> try ignore(List.assoc (snd c.cl_path) ctx.type_params); (match ctx.curclass.cl_kind with | KGeneric -> true | _ -> false); with Not_found -> false let check_extends ctx c t p = match follow t with | TInst ({ cl_path = [],"Array"; cl_extern = basic_extern },_) | TInst ({ cl_path = [],"String"; cl_extern = basic_extern },_) | TInst ({ cl_path = [],"Date"; cl_extern = basic_extern },_) | TInst ({ cl_path = [],"Xml"; cl_extern = basic_extern },_) when not (c.cl_extern && basic_extern) -> error "Cannot extend basic class" p; | TInst (csup,params) -> csup.cl_dependent <- (c,params) :: csup.cl_dependent; if is_parent c csup then error "Recursive class" p; begin match csup.cl_kind with | KTypeParameter _ when not (is_generic_parameter ctx csup) -> error "Cannot extend non-generic type parameters" p | _ -> csup,params end | _ -> error "Should extend by using a class" p let type_function_arg_value ctx t c = match c with | None -> None | Some e -> let p = pos e in let e = ctx.g.do_optimize ctx (type_expr ctx e (WithType t)) in unify ctx e.etype t p; let rec loop e = match e.eexpr with | TConst c -> Some c | TCast(e,None) -> loop e | _ -> display_error ctx "Parameter default value should be constant" p; None in loop e (**** strict meta ****) let get_native_repr md pos = let path, meta = match md with | TClassDecl cl -> cl.cl_path, cl.cl_meta | TEnumDecl e -> e.e_path, e.e_meta | TTypeDecl t -> t.t_path, t.t_meta | TAbstractDecl a -> a.a_path, a.a_meta in let rec loop acc = function | (Meta.JavaCanonical,[EConst(String pack),_; EConst(String name),_],_) :: _ -> ExtString.String.nsplit pack ".", name | (Meta.Native,[EConst(String name),_],_) :: meta -> loop (Ast.parse_path name) meta | _ :: meta -> loop acc meta | [] -> acc in let pack, name = loop path meta in match pack with | [] -> (EConst(Ident(name)), pos) | hd :: tl -> let rec loop pack expr = match pack with | hd :: tl -> loop tl (EField(expr,hd),pos) | [] -> (EField(expr,name),pos) in loop tl (EConst(Ident(hd)),pos) let rec process_meta_argument ?(toplevel=true) ctx expr = match expr.eexpr with | TField(e,f) -> (EField(process_meta_argument ~toplevel:false ctx e,field_name f),expr.epos) | TConst(TInt i) -> (EConst(Int (Int32.to_string i)), expr.epos) | TConst(TFloat f) -> (EConst(Float f), expr.epos) | TConst(TString s) -> (EConst(String s), expr.epos) | TConst TNull -> (EConst(Ident "null"), expr.epos) | TConst(TBool b) -> (EConst(Ident (string_of_bool b)), expr.epos) | TCast(e,_) | TMeta(_,e) | TParenthesis(e) -> process_meta_argument ~toplevel ctx e | TTypeExpr md when toplevel -> let p = expr.epos in if ctx.com.platform = Cs then (ECall( (EConst(Ident "typeof"), p), [get_native_repr md expr.epos] ), p) else (EField(get_native_repr md expr.epos, "class"), p) | TTypeExpr md -> get_native_repr md expr.epos | _ -> display_error ctx "This expression is too complex to be a strict metadata argument" expr.epos; (EConst(Ident "null"), expr.epos) let make_meta ctx texpr extra = match texpr.eexpr with | TNew(c,_,el) -> ECall(get_native_repr (TClassDecl c) texpr.epos, (List.map (process_meta_argument ctx) el) @ extra), texpr.epos | TTypeExpr(md) -> ECall(get_native_repr md texpr.epos, extra), texpr.epos | _ -> display_error ctx "Unexpected expression" texpr.epos; assert false let field_to_type_path ctx e = let rec loop e pack name = match e with | EField(e,f),p when Char.lowercase (String.get f 0) <> String.get f 0 -> (match name with | [] | _ :: [] -> loop e pack (f :: name) | _ -> (* too many name paths *) display_error ctx ("Unexpected " ^ f) p; raise Exit) | EField(e,f),_ -> loop e (f :: pack) name | EConst(Ident f),_ -> let pack, name, sub = match name with | [] -> let fchar = String.get f 0 in if Char.uppercase fchar = fchar then pack, f, None else begin display_error ctx "A class name must start with an uppercase character" (snd e); raise Exit end | [name] -> f :: pack, name, None | [name; sub] -> f :: pack, name, Some sub | _ -> assert false in { tpackage=pack; tname=name; tparams=[]; tsub=sub } | _,pos -> display_error ctx "Unexpected expression when building strict meta" pos; raise Exit in loop e [] [] let handle_fields ctx fields_to_check with_type_expr = List.map (fun (name,expr) -> let pos = snd expr in let field = (EField(with_type_expr,name), pos) in let fieldexpr = (EConst(Ident name),pos) in let left_side = match ctx.com.platform with | Cs -> field | Java -> (ECall(field,[]),pos) | _ -> assert false in let left = type_expr ctx left_side NoValue in let right = type_expr ctx expr (WithType left.etype) in unify ctx left.etype right.etype (snd expr); (EBinop(Ast.OpAssign,fieldexpr,process_meta_argument ctx right), pos) ) fields_to_check let get_strict_meta ctx params pos = let pf = ctx.com.platform in let changed_expr, fields_to_check, ctype = match params with | [ECall(ef, el),p] -> (* check last argument *) let el, fields = match List.rev el with | (EObjectDecl(decl),_) :: el -> List.rev el, decl | _ -> el, [] in let tpath = field_to_type_path ctx ef in if pf = Cs then (ENew(tpath, el), p), fields, CTPath tpath else ef, fields, CTPath tpath | [EConst(Ident i),p as expr] -> let tpath = { tpackage=[]; tname=i; tparams=[]; tsub=None } in if pf = Cs then (ENew(tpath, []), p), [], CTPath tpath else expr, [], CTPath tpath | [ (EField(_),p as field) ] -> let tpath = field_to_type_path ctx field in if pf = Cs then (ENew(tpath, []), p), [], CTPath tpath else field, [], CTPath tpath | _ -> display_error ctx "A @:strict metadata must contain exactly one parameter. Please check the documentation for more information" pos; raise Exit in let texpr = type_expr ctx changed_expr NoValue in let with_type_expr = (ECheckType( (EConst (Ident "null"), pos), ctype ), pos) in let extra = handle_fields ctx fields_to_check with_type_expr in Meta.Meta, [make_meta ctx texpr extra], pos let check_strict_meta ctx metas = let pf = ctx.com.platform in match pf with | Cs | Java -> let ret = ref [] in List.iter (function | Meta.Strict,params,pos -> (try ret := get_strict_meta ctx params pos :: !ret with | Exit -> ()) | _ -> () ) metas; !ret | _ -> [] (**** end of strict meta handling *****) let rec add_constructor ctx c force_constructor p = match c.cl_constructor, c.cl_super with | None, Some ({ cl_constructor = Some cfsup } as csup,cparams) when not c.cl_extern && not (Meta.has Meta.CompilerGenerated cfsup.cf_meta) -> let cf = { cfsup with cf_pos = p; cf_meta = []; cf_doc = None; cf_expr = None; } in let r = exc_protect ctx (fun r -> let t = mk_mono() in r := (fun() -> t); let ctx = { ctx with curfield = cf; pass = PTypeField; } in ignore (follow cfsup.cf_type); (* make sure it's typed *) (if ctx.com.config.pf_overload then List.iter (fun cf -> ignore (follow cf.cf_type)) cf.cf_overloads); let map_arg (v,def) = (* let's optimize a bit the output by not always copying the default value into the inherited constructor when it's not necessary for the platform *) match ctx.com.platform, def with | _, Some _ when not ctx.com.config.pf_static -> v, (Some TNull) | Flash, Some (TString _) -> v, (Some TNull) | Cpp, Some (TString _) -> v, def | Cpp, Some _ -> { v with v_type = ctx.t.tnull v.v_type }, (Some TNull) | _ -> v, def in let args = (match cfsup.cf_expr with | Some { eexpr = TFunction f } -> List.map map_arg f.tf_args | _ -> let values = get_value_meta cfsup.cf_meta in match follow cfsup.cf_type with | TFun (args,_) -> List.map (fun (n,o,t) -> let def = try type_function_arg_value ctx t (Some (PMap.find n values)) with Not_found -> if o then Some TNull else None in map_arg (alloc_var n (if o then ctx.t.tnull t else t),def) ) args | _ -> assert false ) in let p = c.cl_pos in let vars = List.map (fun (v,def) -> alloc_var v.v_name (apply_params csup.cl_params cparams v.v_type), def) args in let super_call = mk (TCall (mk (TConst TSuper) (TInst (csup,cparams)) p,List.map (fun (v,_) -> mk (TLocal v) v.v_type p) vars)) ctx.t.tvoid p in let constr = mk (TFunction { tf_args = vars; tf_type = ctx.t.tvoid; tf_expr = super_call; }) (TFun (List.map (fun (v,c) -> v.v_name, c <> None, v.v_type) vars,ctx.t.tvoid)) p in cf.cf_expr <- Some constr; cf.cf_type <- t; unify ctx t constr.etype p; t ) "add_constructor" in cf.cf_type <- TLazy r; c.cl_constructor <- Some cf; delay ctx PForce (fun() -> ignore((!r)())); | None,_ when force_constructor -> let constr = mk (TFunction { tf_args = []; tf_type = ctx.t.tvoid; tf_expr = mk (TBlock []) ctx.t.tvoid p; }) (tfun [] ctx.t.tvoid) p in let cf = mk_field "new" constr.etype p in cf.cf_expr <- Some constr; cf.cf_type <- constr.etype; cf.cf_meta <- [Meta.CompilerGenerated,[],p]; cf.cf_kind <- Method MethNormal; c.cl_constructor <- Some cf; | _ -> (* nothing to do *) () let set_heritance ctx c herits p = let is_lib = Meta.has Meta.LibType c.cl_meta in let ctx = { ctx with curclass = c; type_params = c.cl_params; } in let old_meta = c.cl_meta in let process_meta csup = List.iter (fun m -> match m with | Meta.Final, _, _ -> if not (Meta.has Meta.Hack c.cl_meta || (match c.cl_kind with KTypeParameter _ -> true | _ -> false)) then error "Cannot extend a final class" p; | Meta.AutoBuild, el, p -> c.cl_meta <- (Meta.Build,el,p) :: m :: c.cl_meta | _ -> () ) csup.cl_meta in let cancel_build csup = (* for macros reason, our super class is not yet built - see #2177 *) (* let's reset our build and delay it until we are done *) c.cl_meta <- old_meta; c.cl_array_access <- None; c.cl_dynamic <- None; c.cl_implements <- []; c.cl_super <- None; raise Exit in let has_interf = ref false in let rec loop = function | HPrivate | HExtern | HInterface -> () | HExtends t -> if c.cl_super <> None then error "Cannot extend several classes" p; let t = load_instance ctx t p false in let csup,params = check_extends ctx c t p in if not (csup.cl_build()) then cancel_build csup; process_meta csup; if c.cl_interface then begin if not csup.cl_interface then error "Cannot extend by using a class" p; c.cl_implements <- (csup,params) :: c.cl_implements; if not !has_interf then begin if not is_lib then delay ctx PForce (fun() -> check_interfaces ctx c); has_interf := true; end end else begin if csup.cl_interface then error "Cannot extend by using an interface" p; c.cl_super <- Some (csup,params) end | HImplements t -> let t = load_instance ctx t p false in (match follow t with | TInst ({ cl_path = [],"ArrayAccess"; cl_extern = true; },[t]) -> if c.cl_array_access <> None then error "Duplicate array access" p; c.cl_array_access <- Some t | TInst (intf,params) -> if is_parent c intf then error "Recursive class" p; intf.cl_dependent <- (c,params) :: intf.cl_dependent; if not (intf.cl_build()) then cancel_build intf; if c.cl_interface then error "Interfaces cannot implement another interface (use extends instead)" p; if not intf.cl_interface then error "You can only implement an interface" p; process_meta intf; c.cl_implements <- (intf, params) :: c.cl_implements; if not !has_interf && not is_lib && not (Meta.has (Meta.Custom "$do_not_check_interf") c.cl_meta) then begin delay ctx PForce (fun() -> check_interfaces ctx c); has_interf := true; end | TDynamic t -> if c.cl_dynamic <> None then error "Cannot have several dynamics" p; c.cl_dynamic <- Some t | _ -> error "Should implement by using an interface" p) in (* resolve imports before calling build_inheritance, since it requires full paths. that means that typedefs are not working, but that's a fair limitation *) let rec resolve_imports t = match t.tpackage with | _ :: _ -> t | [] -> try let find = List.find (fun lt -> snd (t_path lt) = t.tname) in let lt = try find ctx.m.curmod.m_types with Not_found -> find ctx.m.module_types in { t with tpackage = fst (t_path lt) } with Not_found -> t in let herits = List.map (function | HExtends t -> HExtends (resolve_imports t) | HImplements t -> HImplements (resolve_imports t) | h -> h ) herits in List.iter loop (List.filter (ctx.g.do_inherit ctx c p) herits) let rec type_type_param ?(enum_constructor=false) ctx path get_params p tp = let n = tp.tp_name in let c = mk_class ctx.m.curmod (fst path @ [snd path],n) p in c.cl_params <- type_type_params ctx c.cl_path get_params p tp.tp_params; c.cl_kind <- KTypeParameter []; c.cl_meta <- tp.Ast.tp_meta; if enum_constructor then c.cl_meta <- (Meta.EnumConstructorParam,[],c.cl_pos) :: c.cl_meta; let t = TInst (c,List.map snd c.cl_params) in match tp.tp_constraints with | [] -> n, t | _ -> let r = exc_protect ctx (fun r -> r := (fun _ -> t); let ctx = { ctx with type_params = ctx.type_params @ get_params() } in let constr = List.map (load_complex_type ctx p) tp.tp_constraints in (* check against direct recursion *) let rec loop t = match follow t with | TInst (c2,_) when c == c2 -> error "Recursive constraint parameter is not allowed" p | TInst ({ cl_kind = KTypeParameter cl },_) -> List.iter loop cl | _ -> () in List.iter loop constr; c.cl_kind <- KTypeParameter constr; t ) "constraint" in delay ctx PForce (fun () -> ignore(!r())); n, TLazy r and type_type_params ?(enum_constructor=false) ctx path get_params p tpl = let names = ref [] in List.map (fun tp -> if List.mem tp.tp_name !names then display_error ctx ("Duplicate type parameter name: " ^ tp.tp_name) p; names := tp.tp_name :: !names; type_type_param ~enum_constructor ctx path get_params p tp ) tpl let type_function_params ctx fd fname p = let params = ref [] in params := type_type_params ctx ([],fname) (fun() -> !params) p fd.f_params; !params let find_enclosing com e = let display_pos = ref (!Parser.resume_display) in let mk_null p = (EDisplay(((EConst(Ident "null")),p),false),p) in let encloses_display_pos p = if p.pmin <= !display_pos.pmin && p.pmax >= !display_pos.pmax then begin let p = !display_pos in display_pos := { pfile = ""; pmin = -2; pmax = -2 }; Some p end else None in let rec loop e = match fst e with | EBlock el -> let p = pos e in (* We want to find the innermost block which contains the display position. *) let el = List.map loop el in let el = match encloses_display_pos p with | None -> el | Some p2 -> let b,el = List.fold_left (fun (b,el) e -> let p = pos e in if b || p.pmax <= p2.pmin then begin (b,e :: el) end else begin let e_d = (EDisplay(mk_null p,false)),p in (true,e :: e_d :: el) end ) (false,[]) el in let el = if b then el else begin mk_null p :: el end in List.rev el in (EBlock el),(pos e) | _ -> Ast.map_expr loop e in loop e let find_before_pos com e = let display_pos = ref (!Parser.resume_display) in let is_annotated p = if p.pmax = !display_pos.pmin - 1 then begin display_pos := { pfile = ""; pmin = -2; pmax = -2 }; true end else false in let rec loop e = if is_annotated (pos e) then (EDisplay(e,false),(pos e)) else e in let rec map e = loop (Ast.map_expr map e) in map e let type_function ctx args ret fmode f do_display p = let locals = save_locals ctx in let fargs = List.map (fun (n,c,t) -> if n.[0] = '$' then error "Function argument names starting with a dollar are not allowed" p; let c = type_function_arg_value ctx t c in let v,c = add_local ctx n t, c in if n = "this" then v.v_meta <- (Meta.This,[],p) :: v.v_meta; v,c ) args in let old_ret = ctx.ret in let old_fun = ctx.curfun in let old_opened = ctx.opened in ctx.curfun <- fmode; ctx.ret <- ret; ctx.opened <- []; let e = match f.f_expr with None -> error "Function body required" p | Some e -> e in let e = if not do_display then type_expr ctx e NoValue else begin let e = match ctx.com.display with | DMToplevel -> find_enclosing ctx.com e | DMPosition | DMUsage | DMType -> find_before_pos ctx.com e | _ -> e in try if Common.defined ctx.com Define.NoCOpt then raise Exit; type_expr ctx (Optimizer.optimize_completion_expr e) NoValue with | Parser.TypePath (_,None,_) | Exit -> type_expr ctx e NoValue | DisplayTypes [t] when (match follow t with TMono _ -> true | _ -> false) -> type_expr ctx (if ctx.com.display = DMToplevel then find_enclosing ctx.com e else e) NoValue end in let e = match e.eexpr with | TMeta((Meta.MergeBlock,_,_), ({eexpr = TBlock el} as e1)) -> e1 | _ -> e in let has_return e = let rec loop e = match e.eexpr with | TReturn (Some _) -> raise Exit | TFunction _ -> () | _ -> Type.iter loop e in try loop e; false with Exit -> true in begin match follow ret with | TAbstract({a_path=[],"Void"},_) -> () (* We have to check for the presence of return expressions here because in the case of Dynamic ctx.ret is still a monomorph. If we indeed don't have a return expression we can link the monomorph to Void. We can _not_ use type_iseq to avoid the Void check above because that would turn Dynamic returns to Void returns. *) | TMono t when not (has_return e) -> ignore(link t ret ctx.t.tvoid) | _ -> (try return_flow ctx e with Exit -> ()) end; let rec loop e = match e.eexpr with | TCall ({ eexpr = TConst TSuper },_) -> raise Exit | TFunction _ -> () | _ -> Type.iter loop e in let has_super_constr() = match ctx.curclass.cl_super with | None -> None | Some (csup,tl) -> try let _,cf = get_constructor (fun f->f.cf_type) csup in Some (Meta.has Meta.CompilerGenerated cf.cf_meta,TInst(csup,tl)) with Not_found -> None in let e = if fmode <> FunConstructor then e else match has_super_constr() with | Some (was_forced,t_super) -> (try loop e; if was_forced then let e_super = mk (TConst TSuper) t_super e.epos in let e_super_call = mk (TCall(e_super,[])) ctx.t.tvoid e.epos in concat e_super_call e else begin display_error ctx "Missing super constructor call" p; e end with Exit -> e); | None -> e in locals(); let e = match ctx.curfun, ctx.vthis with | (FunMember|FunConstructor), Some v -> let ev = mk (TVar (v,Some (mk (TConst TThis) ctx.tthis p))) ctx.t.tvoid p in (match e.eexpr with | TBlock l -> { e with eexpr = TBlock (ev::l) } | _ -> mk (TBlock [ev;e]) e.etype p) | _ -> e in List.iter (fun r -> r := Closed) ctx.opened; ctx.ret <- old_ret; ctx.curfun <- old_fun; ctx.opened <- old_opened; e , fargs let load_core_class ctx c = let ctx2 = (match ctx.g.core_api with | None -> let com2 = Common.clone ctx.com in com2.defines <- PMap.empty; Common.define com2 Define.CoreApi; Common.define com2 Define.Sys; if ctx.in_macro then Common.define com2 Define.Macro; com2.class_path <- ctx.com.std_path; let ctx2 = ctx.g.do_create com2 in ctx.g.core_api <- Some ctx2; ctx2 | Some c -> c ) in let tpath = match c.cl_kind with | KAbstractImpl a -> { tpackage = fst a.a_path; tname = snd a.a_path; tparams = []; tsub = None; } | _ -> { tpackage = fst c.cl_path; tname = snd c.cl_path; tparams = []; tsub = None; } in let t = load_instance ctx2 tpath c.cl_pos true in flush_pass ctx2 PFinal "core_final"; match t with | TInst (ccore,_) | TAbstract({a_impl = Some ccore}, _) -> ccore | _ -> assert false let init_core_api ctx c = let ccore = load_core_class ctx c in begin try List.iter2 (fun (n1,t1) (n2,t2) -> match follow t1, follow t2 with | TInst({cl_kind = KTypeParameter l1},_),TInst({cl_kind = KTypeParameter l2},_) -> begin try List.iter2 (fun t1 t2 -> type_eq EqCoreType t2 t1) l1 l2 with | Invalid_argument _ -> error "Type parameters must have the same number of constraints as core type" c.cl_pos | Unify_error l -> display_error ctx ("Type parameter " ^ n2 ^ " has different constraint than in core type") c.cl_pos; display_error ctx (error_msg (Unify l)) c.cl_pos end | t1,t2 -> Printf.printf "%s %s" (s_type (print_context()) t1) (s_type (print_context()) t2); assert false ) ccore.cl_params c.cl_params; with Invalid_argument _ -> error "Class must have the same number of type parameters as core type" c.cl_pos end; (match c.cl_doc with | None -> c.cl_doc <- ccore.cl_doc | Some _ -> ()); let compare_fields f f2 = let p = (match f2.cf_expr with None -> c.cl_pos | Some e -> e.epos) in (try type_eq EqCoreType (apply_params ccore.cl_params (List.map snd c.cl_params) f.cf_type) f2.cf_type with Unify_error l -> display_error ctx ("Field " ^ f.cf_name ^ " has different type than in core type") p; display_error ctx (error_msg (Unify l)) p); if f2.cf_public <> f.cf_public then error ("Field " ^ f.cf_name ^ " has different visibility than core type") p; (match f2.cf_doc with | None -> f2.cf_doc <- f.cf_doc | Some _ -> ()); if f2.cf_kind <> f.cf_kind then begin match f2.cf_kind, f.cf_kind with | Method MethInline, Method MethNormal -> () (* allow to add 'inline' *) | Method MethNormal, Method MethInline -> () (* allow to disable 'inline' *) | _ -> error ("Field " ^ f.cf_name ^ " has different property access than core type") p; end; (match follow f.cf_type, follow f2.cf_type with | TFun (pl1,_), TFun (pl2,_) -> if List.length pl1 != List.length pl2 then error "Argument count mismatch" p; List.iter2 (fun (n1,_,_) (n2,_,_) -> if n1 <> n2 then error ("Method parameter name '" ^ n2 ^ "' should be '" ^ n1 ^ "'") p; ) pl1 pl2; | _ -> ()); in let check_fields fcore fl = PMap.iter (fun i f -> if not f.cf_public then () else let f2 = try PMap.find f.cf_name fl with Not_found -> error ("Missing field " ^ i ^ " required by core type") c.cl_pos in compare_fields f f2; ) fcore; PMap.iter (fun i f -> let p = (match f.cf_expr with None -> c.cl_pos | Some e -> e.epos) in if f.cf_public && not (Meta.has Meta.Hack f.cf_meta) && not (PMap.mem f.cf_name fcore) && not (List.memq f c.cl_overrides) then error ("Public field " ^ i ^ " is not part of core type") p; ) fl; in check_fields ccore.cl_fields c.cl_fields; check_fields ccore.cl_statics c.cl_statics; (match ccore.cl_constructor, c.cl_constructor with | None, None -> () | Some { cf_public = false }, _ -> () | Some f, Some f2 -> compare_fields f f2 | None, Some { cf_public = false } -> () | _ -> error "Constructor differs from core type" c.cl_pos) let check_global_metadata ctx f_add mpath tpath so = let sl1 = full_dot_path mpath tpath in let sl1,field_mode = match so with None -> sl1,false | Some s -> sl1 @ [s],true in List.iter (fun (sl2,m,(recursive,to_types,to_fields)) -> let add = ((field_mode && to_fields) || (not field_mode && to_types)) && (match_path recursive sl1 sl2) in if add then f_add m ) ctx.g.global_metadata let patch_class ctx c fields = let path = match c.cl_kind with | KAbstractImpl a -> a.a_path | _ -> c.cl_path in let h = (try Some (Hashtbl.find ctx.g.type_patches path) with Not_found -> None) in match h with | None -> fields | Some (h,hcl) -> c.cl_meta <- c.cl_meta @ hcl.tp_meta; let rec loop acc = function | [] -> acc | f :: l -> (* patch arguments types *) (match f.cff_kind with | FFun ff -> let param ((n,opt,t,e) as p) = try let t2 = (try Hashtbl.find h (("$" ^ f.cff_name ^ "__" ^ n),false) with Not_found -> Hashtbl.find h (("$" ^ n),false)) in n, opt, t2.tp_type, e with Not_found -> p in f.cff_kind <- FFun { ff with f_args = List.map param ff.f_args } | _ -> ()); (* other patches *) match (try Some (Hashtbl.find h (f.cff_name,List.mem AStatic f.cff_access)) with Not_found -> None) with | None -> loop (f :: acc) l | Some { tp_remove = true } -> loop acc l | Some p -> f.cff_meta <- f.cff_meta @ p.tp_meta; (match p.tp_type with | None -> () | Some t -> f.cff_kind <- match f.cff_kind with | FVar (_,e) -> FVar (Some t,e) | FProp (get,set,_,eo) -> FProp (get,set,Some t,eo) | FFun f -> FFun { f with f_type = Some t }); loop (f :: acc) l in List.rev (loop [] fields) let string_list_of_expr_path (e,p) = try string_list_of_expr_path_raise (e,p) with Exit -> error "Invalid path" p let build_enum_abstract ctx c a fields p = List.iter (fun field -> match field.cff_kind with | FVar(ct,eo) when not (List.mem AStatic field.cff_access) -> field.cff_access <- [AStatic;APublic;AInline]; field.cff_meta <- (Meta.Enum,[],field.cff_pos) :: (Meta.Impl,[],field.cff_pos) :: field.cff_meta; let e = match eo with | None -> error "Value required" field.cff_pos | Some e -> (ECast(e,None),field.cff_pos) in field.cff_kind <- FVar(ct,Some e) | _ -> () ) fields; EVars ["",Some (CTAnonymous fields),None],p let is_java_native_function meta = try match Meta.get Meta.Native meta with | (Meta.Native,[],_) -> true | _ -> false with | Not_found -> false let build_module_def ctx mt meta fvars context_init fbuild = let loop (f_build,f_enum) = function | Meta.Build,args,p -> (fun () -> let epath, el = (match args with | [ECall (epath,el),p] -> epath, el | _ -> error "Invalid build parameters" p ) in let s = try String.concat "." (List.rev (string_list_of_expr_path epath)) with Error (_,p) -> error "Build call parameter must be a class path" p in if ctx.in_macro then error "You cannot use @:build inside a macro : make sure that your enum is not used in macro" p; let old = ctx.g.get_build_infos in ctx.g.get_build_infos <- (fun() -> Some (mt, List.map snd (t_infos mt).mt_params, fvars())); context_init(); let r = try apply_macro ctx MBuild s el p with e -> ctx.g.get_build_infos <- old; raise e in ctx.g.get_build_infos <- old; (match r with | None -> error "Build failure" p | Some e -> fbuild e) ) :: f_build,f_enum | Meta.Enum,_,p -> f_build,Some (fun () -> begin match mt with | TClassDecl ({cl_kind = KAbstractImpl a} as c) -> context_init(); let e = build_enum_abstract ctx c a (fvars()) p in fbuild e; | _ -> () end ) | _ -> f_build,f_enum in (* let errors go through to prevent resume if build fails *) let f_build,f_enum = List.fold_left loop ([],None) meta in List.iter (fun f -> f()) (List.rev f_build); (match f_enum with None -> () | Some f -> f()) module ClassInitializer = struct type class_init_ctx = { tclass : tclass; (* I don't trust ctx.curclass because it's mutable. *) is_lib : bool; is_native : bool; is_core_api : bool; is_display_file : bool; extends_public : bool; abstract : tabstract option; context_init : unit -> unit; completion_position : pos; mutable delayed_expr : (typer * (unit -> t) ref option) list; mutable force_constructor : bool; } type field_kind = | FKNormal | FKConstructor | FKInit type field_init_ctx = { is_inline : bool; is_static : bool; is_override : bool; is_extern : bool; is_macro : bool; is_abstract_member : bool; field_kind : field_kind; mutable do_bind : bool; mutable do_add : bool; } let create_class_context ctx c context_init p = locate_macro_error := true; incr stats.s_classes_built; let abstract = match c.cl_kind with | KAbstractImpl a -> Some a | _ -> None in let ctx = { ctx with curclass = c; type_params = c.cl_params; pass = PBuildClass; tthis = (match abstract with | Some a -> (match a.a_this with | TMono r when !r = None -> TAbstract (a,List.map snd c.cl_params) | t -> t) | None -> TInst (c,List.map snd c.cl_params)); on_error = (fun ctx msg ep -> ctx.com.error msg ep; (* macros expressions might reference other code, let's recall which class we are actually compiling *) if !locate_macro_error && (ep.pfile <> c.cl_pos.pfile || ep.pmax < c.cl_pos.pmin || ep.pmin > c.cl_pos.pmax) then ctx.com.error "Defined in this class" c.cl_pos ); } in (* a lib type will skip most checks *) let is_lib = Meta.has Meta.LibType c.cl_meta in if is_lib && not c.cl_extern then ctx.com.error "@:libType can only be used in extern classes" c.cl_pos; (* a native type will skip one check: the static vs non-static field *) let is_native = Meta.has Meta.JavaNative c.cl_meta || Meta.has Meta.CsNative c.cl_meta in if Meta.has Meta.Macro c.cl_meta then display_error ctx "Macro classes are no longer allowed in haxe 3" c.cl_pos; let rec extends_public c = Meta.has Meta.PublicFields c.cl_meta || match c.cl_super with | None -> false | Some (c,_) -> extends_public c in let is_display_file = match ctx.com.display with | DMNone -> false | DMResolve s -> let mt = load_type_def ctx p {tname = s; tpackage = []; tsub = None; tparams = []} in let p = (t_infos mt).mt_pos in raise (DisplayPosition [p]); | _ -> Common.unique_full_path p.pfile = (!Parser.resume_display).pfile in let cctx = { tclass = c; is_lib = is_lib; is_native = is_native; is_core_api = Meta.has Meta.CoreApi c.cl_meta; extends_public = extends_public c; is_display_file = is_display_file; abstract = abstract; context_init = context_init; completion_position = !Parser.resume_display; force_constructor = false; delayed_expr = []; } in ctx,cctx let create_field_context (ctx,cctx) c cff = let ctx = { ctx with pass = PBuildClass; (* will be set later to PTypeExpr *) } in let is_static = List.mem AStatic cff.cff_access in let is_extern = Meta.has Meta.Extern cff.cff_meta || c.cl_extern in let allow_inline = cctx.abstract <> None || match cff.cff_kind with | FFun _ -> ctx.g.doinline || is_extern | _ -> true in let is_inline = allow_inline && List.mem AInline cff.cff_access in let is_override = List.mem AOverride cff.cff_access in let is_macro = List.mem AMacro cff.cff_access in let field_kind = match cff.cff_name with | "new" -> FKConstructor | "__init__" when is_static -> FKInit | _ -> FKNormal in let fctx = { is_inline = is_inline; is_static = is_static; is_override = is_override; is_macro = is_macro; is_extern = is_extern; is_abstract_member = cctx.abstract <> None && Meta.has Meta.Impl cff.cff_meta; field_kind = field_kind; do_bind = (((not c.cl_extern || is_inline) && not c.cl_interface) || field_kind = FKInit); do_add = true; } in ctx,fctx let is_public (ctx,cctx) access parent = let c = cctx.tclass in if List.mem APrivate access then false else if List.mem APublic access then true else match parent with | Some { cf_public = p } -> p | _ -> c.cl_extern || c.cl_interface || cctx.extends_public let rec get_parent c name = match c.cl_super with | None -> None | Some (csup,_) -> try Some (PMap.find name csup.cl_fields) with Not_found -> get_parent csup name let add_field c cf is_static = if is_static then begin c.cl_statics <- PMap.add cf.cf_name cf c.cl_statics; c.cl_ordered_statics <- cf :: c.cl_ordered_statics; end else begin c.cl_fields <- PMap.add cf.cf_name cf c.cl_fields; c.cl_ordered_fields <- cf :: c.cl_ordered_fields; end let type_opt (ctx,cctx) p t = let c = cctx.tclass in match t with | None when c.cl_extern || c.cl_interface -> display_error ctx "Type required for extern classes and interfaces" p; t_dynamic | None when cctx.is_core_api -> display_error ctx "Type required for core api classes" p; t_dynamic | _ -> load_type_opt ctx p t let build_fields (ctx,cctx) c fields = let fields = ref fields in let get_fields() = !fields in build_module_def ctx (TClassDecl c) c.cl_meta get_fields cctx.context_init (fun (e,p) -> match e with | EVars [_,Some (CTAnonymous f),None] -> let f = List.map (fun f -> let f = match cctx.abstract with | Some a -> let a_t = TExprToExpr.convert_type (TAbstract(a,List.map snd a.a_params)) in let this_t = TExprToExpr.convert_type a.a_this in transform_abstract_field ctx this_t a_t a f | None -> f in if List.mem AMacro f.cff_access then (match ctx.g.macros with | Some (_,mctx) when Hashtbl.mem mctx.g.types_module c.cl_path -> (* assume that if we had already a macro with the same name, it has not been changed during the @:build operation *) if not (List.exists (fun f2 -> f2.cff_name = f.cff_name && List.mem AMacro f2.cff_access) (!fields)) then error "Class build macro cannot return a macro function when the class has already been compiled into the macro context" p | _ -> ()); f ) f in fields := f | _ -> error "Class build macro must return a single variable with anonymous fields" p ); !fields let bind_type (ctx,cctx,fctx) cf r p = let c = cctx.tclass in let rec is_full_type t = match t with | TFun (args,ret) -> is_full_type ret && List.for_all (fun (_,_,t) -> is_full_type t) args | TMono r -> (match !r with None -> false | Some t -> is_full_type t) | TAbstract _ | TInst _ | TEnum _ | TLazy _ | TDynamic _ | TAnon _ | TType _ -> true in if ctx.com.display <> DMNone then begin let cp = !Parser.resume_display in if cctx.is_display_file && (cp.pmin = 0 || (p.pmin <= cp.pmin && p.pmax >= cp.pmax)) then begin if fctx.is_macro && not ctx.in_macro then (* force macro system loading of this class in order to get completion *) delay ctx PTypeField (fun() -> ignore(ctx.g.do_macro ctx MExpr c.cl_path cf.cf_name [] p)) else begin cf.cf_type <- TLazy r; cctx.delayed_expr <- (ctx,Some r) :: cctx.delayed_expr; end end else begin if not (is_full_type cf.cf_type) then begin cctx.delayed_expr <- (ctx, None) :: cctx.delayed_expr; cf.cf_type <- TLazy r; end; end end else if fctx.is_macro && not ctx.in_macro then () else begin cf.cf_type <- TLazy r; (* is_lib ? *) cctx.delayed_expr <- (ctx,Some r) :: cctx.delayed_expr; end let bind_var (ctx,cctx,fctx) cf e = let c = cctx.tclass in let p = cf.cf_pos in let rec get_declared f = function | None -> None | Some (c,a) when PMap.exists f c.cl_fields -> Some (c,a) | Some (c,_) -> let ret = get_declared f c.cl_super in match ret with | Some r -> Some r | None -> let rec loop ifaces = match ifaces with | [] -> None | i :: ifaces -> match get_declared f (Some i) with | Some r -> Some r | None -> loop ifaces in loop c.cl_implements in if not fctx.is_static && not cctx.is_lib then begin match get_declared cf.cf_name c.cl_super with | None -> () | Some (csup,_) -> (* this can happen on -net-lib generated classes if a combination of explicit interfaces and variables with the same name happens *) if not (csup.cl_interface && Meta.has Meta.CsNative c.cl_meta) then error ("Redefinition of variable " ^ cf.cf_name ^ " in subclass is not allowed. Previously declared at " ^ (Ast.s_type_path csup.cl_path) ) p end; let t = cf.cf_type in match e with | None -> () | Some e -> if requires_value_meta ctx.com (Some c) then cf.cf_meta <- ((Meta.Value,[e],cf.cf_pos) :: cf.cf_meta); let check_cast e = (* insert cast to keep explicit field type (issue #1901) *) if type_iseq e.etype cf.cf_type then e else begin match e.eexpr,follow cf.cf_type with | TConst (TInt i),TAbstract({a_path=[],"Float"},_) -> (* turn int constant to float constant if expected type is float *) {e with eexpr = TConst (TFloat (Int32.to_string i))} | _ -> mk_cast e cf.cf_type e.epos end in let r = exc_protect ctx (fun r -> (* type constant init fields (issue #1956) *) if not !return_partial_type || (match fst e with EConst _ -> true | _ -> false) then begin r := (fun() -> t); cctx.context_init(); if ctx.com.verbose then Common.log ctx.com ("Typing " ^ (if ctx.in_macro then "macro " else "") ^ s_type_path c.cl_path ^ "." ^ cf.cf_name); let e = type_var_field ctx t e fctx.is_static p in let require_constant_expression e msg = match Optimizer.make_constant_expression ctx e with | Some e -> e | None -> display_error ctx msg p; e in let e = (match cf.cf_kind with | Var v when c.cl_extern || Meta.has Meta.Extern cf.cf_meta -> if not fctx.is_static then begin display_error ctx "Extern non-static variables may not be initialized" p; e end else if not fctx.is_inline then begin display_error ctx "Extern non-inline variables may not be initialized" p; e end else require_constant_expression e "Extern variable initialization must be a constant value" | Var v when is_extern_field cf -> (* disallow initialization of non-physical fields (issue #1958) *) display_error ctx "This field cannot be initialized because it is not a real variable" p; e | Var v when not fctx.is_static -> let e = match Optimizer.make_constant_expression ctx e with | Some e -> e | None -> let rec has_this e = match e.eexpr with | TConst TThis -> display_error ctx "Cannot access this or other member field in variable initialization" e.epos; | TLocal v when (match ctx.vthis with Some v2 -> v == v2 | None -> false) -> display_error ctx "Cannot access this or other member field in variable initialization" e.epos; | _ -> Type.iter has_this e in has_this e; e in e | Var v when v.v_read = AccInline -> let e = require_constant_expression e "Inline variable initialization must be a constant value" in begin match c.cl_kind with | KAbstractImpl a when Meta.has Meta.Enum cf.cf_meta && Meta.has Meta.Enum a.a_meta -> unify ctx t (TAbstract(a,(List.map (fun _ -> mk_mono()) a.a_params))) p; begin match e.eexpr with | TCast(e1,None) -> unify ctx e1.etype a.a_this e1.epos | _ -> assert false end | _ -> () end; e | _ -> e ) in let e = check_cast e in cf.cf_expr <- Some e; cf.cf_type <- t; end; t ) "bind_var" in if not fctx.is_static then cctx.force_constructor <- true; bind_type (ctx,cctx,fctx) cf r (snd e) let create_variable (ctx,cctx,fctx) c f t eo p = if not fctx.is_static && cctx.abstract <> None then error (f.cff_name ^ ": Cannot declare member variable in abstract") p; if fctx.is_inline && not fctx.is_static then error (f.cff_name ^ ": Inline variable must be static") p; if fctx.is_inline && eo = None then error (f.cff_name ^ ": Inline variable must be initialized") p; let t = (match t with | None when not fctx.is_static && eo = None -> error ("Type required for member variable " ^ f.cff_name) p; | None -> mk_mono() | Some t -> (* TODO is_lib: only load complex type if needed *) let old = ctx.type_params in if fctx.is_static then ctx.type_params <- []; let t = load_complex_type ctx p t in if fctx.is_static then ctx.type_params <- old; t ) in let cf = { cf_name = f.cff_name; cf_doc = f.cff_doc; cf_meta = f.cff_meta; cf_type = t; cf_pos = f.cff_pos; cf_kind = Var (if fctx.is_inline then { v_read = AccInline ; v_write = AccNever } else { v_read = AccNormal; v_write = AccNormal }); cf_expr = None; cf_public = is_public (ctx,cctx) f.cff_access None; cf_params = []; cf_overloads = []; } in ctx.curfield <- cf; bind_var (ctx,cctx,fctx) cf eo; cf let check_abstract (ctx,cctx,fctx) c cf fd t ret p = match cctx.abstract with | Some a -> let m = mk_mono() in let ta = TAbstract(a, List.map (fun _ -> mk_mono()) a.a_params) in let tthis = if fctx.is_abstract_member || Meta.has Meta.To cf.cf_meta then monomorphs a.a_params a.a_this else a.a_this in let allows_no_expr = ref (Meta.has Meta.CoreType a.a_meta) in let rec loop ml = match ml with | (Meta.From,_,_) :: _ -> let r = fun () -> (* the return type of a from-function must be the abstract, not the underlying type *) if not fctx.is_macro then (try type_eq EqStrict ret ta with Unify_error l -> error (error_msg (Unify l)) p); match t with | TFun([_,_,t],_) -> t | _ -> error (cf.cf_name ^ ": @:from cast functions must accept exactly one argument") p in a.a_from_field <- (TLazy (ref r),cf) :: a.a_from_field; | (Meta.To,_,_) :: _ -> if fctx.is_macro then error (cf.cf_name ^ ": Macro cast functions are not supported") p; (* TODO: this doesn't seem quite right... *) if not (Meta.has Meta.Impl cf.cf_meta) then cf.cf_meta <- (Meta.Impl,[],cf.cf_pos) :: cf.cf_meta; let resolve_m args = (try unify_raise ctx t (tfun (tthis :: args) m) cf.cf_pos with Error (Unify l,p) -> error (error_msg (Unify l)) p); match follow m with | TMono _ when (match t with TFun(_,r) -> r == t_dynamic | _ -> false) -> t_dynamic | m -> m in let r = exc_protect ctx (fun r -> let args = if Meta.has Meta.MultiType a.a_meta then begin let ctor = try PMap.find "_new" c.cl_statics with Not_found -> error "Constructor of multi-type abstract must be defined before the individual @:to-functions are" cf.cf_pos in (* delay ctx PFinal (fun () -> unify ctx m tthis f.cff_pos); *) let args = match follow (monomorphs a.a_params ctor.cf_type) with | TFun(args,_) -> List.map (fun (_,_,t) -> t) args | _ -> assert false in args end else [] in let t = resolve_m args in r := (fun() -> t); t ) "@:to" in delay ctx PForce (fun() -> ignore ((!r)())); a.a_to_field <- (TLazy r, cf) :: a.a_to_field | ((Meta.ArrayAccess,_,_) | (Meta.Op,[(EArrayDecl _),_],_)) :: _ -> if fctx.is_macro then error (cf.cf_name ^ ": Macro array-access functions are not supported") p; a.a_array <- cf :: a.a_array; | (Meta.Op,[EBinop(op,_,_),_],_) :: _ -> if fctx.is_macro then error (cf.cf_name ^ ": Macro operator functions are not supported") p; let targ = if fctx.is_abstract_member then tthis else ta in let left_eq,right_eq = match follow t with | TFun([(_,_,t1);(_,_,t2)],_) -> type_iseq targ t1,type_iseq targ t2 | _ -> if fctx.is_abstract_member then error (cf.cf_name ^ ": Member @:op functions must accept exactly one argument") cf.cf_pos else error (cf.cf_name ^ ": Static @:op functions must accept exactly two arguments") cf.cf_pos in if not (left_eq || right_eq) then error (cf.cf_name ^ ": The left or right argument type must be " ^ (s_type (print_context()) targ)) cf.cf_pos; if right_eq && Meta.has Meta.Commutative cf.cf_meta then error (cf.cf_name ^ ": @:commutative is only allowed if the right argument is not " ^ (s_type (print_context()) targ)) cf.cf_pos; a.a_ops <- (op,cf) :: a.a_ops; allows_no_expr := true; | (Meta.Op,[EUnop(op,flag,_),_],_) :: _ -> if fctx.is_macro then error (cf.cf_name ^ ": Macro operator functions are not supported") p; let targ = if fctx.is_abstract_member then tthis else ta in (try type_eq EqStrict t (tfun [targ] (mk_mono())) with Unify_error l -> raise (Error ((Unify l),cf.cf_pos))); a.a_unops <- (op,flag,cf) :: a.a_unops; allows_no_expr := true; | (Meta.Impl,_,_) :: ml when cf.cf_name <> "_new" && not fctx.is_macro -> begin match follow t with | TFun((_,_,t1) :: _, _) when type_iseq tthis t1 -> () | _ -> display_error ctx ("First argument of implementation function must be " ^ (s_type (print_context()) tthis)) cf.cf_pos end; loop ml | ((Meta.Resolve,_,_) | (Meta.Op,[EField _,_],_)) :: _ -> if a.a_resolve <> None then error "Multiple resolve methods are not supported" cf.cf_pos; let targ = if fctx.is_abstract_member then tthis else ta in begin match follow t with | TFun([(_,_,t1);(_,_,t2)],_) -> if not fctx.is_macro then begin if not (type_iseq targ t1) then error ("First argument type must be " ^ (s_type (print_context()) targ)) cf.cf_pos; if not (type_iseq ctx.t.tstring t2) then error ("Second argument type must be String") cf.cf_pos end | _ -> error ("Field type of resolve must be " ^ (s_type (print_context()) targ) ^ " -> String -> T") cf.cf_pos end; a.a_resolve <- Some cf; | _ :: ml -> loop ml | [] -> () in loop cf.cf_meta; let check_bind () = if fd.f_expr = None then begin if fctx.is_inline then error (cf.cf_name ^ ": Inline functions must have an expression") cf.cf_pos; begin match fd.f_type with | None -> error (cf.cf_name ^ ": Functions without expressions must have an explicit return type") cf.cf_pos | Some _ -> () end; cf.cf_meta <- (Meta.NoExpr,[],cf.cf_pos) :: cf.cf_meta; fctx.do_bind <- false; if not (Meta.has Meta.CoreType a.a_meta) then fctx.do_add <- false; end in if cf.cf_name = "_new" && Meta.has Meta.MultiType a.a_meta then fctx.do_bind <- false; if !allows_no_expr then check_bind() | _ -> () let create_method (ctx,cctx,fctx) c f fd p = let params = type_function_params ctx fd f.cff_name p in if Meta.has Meta.Generic f.cff_meta then begin if params = [] then error (f.cff_name ^ ": Generic functions must have type parameters") p; end; let fd = if fctx.is_macro && not ctx.in_macro && not fctx.is_static then (* remove display of first argument which will contain the "this" expression *) { fd with f_args = match fd.f_args with [] -> [] | _ :: l -> l } else fd in let fd = if not fctx.is_macro then fd else begin if ctx.in_macro then begin (* a class with a macro cannot be extern in macro context (issue #2015) *) c.cl_extern <- false; let texpr = CTPath { tpackage = ["haxe";"macro"]; tname = "Expr"; tparams = []; tsub = None } in (* ExprOf type parameter might contain platform-specific type, let's replace it by Expr *) let no_expr_of = function | CTPath { tpackage = ["haxe";"macro"]; tname = "Expr"; tsub = Some ("ExprOf"); tparams = [TPType _] } | CTPath { tpackage = []; tname = ("ExprOf"); tsub = None; tparams = [TPType _] } -> Some texpr | t -> Some t in { f_params = fd.f_params; f_type = (match fd.f_type with None -> Some texpr | Some t -> no_expr_of t); f_args = List.map (fun (a,o,t,e) -> a,o,(match t with None -> Some texpr | Some t -> no_expr_of t),e) fd.f_args; f_expr = fd.f_expr; } end else let tdyn = Some (CTPath { tpackage = []; tname = "Dynamic"; tparams = []; tsub = None }) in let to_dyn = function | { tpackage = ["haxe";"macro"]; tname = "Expr"; tsub = Some ("ExprOf"); tparams = [TPType t] } -> Some t | { tpackage = []; tname = ("ExprOf"); tsub = None; tparams = [TPType t] } -> Some t | { tpackage = ["haxe"]; tname = ("PosInfos"); tsub = None; tparams = [] } -> error "haxe.PosInfos is not allowed on macro functions, use Context.currentPos() instead" p | _ -> tdyn in { f_params = fd.f_params; f_type = (match fd.f_type with Some (CTPath t) -> to_dyn t | _ -> tdyn); f_args = List.map (fun (a,o,t,_) -> a,o,(match t with Some (CTPath t) -> to_dyn t | _ -> tdyn),None) fd.f_args; f_expr = None; } end in begin match c.cl_interface,fctx.field_kind with | true,FKConstructor -> error "An interface cannot have a constructor" p; | true,_ -> if not fctx.is_static && fd.f_expr <> None then error (f.cff_name ^ ": An interface method cannot have a body") p; if fctx.is_inline && c.cl_interface then error (f.cff_name ^ ": You can't declare inline methods in interfaces") p; | false,FKConstructor -> if fctx.is_static then error "A constructor must not be static" p; begin match fd.f_type with | None | Some (CTPath { tpackage = []; tname = "Void" }) -> () | _ -> error "A class constructor can't have a return value" p; end | false,_ -> () end; let parent = (if not fctx.is_static then get_parent c f.cff_name else None) in let dynamic = List.mem ADynamic f.cff_access || (match parent with Some { cf_kind = Method MethDynamic } -> true | _ -> false) in if fctx.is_inline && dynamic then error (f.cff_name ^ ": You can't have both 'inline' and 'dynamic'") p; ctx.type_params <- (match cctx.abstract with | Some a when fctx.is_abstract_member -> params @ a.a_params | _ -> if fctx.is_static then params else params @ ctx.type_params); (* TODO is_lib: avoid forcing the return type to be typed *) let ret = if fctx.field_kind = FKConstructor then ctx.t.tvoid else type_opt (ctx,cctx) p fd.f_type in let rec loop args = match args with | (name,opt,t,ct) :: args -> (* TODO is_lib: avoid forcing the field to be typed *) let t, ct = type_function_arg ctx (type_opt (ctx,cctx) p t) ct opt p in delay ctx PTypeField (fun() -> match follow t with | TAbstract({a_path = ["haxe";"extern"],"Rest"},_) -> if not c.cl_extern then error "Rest argument are only supported for extern methods" p; if opt then error "Rest argument cannot be optional" p; if ct <> None then error "Rest argument cannot have default value" p; if args <> [] then error "Rest should only be used for the last function argument" p; | _ -> () ); (name, ct, t) :: (loop args) | [] -> [] in let args = loop fd.f_args in let t = TFun (fun_args args,ret) in let cf = { cf_name = f.cff_name; cf_doc = f.cff_doc; cf_meta = f.cff_meta; cf_type = t; cf_pos = f.cff_pos; cf_kind = Method (if fctx.is_macro then MethMacro else if fctx.is_inline then MethInline else if dynamic then MethDynamic else MethNormal); cf_expr = None; cf_public = is_public (ctx,cctx) f.cff_access parent; cf_params = params; cf_overloads = []; } in generate_value_meta ctx.com (Some c) cf fd.f_args; check_abstract (ctx,cctx,fctx) c cf fd t ret p; init_meta_overloads ctx (Some c) cf; ctx.curfield <- cf; let r = exc_protect ctx (fun r -> if not !return_partial_type then begin r := (fun() -> t); cctx.context_init(); incr stats.s_methods_typed; if ctx.com.verbose then Common.log ctx.com ("Typing " ^ (if ctx.in_macro then "macro " else "") ^ s_type_path c.cl_path ^ "." ^ f.cff_name); let fmode = (match cctx.abstract with | Some _ -> (match args with | ("this",_,_) :: _ -> FunMemberAbstract | _ when f.cff_name = "_new" -> FunMemberAbstract | _ -> FunStatic) | None -> if fctx.field_kind = FKConstructor then FunConstructor else if fctx.is_static then FunStatic else FunMember ) in let is_display_field = cctx.is_display_file && (f.cff_pos.pmin <= cctx.completion_position.pmin && f.cff_pos.pmax >= cctx.completion_position.pmax) in match ctx.com.platform with | Java when is_java_native_function cf.cf_meta -> if fd.f_expr <> None then ctx.com.warning "@:native function definitions shouldn't include an expression. This behaviour is deprecated." cf.cf_pos; cf.cf_expr <- None; cf.cf_type <- t | _ -> let e , fargs = type_function ctx args ret fmode fd is_display_field p in let tf = { tf_args = fargs; tf_type = ret; tf_expr = e; } in if fctx.field_kind = FKInit then (match e.eexpr with | TBlock [] | TBlock [{ eexpr = TConst _ }] | TConst _ | TObjectDecl [] -> () | _ -> c.cl_init <- Some e); cf.cf_expr <- Some (mk (TFunction tf) t p); cf.cf_type <- t; end; t ) "type_fun" in if fctx.do_bind then bind_type (ctx,cctx,fctx) cf r (match fd.f_expr with Some e -> snd e | None -> f.cff_pos); cf let create_property (ctx,cctx,fctx) c f (get,set,t,eo) p = (match cctx.abstract with | Some a when fctx.is_abstract_member -> ctx.type_params <- a.a_params; | _ -> ()); (* TODO is_lib: lazify load_complex_type *) let ret = (match t, eo with | None, None -> error (f.cff_name ^ ": Property must either define a type or a default value") p; | None, _ -> mk_mono() | Some t, _ -> load_complex_type ctx p t ) in let t_get,t_set = match cctx.abstract with | Some a when fctx.is_abstract_member -> if Meta.has Meta.IsVar f.cff_meta then error (f.cff_name ^ ": Abstract properties cannot be real variables") f.cff_pos; let ta = apply_params a.a_params (List.map snd a.a_params) a.a_this in tfun [ta] ret, tfun [ta;ret] ret | _ -> tfun [] ret, TFun(["value",false,ret],ret) in let check_method m t req_name = if ctx.com.display <> DMNone then () else try let overloads = (* on pf_overload platforms, the getter/setter may have been defined as an overloaded function; get all overloads *) if ctx.com.config.pf_overload then if fctx.is_static then let f = PMap.find m c.cl_statics in (f.cf_type, f) :: (List.map (fun f -> f.cf_type, f) f.cf_overloads) else get_overloads c m else [ if fctx.is_static then let f = PMap.find m c.cl_statics in f.cf_type, f else match class_field c (List.map snd c.cl_params) m with | _, t,f -> t,f ] in (* choose the correct overload if and only if there is more than one overload found *) let rec get_overload overl = match overl with | [tf] -> tf | (t2,f2) :: overl -> if type_iseq t t2 then (t2,f2) else get_overload overl | [] -> if c.cl_interface then raise Not_found else raise (Error (Custom (Printf.sprintf "No overloaded method named %s was compatible with the property %s with expected type %s" m f.cff_name (s_type (print_context()) t) ), p)) in let t2, f2 = get_overload overloads in (* accessors must be public on As3 (issue #1872) *) if Common.defined ctx.com Define.As3 then f2.cf_meta <- (Meta.Public,[],p) :: f2.cf_meta; (match f2.cf_kind with | Method MethMacro -> display_error ctx (f2.cf_name ^ ": Macro methods cannot be used as property accessor") p; display_error ctx (f2.cf_name ^ ": Accessor method is here") f2.cf_pos; | _ -> ()); unify_raise ctx t2 t f2.cf_pos; if (fctx.is_abstract_member && not (Meta.has Meta.Impl f2.cf_meta)) || (Meta.has Meta.Impl f2.cf_meta && not (fctx.is_abstract_member)) then display_error ctx "Mixing abstract implementation and static properties/accessors is not allowed" f2.cf_pos; (match req_name with None -> () | Some n -> display_error ctx ("Please use " ^ n ^ " to name your property access method") f2.cf_pos); with | Error (Unify l,p) -> raise (Error (Stack (Custom ("In method " ^ m ^ " required by property " ^ f.cff_name),Unify l),p)) | Not_found -> if req_name <> None then display_error ctx (f.cff_name ^ ": Custom property accessor is no longer supported, please use get/set") p else if c.cl_interface then begin let cf = mk_field m t p in cf.cf_meta <- [Meta.CompilerGenerated,[],p]; cf.cf_kind <- Method MethNormal; c.cl_fields <- PMap.add cf.cf_name cf c.cl_fields; c.cl_ordered_fields <- cf :: c.cl_ordered_fields; end else if not c.cl_extern then begin try let _, _, f2 = (if not fctx.is_static then let f = PMap.find m c.cl_statics in None, f.cf_type, f else class_field c (List.map snd c.cl_params) m) in display_error ctx (Printf.sprintf "Method %s is no valid accessor for %s because it is %sstatic" m f.cff_name (if fctx.is_static then "not " else "")) f2.cf_pos with Not_found -> display_error ctx ("Method " ^ m ^ " required by property " ^ f.cff_name ^ " is missing") p end in let get = (match get with | "null" -> AccNo | "dynamic" -> AccCall | "never" -> AccNever | "default" -> AccNormal | _ -> let get = if get = "get" then "get_" ^ f.cff_name else get in if not cctx.is_lib then delay ctx PTypeField (fun() -> check_method get t_get (if get <> "get" && get <> "get_" ^ f.cff_name then Some ("get_" ^ f.cff_name) else None)); AccCall ) in let set = (match set with | "null" -> (* standard flash library read-only variables can't be accessed for writing, even in subclasses *) if c.cl_extern && (match c.cl_path with "flash" :: _ , _ -> true | _ -> false) && ctx.com.platform = Flash then AccNever else AccNo | "never" -> AccNever | "dynamic" -> AccCall | "default" -> AccNormal | _ -> let set = if set = "set" then "set_" ^ f.cff_name else set in if not cctx.is_lib then delay ctx PTypeField (fun() -> check_method set t_set (if set <> "set" && set <> "set_" ^ f.cff_name then Some ("set_" ^ f.cff_name) else None)); AccCall ) in if set = AccNormal && (match get with AccCall -> true | _ -> false) then error (f.cff_name ^ ": Unsupported property combination") p; let cf = { cf_name = f.cff_name; cf_doc = f.cff_doc; cf_meta = f.cff_meta; cf_pos = f.cff_pos; cf_kind = Var { v_read = get; v_write = set }; cf_expr = None; cf_type = ret; cf_public = is_public (ctx,cctx) f.cff_access None; cf_params = []; cf_overloads = []; } in ctx.curfield <- cf; bind_var (ctx,cctx,fctx) cf eo; cf let init_field (ctx,cctx,fctx) f = let c = cctx.tclass in check_global_metadata ctx (fun m -> f.cff_meta <- m :: f.cff_meta) c.cl_module.m_path c.cl_path (Some f.cff_name); let p = f.cff_pos in if f.cff_name.[0] = '$' && ctx.com.display = DMNone then error "Field names starting with a dollar are not allowed" p; List.iter (fun acc -> match (acc, f.cff_kind) with | APublic, _ | APrivate, _ | AStatic, _ -> () | ADynamic, FFun _ | AOverride, FFun _ | AMacro, FFun _ | AInline, FFun _ | AInline, FVar _ -> () | _, FVar _ -> error ("Invalid accessor '" ^ Ast.s_access acc ^ "' for variable " ^ f.cff_name) p | _, FProp _ -> error ("Invalid accessor '" ^ Ast.s_access acc ^ "' for property " ^ f.cff_name) p ) f.cff_access; if fctx.is_override then (match c.cl_super with None -> error ("Invalid override on field '" ^ f.cff_name ^ "': class has no super class") p | _ -> ()); match f.cff_kind with | FVar (t,e) -> create_variable (ctx,cctx,fctx) c f t e p | FFun fd -> create_method (ctx,cctx,fctx) c f fd p | FProp (get,set,t,eo) -> create_property (ctx,cctx,fctx) c f (get,set,t,eo) p let init_class ctx c p context_init herits fields = let ctx,cctx = create_class_context ctx c context_init p in let fields = patch_class ctx c fields in let fields = build_fields (ctx,cctx) c fields in if not cctx.is_lib then begin (match c.cl_super with None -> () | Some _ -> delay ctx PForce (fun() -> check_overriding ctx c)); if ctx.com.config.pf_overload then delay ctx PForce (fun() -> check_overloads ctx c) end; let rec has_field f = function | None -> false | Some (c,_) -> PMap.exists f c.cl_fields || has_field f c.cl_super || List.exists (fun i -> has_field f (Some i)) c.cl_implements in let rec check_require = function | [] -> None | (Meta.Require,conds,_) :: l -> let rec loop = function | [] -> check_require l | e :: l -> let sc = match fst e with | EConst (Ident s) -> s | EBinop ((OpEq|OpNotEq|OpGt|OpGte|OpLt|OpLte) as op,(EConst (Ident s),_),(EConst ((Int _ | Float _ | String _) as c),_)) -> s ^ s_binop op ^ s_constant c | _ -> "" in if not (Parser.is_true (Parser.eval ctx.com e)) then Some (sc,(match List.rev l with (EConst (String msg),_) :: _ -> Some msg | _ -> None)) else loop l in loop conds | _ :: l -> check_require l in let rec check_if_feature = function | [] -> [] | (Meta.IfFeature,el,_) :: _ -> List.map (fun (e,p) -> match e with EConst (String s) -> s | _ -> error "String expected" p) el | _ :: l -> check_if_feature l in let cl_if_feature = check_if_feature c.cl_meta in let cl_req = check_require c.cl_meta in List.iter (fun f -> let p = f.cff_pos in try let ctx,fctx = create_field_context (ctx,cctx) c f in let cf = init_field (ctx,cctx,fctx) f in if fctx.is_static && c.cl_interface && fctx.field_kind <> FKInit && not cctx.is_lib then error "You can't declare static fields in interfaces" p; let set_feature s = ctx.m.curmod.m_extra.m_if_feature <- (s,(c,cf,fctx.is_static)) :: ctx.m.curmod.m_extra.m_if_feature in List.iter set_feature cl_if_feature; List.iter set_feature (check_if_feature cf.cf_meta); let req = check_require f.cff_meta in let req = (match req with None -> if fctx.is_static || fctx.field_kind = FKConstructor then cl_req else None | _ -> req) in (match req with | None -> () | Some r -> cf.cf_kind <- Var { v_read = AccRequire (fst r, snd r); v_write = AccRequire (fst r, snd r) }); begin match fctx.field_kind with | FKConstructor -> begin match c.cl_constructor with | None -> c.cl_constructor <- Some cf | Some ctor when ctx.com.config.pf_overload -> if Meta.has Meta.Overload cf.cf_meta && Meta.has Meta.Overload ctor.cf_meta then ctor.cf_overloads <- cf :: ctor.cf_overloads else display_error ctx ("If using overloaded constructors, all constructors must be declared with @:overload") (if Meta.has Meta.Overload cf.cf_meta then ctor.cf_pos else cf.cf_pos) | Some ctor -> display_error ctx "Duplicate constructor" p end | FKInit -> () | FKNormal -> let dup = if fctx.is_static then PMap.exists cf.cf_name c.cl_fields || has_field cf.cf_name c.cl_super else PMap.exists cf.cf_name c.cl_statics in if not cctx.is_native && not c.cl_extern && dup then error ("Same field name can't be use for both static and instance : " ^ cf.cf_name) p; if List.mem AOverride f.cff_access then c.cl_overrides <- cf :: c.cl_overrides; let is_var f = match cf.cf_kind with | Var _ -> true | _ -> false in if PMap.mem cf.cf_name (if fctx.is_static then c.cl_statics else c.cl_fields) then if ctx.com.config.pf_overload && Meta.has Meta.Overload cf.cf_meta && not (is_var f) then let mainf = PMap.find cf.cf_name (if fctx.is_static then c.cl_statics else c.cl_fields) in if is_var mainf then display_error ctx "Cannot declare a variable with same name as a method" mainf.cf_pos; (if not (Meta.has Meta.Overload mainf.cf_meta) then display_error ctx ("Overloaded methods must have @:overload metadata") mainf.cf_pos); mainf.cf_overloads <- cf :: mainf.cf_overloads else display_error ctx ("Duplicate class field declaration : " ^ cf.cf_name) p else if fctx.do_add then add_field c cf (fctx.is_static || fctx.is_macro && ctx.in_macro) end with Error (Custom str,p2) when p = p2 -> display_error ctx str p ) fields; (match cctx.abstract with | Some a -> a.a_to_field <- List.rev a.a_to_field; a.a_from_field <- List.rev a.a_from_field; a.a_ops <- List.rev a.a_ops; a.a_unops <- List.rev a.a_unops; a.a_array <- List.rev a.a_array; | None -> ()); c.cl_ordered_statics <- List.rev c.cl_ordered_statics; c.cl_ordered_fields <- List.rev c.cl_ordered_fields; (* make sure a default contructor with same access as super one will be added to the class structure at some point. *) (* add_constructor does not deal with overloads correctly *) if not ctx.com.config.pf_overload then add_constructor ctx c cctx.force_constructor p; (* check overloaded constructors *) (if ctx.com.config.pf_overload && not cctx.is_lib then match c.cl_constructor with | Some ctor -> delay ctx PTypeField (fun() -> List.iter (fun f -> try (* TODO: consider making a broader check, and treat some types, like TAnon and type parameters as Dynamic *) ignore(List.find (fun f2 -> f != f2 && same_overload_args f.cf_type f2.cf_type f f2) (ctor :: ctor.cf_overloads)); display_error ctx ("Another overloaded field of same signature was already declared : " ^ f.cf_name) f.cf_pos; with Not_found -> () ) (ctor :: ctor.cf_overloads) ) | _ -> ()); (* push delays in reverse order so they will be run in correct order *) List.iter (fun (ctx,r) -> init_class_done ctx; (match r with | None -> () | Some r -> delay ctx PTypeField (fun() -> ignore((!r)()))) ) cctx.delayed_expr end let resolve_typedef t = match t with | TClassDecl _ | TEnumDecl _ | TAbstractDecl _ -> t | TTypeDecl td -> match follow td.t_type with | TEnum (e,_) -> TEnumDecl e | TInst (c,_) -> TClassDecl c | TAbstract (a,_) -> TAbstractDecl a | _ -> t let add_module ctx m p = let decl_type t = let t = t_infos t in try let m2 = Hashtbl.find ctx.g.types_module t.mt_path in if m.m_path <> m2 && String.lowercase (s_type_path m2) = String.lowercase (s_type_path m.m_path) then error ("Module " ^ s_type_path m2 ^ " is loaded with a different case than " ^ s_type_path m.m_path) p; error ("Type name " ^ s_type_path t.mt_path ^ " is redefined from module " ^ s_type_path m2) p with Not_found -> Hashtbl.add ctx.g.types_module t.mt_path m.m_path in List.iter decl_type m.m_types; Hashtbl.add ctx.g.modules m.m_path m (* In this pass, we can access load and access other modules types, but we cannot follow them or access their structure since they have not been setup. We also build a context_init list that will be evaluated the first time we evaluate an expression into the context *) let rec init_module_type ctx context_init do_init (decl,p) = let get_type name = try List.find (fun t -> snd (t_infos t).mt_path = name) ctx.m.curmod.m_types with Not_found -> assert false in match decl with | EImport (path,mode) -> ctx.m.module_imports <- (path,mode) :: ctx.m.module_imports; let rec loop acc = function | x :: l when is_lower_ident (fst x) -> loop (x::acc) l | rest -> List.rev acc, rest in let pack, rest = loop [] path in (match rest with | [] -> (match mode with | IAll -> ctx.m.wildcard_packages <- List.map fst pack :: ctx.m.wildcard_packages | _ -> (match List.rev path with | [] -> assert false | (_,p) :: _ -> error "Module name must start with an uppercase letter" p)) | (tname,p2) :: rest -> let p1 = (match pack with [] -> p2 | (_,p1) :: _ -> p1) in let p_type = punion p1 p2 in let md = ctx.g.do_load_module ctx (List.map fst pack,tname) p_type in let types = md.m_types in let no_private t = not (t_infos t).mt_private in let chk_private t p = if (t_infos t).mt_private then error "You can't import a private type" p in let has_name name t = snd (t_infos t).mt_path = name in let get_type tname = let t = (try List.find (has_name tname) types with Not_found -> error (string_error tname (List.map (fun mt -> snd (t_infos mt).mt_path) types) ("Module " ^ s_type_path md.m_path ^ " does not define type " ^ tname)) p_type) in chk_private t p_type; t in let rebind t name = if not (name.[0] >= 'A' && name.[0] <= 'Z') then error "Type aliases must start with an uppercase letter" p; let _, _, f = ctx.g.do_build_instance ctx t p_type in (* create a temp private typedef, does not register it in module *) TTypeDecl { t_path = (fst md.m_path @ ["_" ^ snd md.m_path],name); t_module = md; t_pos = p; t_private = true; t_doc = None; t_meta = []; t_params = (t_infos t).mt_params; t_type = f (List.map snd (t_infos t).mt_params); } in let add_static_init t name s = let name = (match name with None -> s | Some n -> n) in match resolve_typedef t with | TClassDecl c -> ignore(c.cl_build()); ignore(PMap.find s c.cl_statics); ctx.m.module_globals <- PMap.add name (TClassDecl c,s) ctx.m.module_globals | TEnumDecl e -> ignore(PMap.find s e.e_constrs); ctx.m.module_globals <- PMap.add name (TEnumDecl e,s) ctx.m.module_globals | _ -> raise Not_found in (match mode with | INormal | IAsName _ -> let name = (match mode with IAsName n -> Some n | _ -> None) in (match rest with | [] -> (match name with | None -> ctx.m.module_types <- List.filter no_private types @ ctx.m.module_types | Some newname -> ctx.m.module_types <- rebind (get_type tname) newname :: ctx.m.module_types); | [tsub,p2] -> let p = punion p1 p2 in (try let tsub = List.find (has_name tsub) types in chk_private tsub p; ctx.m.module_types <- (match name with None -> tsub | Some n -> rebind tsub n) :: ctx.m.module_types with Not_found -> (* this might be a static property, wait later to check *) let tmain = get_type tname in context_init := (fun() -> try add_static_init tmain name tsub with Not_found -> error (s_type_path (t_infos tmain).mt_path ^ " has no field or subtype " ^ tsub) p ) :: !context_init) | (tsub,p2) :: (fname,p3) :: rest -> (match rest with | [] -> () | (n,p) :: _ -> error ("Unexpected " ^ n) p); let tsub = get_type tsub in context_init := (fun() -> try add_static_init tsub name fname with Not_found -> error (s_type_path (t_infos tsub).mt_path ^ " has no field " ^ fname) (punion p p3) ) :: !context_init; ) | IAll -> let t = (match rest with | [] -> get_type tname | [tsub,_] -> get_type tsub | _ :: (n,p) :: _ -> error ("Unexpected " ^ n) p ) in context_init := (fun() -> match resolve_typedef t with | TClassDecl c | TAbstractDecl {a_impl = Some c} -> ignore(c.cl_build()); PMap.iter (fun _ cf -> if not (has_meta Meta.NoImportGlobal cf.cf_meta) then ctx.m.module_globals <- PMap.add cf.cf_name (TClassDecl c,cf.cf_name) ctx.m.module_globals) c.cl_statics | TEnumDecl e -> PMap.iter (fun _ c -> if not (has_meta Meta.NoImportGlobal c.ef_meta) then ctx.m.module_globals <- PMap.add c.ef_name (TEnumDecl e,c.ef_name) ctx.m.module_globals) e.e_constrs | _ -> error "No statics to import from this type" p ) :: !context_init )) | EUsing t -> (* do the import first *) let types = (match t.tsub with | None -> let md = ctx.g.do_load_module ctx (t.tpackage,t.tname) p in let types = List.filter (fun t -> not (t_infos t).mt_private) md.m_types in ctx.m.module_types <- types @ ctx.m.module_types; types | Some _ -> let t = load_type_def ctx p t in ctx.m.module_types <- t :: ctx.m.module_types; [t] ) in (* delay the using since we need to resolve typedefs *) let filter_classes types = let rec loop acc types = match types with | td :: l -> (match resolve_typedef td with | TClassDecl c | TAbstractDecl({a_impl = Some c}) -> loop (c :: acc) l | td -> loop acc l) | [] -> acc in loop [] types in context_init := (fun() -> ctx.m.module_using <- filter_classes types @ ctx.m.module_using) :: !context_init | EClass d -> let c = (match get_type d.d_name with TClassDecl c -> c | _ -> assert false) in check_global_metadata ctx (fun m -> c.cl_meta <- m :: c.cl_meta) c.cl_module.m_path c.cl_path None; let herits = d.d_flags in if Meta.has Meta.Generic c.cl_meta && c.cl_params <> [] then c.cl_kind <- KGeneric; if Meta.has Meta.GenericBuild c.cl_meta then c.cl_kind <- KGenericBuild d.d_data; if c.cl_path = (["haxe";"macro"],"MacroType") then c.cl_kind <- KMacroType; c.cl_extern <- List.mem HExtern herits; c.cl_interface <- List.mem HInterface herits; let rec build() = c.cl_build <- (fun()-> false); try set_heritance ctx c herits p; ClassInitializer.init_class ctx c p do_init d.d_flags d.d_data; c.cl_build <- (fun()-> true); List.iter (fun (_,t) -> ignore(follow t)) c.cl_params; true; with Exit -> c.cl_build <- make_pass ctx build; delay ctx PTypeField (fun() -> ignore(c.cl_build())); (* delay after PBuildClass, not very good but better than forgotten *) false | exn -> c.cl_build <- (fun()-> true); raise exn in ctx.pass <- PBuildClass; ctx.curclass <- c; c.cl_build <- make_pass ctx build; ctx.pass <- PBuildModule; ctx.curclass <- null_class; delay ctx PBuildClass (fun() -> ignore(c.cl_build())); if (ctx.com.platform = Java || ctx.com.platform = Cs) && not c.cl_extern then delay ctx PTypeField (fun () -> let metas = check_strict_meta ctx c.cl_meta in if metas <> [] then c.cl_meta <- metas @ c.cl_meta; let rec run_field cf = let metas = check_strict_meta ctx cf.cf_meta in if metas <> [] then cf.cf_meta <- metas @ cf.cf_meta; List.iter run_field cf.cf_overloads in List.iter run_field c.cl_ordered_statics; List.iter run_field c.cl_ordered_fields; match c.cl_constructor with | Some f -> run_field f | _ -> () ); | EEnum d -> let e = (match get_type d.d_name with TEnumDecl e -> e | _ -> assert false) in let ctx = { ctx with type_params = e.e_params } in let h = (try Some (Hashtbl.find ctx.g.type_patches e.e_path) with Not_found -> None) in check_global_metadata ctx (fun m -> e.e_meta <- m :: e.e_meta) e.e_module.m_path e.e_path None; (match h with | None -> () | Some (h,hcl) -> Hashtbl.iter (fun _ _ -> error "Field type patch not supported for enums" e.e_pos) h; e.e_meta <- e.e_meta @ hcl.tp_meta); let constructs = ref d.d_data in let get_constructs() = List.map (fun c -> { cff_name = c.ec_name; cff_doc = c.ec_doc; cff_meta = c.ec_meta; cff_pos = c.ec_pos; cff_access = []; cff_kind = (match c.ec_args, c.ec_params with | [], [] -> FVar (c.ec_type,None) | _ -> FFun { f_params = c.ec_params; f_type = c.ec_type; f_expr = None; f_args = List.map (fun (n,o,t) -> n,o,Some t,None) c.ec_args }); } ) (!constructs) in let init () = List.iter (fun f -> f()) !context_init in build_module_def ctx (TEnumDecl e) e.e_meta get_constructs init (fun (e,p) -> match e with | EVars [_,Some (CTAnonymous fields),None] -> constructs := List.map (fun f -> let args, params, t = (match f.cff_kind with | FVar (t,None) -> [], [], t | FFun { f_params = pl; f_type = t; f_expr = (None|Some (EBlock [],_)); f_args = al } -> let al = List.map (fun (n,o,t,_) -> match t with None -> error "Missing function parameter type" f.cff_pos | Some t -> n,o,t) al in al, pl, t | _ -> error "Invalid enum constructor in @:build result" p ) in { ec_name = f.cff_name; ec_doc = f.cff_doc; ec_meta = f.cff_meta; ec_pos = f.cff_pos; ec_args = args; ec_params = params; ec_type = t; } ) fields | _ -> error "Enum build macro must return a single variable with anonymous object fields" p ); let et = TEnum (e,List.map snd e.e_params) in let names = ref [] in let index = ref 0 in let is_flat = ref true in let fields = ref PMap.empty in List.iter (fun c -> let p = c.ec_pos in let params = ref [] in params := type_type_params ~enum_constructor:true ctx ([],c.ec_name) (fun() -> !params) c.ec_pos c.ec_params; let params = !params in let ctx = { ctx with type_params = params @ ctx.type_params } in let rt = (match c.ec_type with | None -> et | Some t -> let t = load_complex_type ctx p t in (match follow t with | TEnum (te,_) when te == e -> () | _ -> error "Explicit enum type must be of the same enum type" p); t ) in let t = (match c.ec_args with | [] -> rt | l -> is_flat := false; let pnames = ref PMap.empty in TFun (List.map (fun (s,opt,t) -> (match t with CTPath({tpackage=[];tname="Void"}) -> error "Arguments of type Void are not allowed in enum constructors" c.ec_pos | _ -> ()); if PMap.mem s (!pnames) then error ("Duplicate parameter '" ^ s ^ "' in enum constructor " ^ c.ec_name) p; pnames := PMap.add s () (!pnames); s, opt, load_type_opt ~opt ctx p (Some t) ) l, rt) ) in if PMap.mem c.ec_name e.e_constrs then error ("Duplicate constructor " ^ c.ec_name) p; let f = { ef_name = c.ec_name; ef_type = t; ef_pos = p; ef_doc = c.ec_doc; ef_index = !index; ef_params = params; ef_meta = c.ec_meta; } in let cf = { cf_name = f.ef_name; cf_public = true; cf_type = f.ef_type; cf_kind = (match follow f.ef_type with | TFun _ -> Method MethNormal | _ -> Var { v_read = AccNormal; v_write = AccNo } ); cf_pos = e.e_pos; cf_doc = f.ef_doc; cf_meta = no_meta; cf_expr = None; cf_params = f.ef_params; cf_overloads = []; } in e.e_constrs <- PMap.add f.ef_name f e.e_constrs; fields := PMap.add cf.cf_name cf !fields; incr index; names := c.ec_name :: !names; ) (!constructs); e.e_names <- List.rev !names; e.e_extern <- e.e_extern; e.e_type.t_params <- e.e_params; e.e_type.t_type <- TAnon { a_fields = !fields; a_status = ref (EnumStatics e); }; if !is_flat then e.e_meta <- (Meta.FlatEnum,[],e.e_pos) :: e.e_meta; if (ctx.com.platform = Java || ctx.com.platform = Cs) && not e.e_extern then delay ctx PTypeField (fun () -> let metas = check_strict_meta ctx e.e_meta in e.e_meta <- metas @ e.e_meta; PMap.iter (fun _ ef -> let metas = check_strict_meta ctx ef.ef_meta in if metas <> [] then ef.ef_meta <- metas @ ef.ef_meta ) e.e_constrs ); | ETypedef d -> let t = (match get_type d.d_name with TTypeDecl t -> t | _ -> assert false) in check_global_metadata ctx (fun m -> t.t_meta <- m :: t.t_meta) t.t_module.m_path t.t_path None; let ctx = { ctx with type_params = t.t_params } in let tt = load_complex_type ctx p d.d_data in (* we exceptionnaly allow follow here because we don't care the type we get as long as it's not our own *) (match d.d_data with | CTExtend _ -> () | _ -> if t.t_type == follow tt then error "Recursive typedef is not allowed" p); (match t.t_type with | TMono r -> (match !r with | None -> r := Some tt; | Some _ -> assert false); | _ -> assert false); if ctx.com.platform = Cs && t.t_meta <> [] then delay ctx PTypeField (fun () -> let metas = check_strict_meta ctx t.t_meta in if metas <> [] then t.t_meta <- metas @ t.t_meta; ); | EAbstract d -> let a = (match get_type d.d_name with TAbstractDecl a -> a | _ -> assert false) in check_global_metadata ctx (fun m -> a.a_meta <- m :: a.a_meta) a.a_module.m_path a.a_path None; let ctx = { ctx with type_params = a.a_params } in let is_type = ref false in let load_type t from = let t = load_complex_type ctx p t in let t = if not (Meta.has Meta.CoreType a.a_meta) then begin if !is_type then begin let r = exc_protect ctx (fun r -> r := (fun() -> t); let at = monomorphs a.a_params a.a_this in (try (if from then Type.unify t at else Type.unify at t) with Unify_error _ -> error "You can only declare from/to with compatible types" p); t ) "constraint" in delay ctx PForce (fun () -> ignore(!r())); TLazy r end else error "Missing underlying type declaration or @:coreType declaration" p; end else begin if Meta.has Meta.Callable a.a_meta then error "@:coreType abstracts cannot be @:callable" p; t end in t in List.iter (function | AFromType t -> a.a_from <- (load_type t true) :: a.a_from | AToType t -> a.a_to <- (load_type t false) :: a.a_to | AIsType t -> if a.a_impl = None then error "Abstracts with underlying type must have an implementation" a.a_pos; if Meta.has Meta.CoreType a.a_meta then error "@:coreType abstracts cannot have an underlying type" p; let at = load_complex_type ctx p t in (match at with TAbstract(a2,_) when a == a2 -> error "Abstract underlying type cannot be recursive" a.a_pos | _ -> ()); a.a_this <- at; is_type := true; | APrivAbstract -> () ) d.d_flags; if not !is_type then begin if Meta.has Meta.CoreType a.a_meta then a.a_this <- TAbstract(a,List.map snd a.a_params) else error "Abstract is missing underlying type declaration" a.a_pos end let type_module ctx m file ?(is_extern=false) tdecls p = let m, decls, tdecls = make_module ctx m file tdecls p in if is_extern then m.m_extra.m_kind <- MExtern; add_module ctx m p; (* define the per-module context for the next pass *) let ctx = { com = ctx.com; g = ctx.g; t = ctx.t; m = { curmod = m; module_types = ctx.g.std.m_types; module_using = []; module_globals = PMap.empty; wildcard_packages = []; module_imports = []; }; meta = []; this_stack = []; with_type_stack = []; call_argument_stack = []; pass = PBuildModule; on_error = (fun ctx msg p -> ctx.com.error msg p); macro_depth = ctx.macro_depth; curclass = null_class; curfield = null_field; tthis = ctx.tthis; ret = ctx.ret; locals = PMap.empty; type_params = []; curfun = FunStatic; untyped = false; in_super_call = false; in_macro = ctx.in_macro; in_display = false; in_loop = false; opened = []; vthis = None; } in if ctx.g.std != null_module then begin add_dependency m ctx.g.std; (* this will ensure both String and (indirectly) Array which are basic types which might be referenced *) ignore(load_core_type ctx "String"); end; (* here is an additional PASS 1 phase, which define the type parameters for all module types. Constraints are handled lazily (no other type is loaded) because they might be recursive anyway *) List.iter (fun d -> match d with | (TClassDecl c, (EClass d, p)) -> c.cl_params <- type_type_params ctx c.cl_path (fun() -> c.cl_params) p d.d_params; | (TEnumDecl e, (EEnum d, p)) -> e.e_params <- type_type_params ctx e.e_path (fun() -> e.e_params) p d.d_params; | (TTypeDecl t, (ETypedef d, p)) -> t.t_params <- type_type_params ctx t.t_path (fun() -> t.t_params) p d.d_params; | (TAbstractDecl a, (EAbstract d, p)) -> a.a_params <- type_type_params ctx a.a_path (fun() -> a.a_params) p d.d_params; | _ -> assert false ) decls; (* setup module types *) let context_init = ref [] in let do_init() = match !context_init with | [] -> () | l -> context_init := []; List.iter (fun f -> f()) (List.rev l) in List.iter (init_module_type ctx context_init do_init) tdecls; m let resolve_module_file com m remap p = let forbid = ref false in let file = (match m with | [] , name -> name | x :: l , name -> let x = (try match PMap.find x com.package_rules with | Forbidden -> forbid := true; x | Directory d -> d | Remap d -> remap := d :: l; d with Not_found -> x ) in String.concat "/" (x :: l) ^ "/" ^ name ) ^ ".hx" in let file = Common.find_file com file in let file = (match String.lowercase (snd m) with | "con" | "aux" | "prn" | "nul" | "com1" | "com2" | "com3" | "lpt1" | "lpt2" | "lpt3" when Sys.os_type = "Win32" -> (* these names are reserved by the OS - old DOS legacy, such files cannot be easily created but are reported as visible *) if (try (Unix.stat file).Unix.st_size with _ -> 0) > 0 then file else raise Not_found | _ -> file ) in (* if we try to load a std.xxxx class and resolve a real std file, the package name is not valid, ignore *) (match fst m with | "std" :: _ -> let file = Common.unique_full_path file in if List.exists (fun path -> ExtString.String.starts_with file (try Common.unique_full_path path with _ -> path)) com.std_path then raise Not_found; | _ -> ()); if !forbid then begin let _, decls = (!parse_hook) com file p in let rec loop decls = match decls with | ((EImport _,_) | (EUsing _,_)) :: decls -> loop decls | (EClass d,_) :: _ -> d.d_meta | (EEnum d,_) :: _ -> d.d_meta | (EAbstract d,_) :: _ -> d.d_meta | (ETypedef d,_) :: _ -> d.d_meta | [] -> [] in let meta = loop decls in if not (Meta.has Meta.NoPackageRestrict meta) then begin let x = (match fst m with [] -> assert false | x :: _ -> x) in raise (Forbid_package ((x,m,p),[],if Common.defined com Define.Macro then "macro" else platform_name com.platform)); end; end; file let parse_module ctx m p = let remap = ref (fst m) in let file = resolve_module_file ctx.com m remap p in let pack, decls = (!parse_hook) ctx.com file p in if pack <> !remap then begin let spack m = if m = [] then "" else String.concat "." m in if p == Ast.null_pos then display_error ctx ("Invalid commandline class : " ^ s_type_path m ^ " should be " ^ s_type_path (pack,snd m)) p else display_error ctx ("Invalid package : " ^ spack (fst m) ^ " should be " ^ spack pack) p end; file, if !remap <> fst m then (* build typedefs to redirect to real package *) List.rev (List.fold_left (fun acc (t,p) -> let build f d = let priv = List.mem f d.d_flags in (ETypedef { d_name = d.d_name; d_doc = None; d_meta = []; d_params = d.d_params; d_flags = if priv then [EPrivate] else []; d_data = CTPath (if priv then { tpackage = []; tname = "Dynamic"; tparams = []; tsub = None; } else { tpackage = !remap; tname = d.d_name; tparams = List.map (fun tp -> TPType (CTPath { tpackage = []; tname = tp.tp_name; tparams = []; tsub = None; }) ) d.d_params; tsub = None; }); },p) :: acc in match t with | EClass d -> build HPrivate d | EEnum d -> build EPrivate d | ETypedef d -> build EPrivate d | EAbstract d -> build APrivAbstract d | EImport _ | EUsing _ -> acc ) [(EImport (List.map (fun s -> s,null_pos) (!remap @ [snd m]),INormal),null_pos)] decls) else decls let load_module ctx m p = let m2 = (try Hashtbl.find ctx.g.modules m with Not_found -> match !type_module_hook ctx m p with | Some m -> m | None -> let is_extern = ref false in let file, decls = (try parse_module ctx m p with Not_found -> let rec loop = function | [] -> raise (Error (Module_not_found m,p)) | load :: l -> match load m p with | None -> loop l | Some (file,(_,a)) -> file, a in is_extern := true; loop ctx.com.load_extern_type ) in let is_extern = !is_extern in try type_module ctx m file ~is_extern decls p with Forbid_package (inf,pl,pf) when p <> Ast.null_pos -> raise (Forbid_package (inf,p::pl,pf)) ) in add_dependency ctx.m.curmod m2; if ctx.pass = PTypeField then flush_pass ctx PBuildClass "load_module"; m2 ;; type_function_params_rec := type_function_params