123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853 |
- package java.lang;
- /*
- * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation. Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
- /**
- * The {@code Double} class wraps a value of the primitive type
- * {@code double} in an object. An object of type
- * {@code Double} contains a single field whose type is
- * {@code double}.
- *
- * <p>In addition, this class provides several methods for converting a
- * {@code double} to a {@code String} and a
- * {@code String} to a {@code double}, as well as other
- * constants and methods useful when dealing with a
- * {@code double}.
- *
- * @author Lee Boynton
- * @author Arthur van Hoff
- * @author Joseph D. Darcy
- * @since JDK1.0
- */
- @:require(java0) extern class Double extends java.lang.Number implements java.lang.Comparable<Double>
- {
- /**
- * A constant holding the positive infinity of type
- * {@code double}. It is equal to the value returned by
- * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
- */
- public static var POSITIVE_INFINITY(default, null) : Float;
- /**
- * A constant holding the negative infinity of type
- * {@code double}. It is equal to the value returned by
- * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
- */
- public static var NEGATIVE_INFINITY(default, null) : Float;
- /**
- * A constant holding a Not-a-Number (NaN) value of type
- * {@code double}. It is equivalent to the value returned by
- * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
- */
- public static var NaN(default, null) : Float;
- /**
- * A constant holding the largest positive finite value of type
- * {@code double},
- * (2-2<sup>-52</sup>)·2<sup>1023</sup>. It is equal to
- * the hexadecimal floating-point literal
- * {@code 0x1.fffffffffffffP+1023} and also equal to
- * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
- */
- public static var MAX_VALUE(default, null) : Float;
- /**
- * A constant holding the smallest positive normal value of type
- * {@code double}, 2<sup>-1022</sup>. It is equal to the
- * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
- * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
- *
- * @since 1.6
- */
- @:require(java6) public static var MIN_NORMAL(default, null) : Float;
- /**
- * A constant holding the smallest positive nonzero value of type
- * {@code double}, 2<sup>-1074</sup>. It is equal to the
- * hexadecimal floating-point literal
- * {@code 0x0.0000000000001P-1022} and also equal to
- * {@code Double.longBitsToDouble(0x1L)}.
- */
- public static var MIN_VALUE(default, null) : Float;
- /**
- * Maximum exponent a finite {@code double} variable may have.
- * It is equal to the value returned by
- * {@code Math.getExponent(Double.MAX_VALUE)}.
- *
- * @since 1.6
- */
- @:require(java6) public static var MAX_EXPONENT(default, null) : Int;
- /**
- * Minimum exponent a normalized {@code double} variable may
- * have. It is equal to the value returned by
- * {@code Math.getExponent(Double.MIN_NORMAL)}.
- *
- * @since 1.6
- */
- @:require(java6) public static var MIN_EXPONENT(default, null) : Int;
- /**
- * The number of bits used to represent a {@code double} value.
- *
- * @since 1.5
- */
- @:require(java5) public static var SIZE(default, null) : Int;
- /**
- * The {@code Class} instance representing the primitive type
- * {@code double}.
- *
- * @since JDK1.1
- */
- @:require(java1) public static var TYPE(default, null) : Class<Double>;
- /**
- * Returns a string representation of the {@code double}
- * argument. All characters mentioned below are ASCII characters.
- * <ul>
- * <li>If the argument is NaN, the result is the string
- * "{@code NaN}".
- * <li>Otherwise, the result is a string that represents the sign and
- * magnitude (absolute value) of the argument. If the sign is negative,
- * the first character of the result is '{@code -}'
- * (<code>'\u002D'</code>); if the sign is positive, no sign character
- * appears in the result. As for the magnitude <i>m</i>:
- * <ul>
- * <li>If <i>m</i> is infinity, it is represented by the characters
- * {@code "Infinity"}; thus, positive infinity produces the result
- * {@code "Infinity"} and negative infinity produces the result
- * {@code "-Infinity"}.
- *
- * <li>If <i>m</i> is zero, it is represented by the characters
- * {@code "0.0"}; thus, negative zero produces the result
- * {@code "-0.0"} and positive zero produces the result
- * {@code "0.0"}.
- *
- * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
- * than 10<sup>7</sup>, then it is represented as the integer part of
- * <i>m</i>, in decimal form with no leading zeroes, followed by
- * '{@code .}' (<code>'\u002E'</code>), followed by one or
- * more decimal digits representing the fractional part of <i>m</i>.
- *
- * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
- * equal to 10<sup>7</sup>, then it is represented in so-called
- * "computerized scientific notation." Let <i>n</i> be the unique
- * integer such that 10<sup><i>n</i></sup> ≤ <i>m</i> {@literal <}
- * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
- * mathematically exact quotient of <i>m</i> and
- * 10<sup><i>n</i></sup> so that 1 ≤ <i>a</i> {@literal <} 10. The
- * magnitude is then represented as the integer part of <i>a</i>,
- * as a single decimal digit, followed by '{@code .}'
- * (<code>'\u002E'</code>), followed by decimal digits
- * representing the fractional part of <i>a</i>, followed by the
- * letter '{@code E}' (<code>'\u0045'</code>), followed
- * by a representation of <i>n</i> as a decimal integer, as
- * produced by the method {@link Integer#toString(int)}.
- * </ul>
- * </ul>
- * How many digits must be printed for the fractional part of
- * <i>m</i> or <i>a</i>? There must be at least one digit to represent
- * the fractional part, and beyond that as many, but only as many, more
- * digits as are needed to uniquely distinguish the argument value from
- * adjacent values of type {@code double}. That is, suppose that
- * <i>x</i> is the exact mathematical value represented by the decimal
- * representation produced by this method for a finite nonzero argument
- * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
- * to <i>x</i>; or if two {@code double} values are equally close
- * to <i>x</i>, then <i>d</i> must be one of them and the least
- * significant bit of the significand of <i>d</i> must be {@code 0}.
- *
- * <p>To create localized string representations of a floating-point
- * value, use subclasses of {@link java.text.NumberFormat}.
- *
- * @param d the {@code double} to be converted.
- * @return a string representation of the argument.
- */
- @:native('toString') @:overload public static function _toString(d : Float) : String;
- /**
- * Returns a hexadecimal string representation of the
- * {@code double} argument. All characters mentioned below
- * are ASCII characters.
- *
- * <ul>
- * <li>If the argument is NaN, the result is the string
- * "{@code NaN}".
- * <li>Otherwise, the result is a string that represents the sign
- * and magnitude of the argument. If the sign is negative, the
- * first character of the result is '{@code -}'
- * (<code>'\u002D'</code>); if the sign is positive, no sign
- * character appears in the result. As for the magnitude <i>m</i>:
- *
- * <ul>
- * <li>If <i>m</i> is infinity, it is represented by the string
- * {@code "Infinity"}; thus, positive infinity produces the
- * result {@code "Infinity"} and negative infinity produces
- * the result {@code "-Infinity"}.
- *
- * <li>If <i>m</i> is zero, it is represented by the string
- * {@code "0x0.0p0"}; thus, negative zero produces the result
- * {@code "-0x0.0p0"} and positive zero produces the result
- * {@code "0x0.0p0"}.
- *
- * <li>If <i>m</i> is a {@code double} value with a
- * normalized representation, substrings are used to represent the
- * significand and exponent fields. The significand is
- * represented by the characters {@code "0x1."}
- * followed by a lowercase hexadecimal representation of the rest
- * of the significand as a fraction. Trailing zeros in the
- * hexadecimal representation are removed unless all the digits
- * are zero, in which case a single zero is used. Next, the
- * exponent is represented by {@code "p"} followed
- * by a decimal string of the unbiased exponent as if produced by
- * a call to {@link Integer#toString(int) Integer.toString} on the
- * exponent value.
- *
- * <li>If <i>m</i> is a {@code double} value with a subnormal
- * representation, the significand is represented by the
- * characters {@code "0x0."} followed by a
- * hexadecimal representation of the rest of the significand as a
- * fraction. Trailing zeros in the hexadecimal representation are
- * removed. Next, the exponent is represented by
- * {@code "p-1022"}. Note that there must be at
- * least one nonzero digit in a subnormal significand.
- *
- * </ul>
- *
- * </ul>
- *
- * <table border>
- * <caption><h3>Examples</h3></caption>
- * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
- * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
- * <tr><td>{@code -1.0}</td> <td>{@code -0x1.0p0}</td>
- * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
- * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
- * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
- * <tr><td>{@code 0.25}</td> <td>{@code 0x1.0p-2}</td>
- * <tr><td>{@code Double.MAX_VALUE}</td>
- * <td>{@code 0x1.fffffffffffffp1023}</td>
- * <tr><td>{@code Minimum Normal Value}</td>
- * <td>{@code 0x1.0p-1022}</td>
- * <tr><td>{@code Maximum Subnormal Value}</td>
- * <td>{@code 0x0.fffffffffffffp-1022}</td>
- * <tr><td>{@code Double.MIN_VALUE}</td>
- * <td>{@code 0x0.0000000000001p-1022}</td>
- * </table>
- * @param d the {@code double} to be converted.
- * @return a hex string representation of the argument.
- * @since 1.5
- * @author Joseph D. Darcy
- */
- @:require(java5) @:overload public static function toHexString(d : Float) : String;
- /**
- * Returns a {@code Double} object holding the
- * {@code double} value represented by the argument string
- * {@code s}.
- *
- * <p>If {@code s} is {@code null}, then a
- * {@code NullPointerException} is thrown.
- *
- * <p>Leading and trailing whitespace characters in {@code s}
- * are ignored. Whitespace is removed as if by the {@link
- * String#trim} method; that is, both ASCII space and control
- * characters are removed. The rest of {@code s} should
- * constitute a <i>FloatValue</i> as described by the lexical
- * syntax rules:
- *
- * <blockquote>
- * <dl>
- * <dt><i>FloatValue:</i>
- * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
- * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
- * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
- * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
- * <dd><i>SignedInteger</i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>HexFloatingPointLiteral</i>:
- * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>HexSignificand:</i>
- * <dd><i>HexNumeral</i>
- * <dd><i>HexNumeral</i> {@code .}
- * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
- * </i>{@code .}<i> HexDigits</i>
- * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
- * </i>{@code .} <i>HexDigits</i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>BinaryExponent:</i>
- * <dd><i>BinaryExponentIndicator SignedInteger</i>
- * </dl>
- *
- * <p>
- *
- * <dl>
- * <dt><i>BinaryExponentIndicator:</i>
- * <dd>{@code p}
- * <dd>{@code P}
- * </dl>
- *
- * </blockquote>
- *
- * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
- * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
- * <i>FloatTypeSuffix</i> are as defined in the lexical structure
- * sections of
- * <cite>The Java™ Language Specification</cite>,
- * except that underscores are not accepted between digits.
- * If {@code s} does not have the form of
- * a <i>FloatValue</i>, then a {@code NumberFormatException}
- * is thrown. Otherwise, {@code s} is regarded as
- * representing an exact decimal value in the usual
- * "computerized scientific notation" or as an exact
- * hexadecimal value; this exact numerical value is then
- * conceptually converted to an "infinitely precise"
- * binary value that is then rounded to type {@code double}
- * by the usual round-to-nearest rule of IEEE 754 floating-point
- * arithmetic, which includes preserving the sign of a zero
- * value.
- *
- * Note that the round-to-nearest rule also implies overflow and
- * underflow behaviour; if the exact value of {@code s} is large
- * enough in magnitude (greater than or equal to ({@link
- * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
- * rounding to {@code double} will result in an infinity and if the
- * exact value of {@code s} is small enough in magnitude (less
- * than or equal to {@link #MIN_VALUE}/2), rounding to float will
- * result in a zero.
- *
- * Finally, after rounding a {@code Double} object representing
- * this {@code double} value is returned.
- *
- * <p> To interpret localized string representations of a
- * floating-point value, use subclasses of {@link
- * java.text.NumberFormat}.
- *
- * <p>Note that trailing format specifiers, specifiers that
- * determine the type of a floating-point literal
- * ({@code 1.0f} is a {@code float} value;
- * {@code 1.0d} is a {@code double} value), do
- * <em>not</em> influence the results of this method. In other
- * words, the numerical value of the input string is converted
- * directly to the target floating-point type. The two-step
- * sequence of conversions, string to {@code float} followed
- * by {@code float} to {@code double}, is <em>not</em>
- * equivalent to converting a string directly to
- * {@code double}. For example, the {@code float}
- * literal {@code 0.1f} is equal to the {@code double}
- * value {@code 0.10000000149011612}; the {@code float}
- * literal {@code 0.1f} represents a different numerical
- * value than the {@code double} literal
- * {@code 0.1}. (The numerical value 0.1 cannot be exactly
- * represented in a binary floating-point number.)
- *
- * <p>To avoid calling this method on an invalid string and having
- * a {@code NumberFormatException} be thrown, the regular
- * expression below can be used to screen the input string:
- *
- * <code>
- * <pre>
- * final String Digits = "(\\p{Digit}+)";
- * final String HexDigits = "(\\p{XDigit}+)";
- * // an exponent is 'e' or 'E' followed by an optionally
- * // signed decimal integer.
- * final String Exp = "[eE][+-]?"+Digits;
- * final String fpRegex =
- * ("[\\x00-\\x20]*"+ // Optional leading "whitespace"
- * "[+-]?(" + // Optional sign character
- * "NaN|" + // "NaN" string
- * "Infinity|" + // "Infinity" string
- *
- * // A decimal floating-point string representing a finite positive
- * // number without a leading sign has at most five basic pieces:
- * // Digits . Digits ExponentPart FloatTypeSuffix
- * //
- * // Since this method allows integer-only strings as input
- * // in addition to strings of floating-point literals, the
- * // two sub-patterns below are simplifications of the grammar
- * // productions from section 3.10.2 of
- * // <cite>The Java™ Language Specification</cite>.
- *
- * // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
- * "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
- *
- * // . Digits ExponentPart_opt FloatTypeSuffix_opt
- * "(\\.("+Digits+")("+Exp+")?)|"+
- *
- * // Hexadecimal strings
- * "((" +
- * // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
- * "(0[xX]" + HexDigits + "(\\.)?)|" +
- *
- * // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
- * "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
- *
- * ")[pP][+-]?" + Digits + "))" +
- * "[fFdD]?))" +
- * "[\\x00-\\x20]*");// Optional trailing "whitespace"
- *
- * if (Pattern.matches(fpRegex, myString))
- * Double.valueOf(myString); // Will not throw NumberFormatException
- * else {
- * // Perform suitable alternative action
- * }
- * </pre>
- * </code>
- *
- * @param s the string to be parsed.
- * @return a {@code Double} object holding the value
- * represented by the {@code String} argument.
- * @throws NumberFormatException if the string does not contain a
- * parsable number.
- */
- @:overload public static function valueOf(s : String) : Double;
- /**
- * Returns a {@code Double} instance representing the specified
- * {@code double} value.
- * If a new {@code Double} instance is not required, this method
- * should generally be used in preference to the constructor
- * {@link #Double(double)}, as this method is likely to yield
- * significantly better space and time performance by caching
- * frequently requested values.
- *
- * @param d a double value.
- * @return a {@code Double} instance representing {@code d}.
- * @since 1.5
- */
- @:require(java5) @:overload public static function valueOf(d : Float) : Double;
- /**
- * Returns a new {@code double} initialized to the value
- * represented by the specified {@code String}, as performed
- * by the {@code valueOf} method of class
- * {@code Double}.
- *
- * @param s the string to be parsed.
- * @return the {@code double} value represented by the string
- * argument.
- * @throws NullPointerException if the string is null
- * @throws NumberFormatException if the string does not contain
- * a parsable {@code double}.
- * @see java.lang.Double#valueOf(String)
- * @since 1.2
- */
- @:require(java2) @:overload public static function parseDouble(s : String) : Float;
- /**
- * Returns {@code true} if the specified number is a
- * Not-a-Number (NaN) value, {@code false} otherwise.
- *
- * @param v the value to be tested.
- * @return {@code true} if the value of the argument is NaN;
- * {@code false} otherwise.
- */
- @:native('isNaN') @:overload public static function _isNaN(v : Float) : Bool;
- /**
- * Returns {@code true} if the specified number is infinitely
- * large in magnitude, {@code false} otherwise.
- *
- * @param v the value to be tested.
- * @return {@code true} if the value of the argument is positive
- * infinity or negative infinity; {@code false} otherwise.
- */
- @:native('isInfinite') @:overload public static function _isInfinite(v : Float) : Bool;
- /**
- * Constructs a newly allocated {@code Double} object that
- * represents the primitive {@code double} argument.
- *
- * @param value the value to be represented by the {@code Double}.
- */
- @:overload public function new(value : Float) : Void;
- /**
- * Constructs a newly allocated {@code Double} object that
- * represents the floating-point value of type {@code double}
- * represented by the string. The string is converted to a
- * {@code double} value as if by the {@code valueOf} method.
- *
- * @param s a string to be converted to a {@code Double}.
- * @throws NumberFormatException if the string does not contain a
- * parsable number.
- * @see java.lang.Double#valueOf(java.lang.String)
- */
- @:overload public function new(s : String) : Void;
- /**
- * Returns {@code true} if this {@code Double} value is
- * a Not-a-Number (NaN), {@code false} otherwise.
- *
- * @return {@code true} if the value represented by this object is
- * NaN; {@code false} otherwise.
- */
- @:overload public function isNaN() : Bool;
- /**
- * Returns {@code true} if this {@code Double} value is
- * infinitely large in magnitude, {@code false} otherwise.
- *
- * @return {@code true} if the value represented by this object is
- * positive infinity or negative infinity;
- * {@code false} otherwise.
- */
- @:overload public function isInfinite() : Bool;
- /**
- * Returns a string representation of this {@code Double} object.
- * The primitive {@code double} value represented by this
- * object is converted to a string exactly as if by the method
- * {@code toString} of one argument.
- *
- * @return a {@code String} representation of this object.
- * @see java.lang.Double#toString(double)
- */
- @:overload public function toString() : String;
- /**
- * Returns the value of this {@code Double} as a {@code byte} (by
- * casting to a {@code byte}).
- *
- * @return the {@code double} value represented by this object
- * converted to type {@code byte}
- * @since JDK1.1
- */
- @:require(java1) @:overload override public function byteValue() : java.StdTypes.Int8;
- /**
- * Returns the value of this {@code Double} as a
- * {@code short} (by casting to a {@code short}).
- *
- * @return the {@code double} value represented by this object
- * converted to type {@code short}
- * @since JDK1.1
- */
- @:require(java1) @:overload override public function shortValue() : java.StdTypes.Int16;
- /**
- * Returns the value of this {@code Double} as an
- * {@code int} (by casting to type {@code int}).
- *
- * @return the {@code double} value represented by this object
- * converted to type {@code int}
- */
- @:overload override public function intValue() : Int;
- /**
- * Returns the value of this {@code Double} as a
- * {@code long} (by casting to type {@code long}).
- *
- * @return the {@code double} value represented by this object
- * converted to type {@code long}
- */
- @:overload override public function longValue() : haxe.Int64;
- /**
- * Returns the {@code float} value of this
- * {@code Double} object.
- *
- * @return the {@code double} value represented by this object
- * converted to type {@code float}
- * @since JDK1.0
- */
- @:require(java0) @:overload override public function floatValue() : Single;
- /**
- * Returns the {@code double} value of this
- * {@code Double} object.
- *
- * @return the {@code double} value represented by this object
- */
- @:overload override public function doubleValue() : Float;
- /**
- * Returns a hash code for this {@code Double} object. The
- * result is the exclusive OR of the two halves of the
- * {@code long} integer bit representation, exactly as
- * produced by the method {@link #doubleToLongBits(double)}, of
- * the primitive {@code double} value represented by this
- * {@code Double} object. That is, the hash code is the value
- * of the expression:
- *
- * <blockquote>
- * {@code (int)(v^(v>>>32))}
- * </blockquote>
- *
- * where {@code v} is defined by:
- *
- * <blockquote>
- * {@code long v = Double.doubleToLongBits(this.doubleValue());}
- * </blockquote>
- *
- * @return a {@code hash code} value for this object.
- */
- @:overload public function hashCode() : Int;
- /**
- * Compares this object against the specified object. The result
- * is {@code true} if and only if the argument is not
- * {@code null} and is a {@code Double} object that
- * represents a {@code double} that has the same value as the
- * {@code double} represented by this object. For this
- * purpose, two {@code double} values are considered to be
- * the same if and only if the method {@link
- * #doubleToLongBits(double)} returns the identical
- * {@code long} value when applied to each.
- *
- * <p>Note that in most cases, for two instances of class
- * {@code Double}, {@code d1} and {@code d2}, the
- * value of {@code d1.equals(d2)} is {@code true} if and
- * only if
- *
- * <blockquote>
- * {@code d1.doubleValue() == d2.doubleValue()}
- * </blockquote>
- *
- * <p>also has the value {@code true}. However, there are two
- * exceptions:
- * <ul>
- * <li>If {@code d1} and {@code d2} both represent
- * {@code Double.NaN}, then the {@code equals} method
- * returns {@code true}, even though
- * {@code Double.NaN==Double.NaN} has the value
- * {@code false}.
- * <li>If {@code d1} represents {@code +0.0} while
- * {@code d2} represents {@code -0.0}, or vice versa,
- * the {@code equal} test has the value {@code false},
- * even though {@code +0.0==-0.0} has the value {@code true}.
- * </ul>
- * This definition allows hash tables to operate properly.
- * @param obj the object to compare with.
- * @return {@code true} if the objects are the same;
- * {@code false} otherwise.
- * @see java.lang.Double#doubleToLongBits(double)
- */
- @:overload public function equals(obj : Dynamic) : Bool;
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "double
- * format" bit layout.
- *
- * <p>Bit 63 (the bit that is selected by the mask
- * {@code 0x8000000000000000L}) represents the sign of the
- * floating-point number. Bits
- * 62-52 (the bits that are selected by the mask
- * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
- * (the bits that are selected by the mask
- * {@code 0x000fffffffffffffL}) represent the significand
- * (sometimes called the mantissa) of the floating-point number.
- *
- * <p>If the argument is positive infinity, the result is
- * {@code 0x7ff0000000000000L}.
- *
- * <p>If the argument is negative infinity, the result is
- * {@code 0xfff0000000000000L}.
- *
- * <p>If the argument is NaN, the result is
- * {@code 0x7ff8000000000000L}.
- *
- * <p>In all cases, the result is a {@code long} integer that, when
- * given to the {@link #longBitsToDouble(long)} method, will produce a
- * floating-point value the same as the argument to
- * {@code doubleToLongBits} (except all NaN values are
- * collapsed to a single "canonical" NaN value).
- *
- * @param value a {@code double} precision floating-point number.
- * @return the bits that represent the floating-point number.
- */
- @:overload public static function doubleToLongBits(value : Float) : haxe.Int64;
- /**
- * Returns a representation of the specified floating-point value
- * according to the IEEE 754 floating-point "double
- * format" bit layout, preserving Not-a-Number (NaN) values.
- *
- * <p>Bit 63 (the bit that is selected by the mask
- * {@code 0x8000000000000000L}) represents the sign of the
- * floating-point number. Bits
- * 62-52 (the bits that are selected by the mask
- * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
- * (the bits that are selected by the mask
- * {@code 0x000fffffffffffffL}) represent the significand
- * (sometimes called the mantissa) of the floating-point number.
- *
- * <p>If the argument is positive infinity, the result is
- * {@code 0x7ff0000000000000L}.
- *
- * <p>If the argument is negative infinity, the result is
- * {@code 0xfff0000000000000L}.
- *
- * <p>If the argument is NaN, the result is the {@code long}
- * integer representing the actual NaN value. Unlike the
- * {@code doubleToLongBits} method,
- * {@code doubleToRawLongBits} does not collapse all the bit
- * patterns encoding a NaN to a single "canonical" NaN
- * value.
- *
- * <p>In all cases, the result is a {@code long} integer that,
- * when given to the {@link #longBitsToDouble(long)} method, will
- * produce a floating-point value the same as the argument to
- * {@code doubleToRawLongBits}.
- *
- * @param value a {@code double} precision floating-point number.
- * @return the bits that represent the floating-point number.
- * @since 1.3
- */
- @:require(java3) @:overload @:native public static function doubleToRawLongBits(value : Float) : haxe.Int64;
- /**
- * Returns the {@code double} value corresponding to a given
- * bit representation.
- * The argument is considered to be a representation of a
- * floating-point value according to the IEEE 754 floating-point
- * "double format" bit layout.
- *
- * <p>If the argument is {@code 0x7ff0000000000000L}, the result
- * is positive infinity.
- *
- * <p>If the argument is {@code 0xfff0000000000000L}, the result
- * is negative infinity.
- *
- * <p>If the argument is any value in the range
- * {@code 0x7ff0000000000001L} through
- * {@code 0x7fffffffffffffffL} or in the range
- * {@code 0xfff0000000000001L} through
- * {@code 0xffffffffffffffffL}, the result is a NaN. No IEEE
- * 754 floating-point operation provided by Java can distinguish
- * between two NaN values of the same type with different bit
- * patterns. Distinct values of NaN are only distinguishable by
- * use of the {@code Double.doubleToRawLongBits} method.
- *
- * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
- * values that can be computed from the argument:
- *
- * <blockquote><pre>
- * int s = ((bits >> 63) == 0) ? 1 : -1;
- * int e = (int)((bits >> 52) & 0x7ffL);
- * long m = (e == 0) ?
- * (bits & 0xfffffffffffffL) << 1 :
- * (bits & 0xfffffffffffffL) | 0x10000000000000L;
- * </pre></blockquote>
- *
- * Then the floating-point result equals the value of the mathematical
- * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-1075</sup>.
- *
- * <p>Note that this method may not be able to return a
- * {@code double} NaN with exactly same bit pattern as the
- * {@code long} argument. IEEE 754 distinguishes between two
- * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The
- * differences between the two kinds of NaN are generally not
- * visible in Java. Arithmetic operations on signaling NaNs turn
- * them into quiet NaNs with a different, but often similar, bit
- * pattern. However, on some processors merely copying a
- * signaling NaN also performs that conversion. In particular,
- * copying a signaling NaN to return it to the calling method
- * may perform this conversion. So {@code longBitsToDouble}
- * may not be able to return a {@code double} with a
- * signaling NaN bit pattern. Consequently, for some
- * {@code long} values,
- * {@code doubleToRawLongBits(longBitsToDouble(start))} may
- * <i>not</i> equal {@code start}. Moreover, which
- * particular bit patterns represent signaling NaNs is platform
- * dependent; although all NaN bit patterns, quiet or signaling,
- * must be in the NaN range identified above.
- *
- * @param bits any {@code long} integer.
- * @return the {@code double} floating-point value with the same
- * bit pattern.
- */
- @:overload @:native public static function longBitsToDouble(bits : haxe.Int64) : Float;
- /**
- * Compares two {@code Double} objects numerically. There
- * are two ways in which comparisons performed by this method
- * differ from those performed by the Java language numerical
- * comparison operators ({@code <, <=, ==, >=, >})
- * when applied to primitive {@code double} values:
- * <ul><li>
- * {@code Double.NaN} is considered by this method
- * to be equal to itself and greater than all other
- * {@code double} values (including
- * {@code Double.POSITIVE_INFINITY}).
- * <li>
- * {@code 0.0d} is considered by this method to be greater
- * than {@code -0.0d}.
- * </ul>
- * This ensures that the <i>natural ordering</i> of
- * {@code Double} objects imposed by this method is <i>consistent
- * with equals</i>.
- *
- * @param anotherDouble the {@code Double} to be compared.
- * @return the value {@code 0} if {@code anotherDouble} is
- * numerically equal to this {@code Double}; a value
- * less than {@code 0} if this {@code Double}
- * is numerically less than {@code anotherDouble};
- * and a value greater than {@code 0} if this
- * {@code Double} is numerically greater than
- * {@code anotherDouble}.
- *
- * @since 1.2
- */
- @:require(java2) @:overload public function compareTo(anotherDouble : Double) : Int;
- /**
- * Compares the two specified {@code double} values. The sign
- * of the integer value returned is the same as that of the
- * integer that would be returned by the call:
- * <pre>
- * new Double(d1).compareTo(new Double(d2))
- * </pre>
- *
- * @param d1 the first {@code double} to compare
- * @param d2 the second {@code double} to compare
- * @return the value {@code 0} if {@code d1} is
- * numerically equal to {@code d2}; a value less than
- * {@code 0} if {@code d1} is numerically less than
- * {@code d2}; and a value greater than {@code 0}
- * if {@code d1} is numerically greater than
- * {@code d2}.
- * @since 1.4
- */
- @:require(java4) @:overload public static function compare(d1 : Float, d2 : Float) : Int;
- }
|