1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366 |
- package java.lang;
- /*
- * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation. Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
- /**
- * The class {@code Math} contains methods for performing basic
- * numeric operations such as the elementary exponential, logarithm,
- * square root, and trigonometric functions.
- *
- * <p>Unlike some of the numeric methods of class
- * {@code StrictMath}, all implementations of the equivalent
- * functions of class {@code Math} are not defined to return the
- * bit-for-bit same results. This relaxation permits
- * better-performing implementations where strict reproducibility is
- * not required.
- *
- * <p>By default many of the {@code Math} methods simply call
- * the equivalent method in {@code StrictMath} for their
- * implementation. Code generators are encouraged to use
- * platform-specific native libraries or microprocessor instructions,
- * where available, to provide higher-performance implementations of
- * {@code Math} methods. Such higher-performance
- * implementations still must conform to the specification for
- * {@code Math}.
- *
- * <p>The quality of implementation specifications concern two
- * properties, accuracy of the returned result and monotonicity of the
- * method. Accuracy of the floating-point {@code Math} methods
- * is measured in terms of <i>ulps</i>, units in the last place. For
- * a given floating-point format, an ulp of a specific real number
- * value is the distance between the two floating-point values
- * bracketing that numerical value. When discussing the accuracy of a
- * method as a whole rather than at a specific argument, the number of
- * ulps cited is for the worst-case error at any argument. If a
- * method always has an error less than 0.5 ulps, the method always
- * returns the floating-point number nearest the exact result; such a
- * method is <i>correctly rounded</i>. A correctly rounded method is
- * generally the best a floating-point approximation can be; however,
- * it is impractical for many floating-point methods to be correctly
- * rounded. Instead, for the {@code Math} class, a larger error
- * bound of 1 or 2 ulps is allowed for certain methods. Informally,
- * with a 1 ulp error bound, when the exact result is a representable
- * number, the exact result should be returned as the computed result;
- * otherwise, either of the two floating-point values which bracket
- * the exact result may be returned. For exact results large in
- * magnitude, one of the endpoints of the bracket may be infinite.
- * Besides accuracy at individual arguments, maintaining proper
- * relations between the method at different arguments is also
- * important. Therefore, most methods with more than 0.5 ulp errors
- * are required to be <i>semi-monotonic</i>: whenever the mathematical
- * function is non-decreasing, so is the floating-point approximation,
- * likewise, whenever the mathematical function is non-increasing, so
- * is the floating-point approximation. Not all approximations that
- * have 1 ulp accuracy will automatically meet the monotonicity
- * requirements.
- *
- * @author unascribed
- * @author Joseph D. Darcy
- * @since JDK1.0
- */
- @:require(java0) extern class Math
- {
- /**
- * The {@code double} value that is closer than any other to
- * <i>e</i>, the base of the natural logarithms.
- */
- public static var E(default, null) : Float;
-
- /**
- * The {@code double} value that is closer than any other to
- * <i>pi</i>, the ratio of the circumference of a circle to its
- * diameter.
- */
- public static var PI(default, null) : Float;
-
- /**
- * Returns the trigonometric sine of an angle. Special cases:
- * <ul><li>If the argument is NaN or an infinity, then the
- * result is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a an angle, in radians.
- * @return the sine of the argument.
- */
- @:overload public static function sin(a : Float) : Float;
-
- /**
- * Returns the trigonometric cosine of an angle. Special cases:
- * <ul><li>If the argument is NaN or an infinity, then the
- * result is NaN.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a an angle, in radians.
- * @return the cosine of the argument.
- */
- @:overload public static function cos(a : Float) : Float;
-
- /**
- * Returns the trigonometric tangent of an angle. Special cases:
- * <ul><li>If the argument is NaN or an infinity, then the result
- * is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a an angle, in radians.
- * @return the tangent of the argument.
- */
- @:overload public static function tan(a : Float) : Float;
-
- /**
- * Returns the arc sine of a value; the returned angle is in the
- * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases:
- * <ul><li>If the argument is NaN or its absolute value is greater
- * than 1, then the result is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the value whose arc sine is to be returned.
- * @return the arc sine of the argument.
- */
- @:overload public static function asin(a : Float) : Float;
-
- /**
- * Returns the arc cosine of a value; the returned angle is in the
- * range 0.0 through <i>pi</i>. Special case:
- * <ul><li>If the argument is NaN or its absolute value is greater
- * than 1, then the result is NaN.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the value whose arc cosine is to be returned.
- * @return the arc cosine of the argument.
- */
- @:overload public static function acos(a : Float) : Float;
-
- /**
- * Returns the arc tangent of a value; the returned angle is in the
- * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases:
- * <ul><li>If the argument is NaN, then the result is NaN.
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the value whose arc tangent is to be returned.
- * @return the arc tangent of the argument.
- */
- @:overload public static function atan(a : Float) : Float;
-
- /**
- * Converts an angle measured in degrees to an approximately
- * equivalent angle measured in radians. The conversion from
- * degrees to radians is generally inexact.
- *
- * @param angdeg an angle, in degrees
- * @return the measurement of the angle {@code angdeg}
- * in radians.
- * @since 1.2
- */
- @:require(java2) @:overload public static function toRadians(angdeg : Float) : Float;
-
- /**
- * Converts an angle measured in radians to an approximately
- * equivalent angle measured in degrees. The conversion from
- * radians to degrees is generally inexact; users should
- * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
- * equal {@code 0.0}.
- *
- * @param angrad an angle, in radians
- * @return the measurement of the angle {@code angrad}
- * in degrees.
- * @since 1.2
- */
- @:require(java2) @:overload public static function toDegrees(angrad : Float) : Float;
-
- /**
- * Returns Euler's number <i>e</i> raised to the power of a
- * {@code double} value. Special cases:
- * <ul><li>If the argument is NaN, the result is NaN.
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- * <li>If the argument is negative infinity, then the result is
- * positive zero.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the exponent to raise <i>e</i> to.
- * @return the value <i>e</i><sup>{@code a}</sup>,
- * where <i>e</i> is the base of the natural logarithms.
- */
- @:overload public static function exp(a : Float) : Float;
-
- /**
- * Returns the natural logarithm (base <i>e</i>) of a {@code double}
- * value. Special cases:
- * <ul><li>If the argument is NaN or less than zero, then the result
- * is NaN.
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- * <li>If the argument is positive zero or negative zero, then the
- * result is negative infinity.</ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a a value
- * @return the value ln {@code a}, the natural logarithm of
- * {@code a}.
- */
- @:overload public static function log(a : Float) : Float;
-
- /**
- * Returns the base 10 logarithm of a {@code double} value.
- * Special cases:
- *
- * <ul><li>If the argument is NaN or less than zero, then the result
- * is NaN.
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- * <li>If the argument is positive zero or negative zero, then the
- * result is negative infinity.
- * <li> If the argument is equal to 10<sup><i>n</i></sup> for
- * integer <i>n</i>, then the result is <i>n</i>.
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a a value
- * @return the base 10 logarithm of {@code a}.
- * @since 1.5
- */
- @:require(java5) @:overload public static function log10(a : Float) : Float;
-
- /**
- * Returns the correctly rounded positive square root of a
- * {@code double} value.
- * Special cases:
- * <ul><li>If the argument is NaN or less than zero, then the result
- * is NaN.
- * <li>If the argument is positive infinity, then the result is positive
- * infinity.
- * <li>If the argument is positive zero or negative zero, then the
- * result is the same as the argument.</ul>
- * Otherwise, the result is the {@code double} value closest to
- * the true mathematical square root of the argument value.
- *
- * @param a a value.
- * @return the positive square root of {@code a}.
- * If the argument is NaN or less than zero, the result is NaN.
- */
- @:overload public static function sqrt(a : Float) : Float;
-
- /**
- * Returns the cube root of a {@code double} value. For
- * positive finite {@code x}, {@code cbrt(-x) ==
- * -cbrt(x)}; that is, the cube root of a negative value is
- * the negative of the cube root of that value's magnitude.
- *
- * Special cases:
- *
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is infinite, then the result is an infinity
- * with the same sign as the argument.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- *
- * @param a a value.
- * @return the cube root of {@code a}.
- * @since 1.5
- */
- @:require(java5) @:overload public static function cbrt(a : Float) : Float;
-
- /**
- * Computes the remainder operation on two arguments as prescribed
- * by the IEEE 754 standard.
- * The remainder value is mathematically equal to
- * <code>f1 - f2</code> × <i>n</i>,
- * where <i>n</i> is the mathematical integer closest to the exact
- * mathematical value of the quotient {@code f1/f2}, and if two
- * mathematical integers are equally close to {@code f1/f2},
- * then <i>n</i> is the integer that is even. If the remainder is
- * zero, its sign is the same as the sign of the first argument.
- * Special cases:
- * <ul><li>If either argument is NaN, or the first argument is infinite,
- * or the second argument is positive zero or negative zero, then the
- * result is NaN.
- * <li>If the first argument is finite and the second argument is
- * infinite, then the result is the same as the first argument.</ul>
- *
- * @param f1 the dividend.
- * @param f2 the divisor.
- * @return the remainder when {@code f1} is divided by
- * {@code f2}.
- */
- @:overload public static function IEEEremainder(f1 : Float, f2 : Float) : Float;
-
- /**
- * Returns the smallest (closest to negative infinity)
- * {@code double} value that is greater than or equal to the
- * argument and is equal to a mathematical integer. Special cases:
- * <ul><li>If the argument value is already equal to a
- * mathematical integer, then the result is the same as the
- * argument. <li>If the argument is NaN or an infinity or
- * positive zero or negative zero, then the result is the same as
- * the argument. <li>If the argument value is less than zero but
- * greater than -1.0, then the result is negative zero.</ul> Note
- * that the value of {@code Math.ceil(x)} is exactly the
- * value of {@code -Math.floor(-x)}.
- *
- *
- * @param a a value.
- * @return the smallest (closest to negative infinity)
- * floating-point value that is greater than or equal to
- * the argument and is equal to a mathematical integer.
- */
- @:overload public static function ceil(a : Float) : Float;
-
- /**
- * Returns the largest (closest to positive infinity)
- * {@code double} value that is less than or equal to the
- * argument and is equal to a mathematical integer. Special cases:
- * <ul><li>If the argument value is already equal to a
- * mathematical integer, then the result is the same as the
- * argument. <li>If the argument is NaN or an infinity or
- * positive zero or negative zero, then the result is the same as
- * the argument.</ul>
- *
- * @param a a value.
- * @return the largest (closest to positive infinity)
- * floating-point value that less than or equal to the argument
- * and is equal to a mathematical integer.
- */
- @:overload public static function floor(a : Float) : Float;
-
- /**
- * Returns the {@code double} value that is closest in value
- * to the argument and is equal to a mathematical integer. If two
- * {@code double} values that are mathematical integers are
- * equally close, the result is the integer value that is
- * even. Special cases:
- * <ul><li>If the argument value is already equal to a mathematical
- * integer, then the result is the same as the argument.
- * <li>If the argument is NaN or an infinity or positive zero or negative
- * zero, then the result is the same as the argument.</ul>
- *
- * @param a a {@code double} value.
- * @return the closest floating-point value to {@code a} that is
- * equal to a mathematical integer.
- */
- @:overload public static function rint(a : Float) : Float;
-
- /**
- * Returns the angle <i>theta</i> from the conversion of rectangular
- * coordinates ({@code x}, {@code y}) to polar
- * coordinates (r, <i>theta</i>).
- * This method computes the phase <i>theta</i> by computing an arc tangent
- * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
- * cases:
- * <ul><li>If either argument is NaN, then the result is NaN.
- * <li>If the first argument is positive zero and the second argument
- * is positive, or the first argument is positive and finite and the
- * second argument is positive infinity, then the result is positive
- * zero.
- * <li>If the first argument is negative zero and the second argument
- * is positive, or the first argument is negative and finite and the
- * second argument is positive infinity, then the result is negative zero.
- * <li>If the first argument is positive zero and the second argument
- * is negative, or the first argument is positive and finite and the
- * second argument is negative infinity, then the result is the
- * {@code double} value closest to <i>pi</i>.
- * <li>If the first argument is negative zero and the second argument
- * is negative, or the first argument is negative and finite and the
- * second argument is negative infinity, then the result is the
- * {@code double} value closest to -<i>pi</i>.
- * <li>If the first argument is positive and the second argument is
- * positive zero or negative zero, or the first argument is positive
- * infinity and the second argument is finite, then the result is the
- * {@code double} value closest to <i>pi</i>/2.
- * <li>If the first argument is negative and the second argument is
- * positive zero or negative zero, or the first argument is negative
- * infinity and the second argument is finite, then the result is the
- * {@code double} value closest to -<i>pi</i>/2.
- * <li>If both arguments are positive infinity, then the result is the
- * {@code double} value closest to <i>pi</i>/4.
- * <li>If the first argument is positive infinity and the second argument
- * is negative infinity, then the result is the {@code double}
- * value closest to 3*<i>pi</i>/4.
- * <li>If the first argument is negative infinity and the second argument
- * is positive infinity, then the result is the {@code double} value
- * closest to -<i>pi</i>/4.
- * <li>If both arguments are negative infinity, then the result is the
- * {@code double} value closest to -3*<i>pi</i>/4.</ul>
- *
- * <p>The computed result must be within 2 ulps of the exact result.
- * Results must be semi-monotonic.
- *
- * @param y the ordinate coordinate
- * @param x the abscissa coordinate
- * @return the <i>theta</i> component of the point
- * (<i>r</i>, <i>theta</i>)
- * in polar coordinates that corresponds to the point
- * (<i>x</i>, <i>y</i>) in Cartesian coordinates.
- */
- @:overload public static function atan2(y : Float, x : Float) : Float;
-
- /**
- * Returns the value of the first argument raised to the power of the
- * second argument. Special cases:
- *
- * <ul><li>If the second argument is positive or negative zero, then the
- * result is 1.0.
- * <li>If the second argument is 1.0, then the result is the same as the
- * first argument.
- * <li>If the second argument is NaN, then the result is NaN.
- * <li>If the first argument is NaN and the second argument is nonzero,
- * then the result is NaN.
- *
- * <li>If
- * <ul>
- * <li>the absolute value of the first argument is greater than 1
- * and the second argument is positive infinity, or
- * <li>the absolute value of the first argument is less than 1 and
- * the second argument is negative infinity,
- * </ul>
- * then the result is positive infinity.
- *
- * <li>If
- * <ul>
- * <li>the absolute value of the first argument is greater than 1 and
- * the second argument is negative infinity, or
- * <li>the absolute value of the
- * first argument is less than 1 and the second argument is positive
- * infinity,
- * </ul>
- * then the result is positive zero.
- *
- * <li>If the absolute value of the first argument equals 1 and the
- * second argument is infinite, then the result is NaN.
- *
- * <li>If
- * <ul>
- * <li>the first argument is positive zero and the second argument
- * is greater than zero, or
- * <li>the first argument is positive infinity and the second
- * argument is less than zero,
- * </ul>
- * then the result is positive zero.
- *
- * <li>If
- * <ul>
- * <li>the first argument is positive zero and the second argument
- * is less than zero, or
- * <li>the first argument is positive infinity and the second
- * argument is greater than zero,
- * </ul>
- * then the result is positive infinity.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is greater than zero but not a finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is less than zero but not a finite odd integer,
- * </ul>
- * then the result is positive zero.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is a positive finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is a negative finite odd integer,
- * </ul>
- * then the result is negative zero.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is less than zero but not a finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is greater than zero but not a finite odd integer,
- * </ul>
- * then the result is positive infinity.
- *
- * <li>If
- * <ul>
- * <li>the first argument is negative zero and the second argument
- * is a negative finite odd integer, or
- * <li>the first argument is negative infinity and the second
- * argument is a positive finite odd integer,
- * </ul>
- * then the result is negative infinity.
- *
- * <li>If the first argument is finite and less than zero
- * <ul>
- * <li> if the second argument is a finite even integer, the
- * result is equal to the result of raising the absolute value of
- * the first argument to the power of the second argument
- *
- * <li>if the second argument is a finite odd integer, the result
- * is equal to the negative of the result of raising the absolute
- * value of the first argument to the power of the second
- * argument
- *
- * <li>if the second argument is finite and not an integer, then
- * the result is NaN.
- * </ul>
- *
- * <li>If both arguments are integers, then the result is exactly equal
- * to the mathematical result of raising the first argument to the power
- * of the second argument if that result can in fact be represented
- * exactly as a {@code double} value.</ul>
- *
- * <p>(In the foregoing descriptions, a floating-point value is
- * considered to be an integer if and only if it is finite and a
- * fixed point of the method {@link #ceil ceil} or,
- * equivalently, a fixed point of the method {@link #floor
- * floor}. A value is a fixed point of a one-argument
- * method if and only if the result of applying the method to the
- * value is equal to the value.)
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param a the base.
- * @param b the exponent.
- * @return the value {@code a}<sup>{@code b}</sup>.
- */
- @:overload public static function pow(a : Float, b : Float) : Float;
-
- /**
- * Returns the closest {@code int} to the argument, with ties
- * rounding up.
- *
- * <p>
- * Special cases:
- * <ul><li>If the argument is NaN, the result is 0.
- * <li>If the argument is negative infinity or any value less than or
- * equal to the value of {@code Integer.MIN_VALUE}, the result is
- * equal to the value of {@code Integer.MIN_VALUE}.
- * <li>If the argument is positive infinity or any value greater than or
- * equal to the value of {@code Integer.MAX_VALUE}, the result is
- * equal to the value of {@code Integer.MAX_VALUE}.</ul>
- *
- * @param a a floating-point value to be rounded to an integer.
- * @return the value of the argument rounded to the nearest
- * {@code int} value.
- * @see java.lang.Integer#MAX_VALUE
- * @see java.lang.Integer#MIN_VALUE
- */
- @:overload public static function round(a : Single) : Int;
-
- /**
- * Returns the closest {@code long} to the argument, with ties
- * rounding up.
- *
- * <p>Special cases:
- * <ul><li>If the argument is NaN, the result is 0.
- * <li>If the argument is negative infinity or any value less than or
- * equal to the value of {@code Long.MIN_VALUE}, the result is
- * equal to the value of {@code Long.MIN_VALUE}.
- * <li>If the argument is positive infinity or any value greater than or
- * equal to the value of {@code Long.MAX_VALUE}, the result is
- * equal to the value of {@code Long.MAX_VALUE}.</ul>
- *
- * @param a a floating-point value to be rounded to a
- * {@code long}.
- * @return the value of the argument rounded to the nearest
- * {@code long} value.
- * @see java.lang.Long#MAX_VALUE
- * @see java.lang.Long#MIN_VALUE
- */
- @:overload public static function round(a : Float) : haxe.Int64;
-
- /**
- * Returns a {@code double} value with a positive sign, greater
- * than or equal to {@code 0.0} and less than {@code 1.0}.
- * Returned values are chosen pseudorandomly with (approximately)
- * uniform distribution from that range.
- *
- * <p>When this method is first called, it creates a single new
- * pseudorandom-number generator, exactly as if by the expression
- *
- * <blockquote>{@code new java.util.Random()}</blockquote>
- *
- * This new pseudorandom-number generator is used thereafter for
- * all calls to this method and is used nowhere else.
- *
- * <p>This method is properly synchronized to allow correct use by
- * more than one thread. However, if many threads need to generate
- * pseudorandom numbers at a great rate, it may reduce contention
- * for each thread to have its own pseudorandom-number generator.
- *
- * @return a pseudorandom {@code double} greater than or equal
- * to {@code 0.0} and less than {@code 1.0}.
- * @see Random#nextDouble()
- */
- @:overload public static function random() : Float;
-
- /**
- * Returns the absolute value of an {@code int} value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- *
- * <p>Note that if the argument is equal to the value of
- * {@link Integer#MIN_VALUE}, the most negative representable
- * {@code int} value, the result is that same value, which is
- * negative.
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- */
- @:overload public static function abs(a : Int) : Int;
-
- /**
- * Returns the absolute value of a {@code long} value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- *
- * <p>Note that if the argument is equal to the value of
- * {@link Long#MIN_VALUE}, the most negative representable
- * {@code long} value, the result is that same value, which
- * is negative.
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- */
- @:overload public static function abs(a : haxe.Int64) : haxe.Int64;
-
- /**
- * Returns the absolute value of a {@code float} value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- * Special cases:
- * <ul><li>If the argument is positive zero or negative zero, the
- * result is positive zero.
- * <li>If the argument is infinite, the result is positive infinity.
- * <li>If the argument is NaN, the result is NaN.</ul>
- * In other words, the result is the same as the value of the expression:
- * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- */
- @:overload public static function abs(a : Single) : Single;
-
- /**
- * Returns the absolute value of a {@code double} value.
- * If the argument is not negative, the argument is returned.
- * If the argument is negative, the negation of the argument is returned.
- * Special cases:
- * <ul><li>If the argument is positive zero or negative zero, the result
- * is positive zero.
- * <li>If the argument is infinite, the result is positive infinity.
- * <li>If the argument is NaN, the result is NaN.</ul>
- * In other words, the result is the same as the value of the expression:
- * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
- *
- * @param a the argument whose absolute value is to be determined
- * @return the absolute value of the argument.
- */
- @:overload public static function abs(a : Float) : Float;
-
- /**
- * Returns the greater of two {@code int} values. That is, the
- * result is the argument closer to the value of
- * {@link Integer#MAX_VALUE}. If the arguments have the same value,
- * the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of {@code a} and {@code b}.
- */
- @:overload public static function max(a : Int, b : Int) : Int;
-
- /**
- * Returns the greater of two {@code long} values. That is, the
- * result is the argument closer to the value of
- * {@link Long#MAX_VALUE}. If the arguments have the same value,
- * the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of {@code a} and {@code b}.
- */
- @:overload public static function max(a : haxe.Int64, b : haxe.Int64) : haxe.Int64;
-
- /**
- * Returns the greater of two {@code float} values. That is,
- * the result is the argument closer to positive infinity. If the
- * arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If one
- * argument is positive zero and the other negative zero, the
- * result is positive zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of {@code a} and {@code b}.
- */
- @:overload public static function max(a : Single, b : Single) : Single;
-
- /**
- * Returns the greater of two {@code double} values. That
- * is, the result is the argument closer to positive infinity. If
- * the arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If one
- * argument is positive zero and the other negative zero, the
- * result is positive zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the larger of {@code a} and {@code b}.
- */
- @:overload public static function max(a : Float, b : Float) : Float;
-
- /**
- * Returns the smaller of two {@code int} values. That is,
- * the result the argument closer to the value of
- * {@link Integer#MIN_VALUE}. If the arguments have the same
- * value, the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of {@code a} and {@code b}.
- */
- @:overload public static function min(a : Int, b : Int) : Int;
-
- /**
- * Returns the smaller of two {@code long} values. That is,
- * the result is the argument closer to the value of
- * {@link Long#MIN_VALUE}. If the arguments have the same
- * value, the result is that same value.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of {@code a} and {@code b}.
- */
- @:overload public static function min(a : haxe.Int64, b : haxe.Int64) : haxe.Int64;
-
- /**
- * Returns the smaller of two {@code float} values. That is,
- * the result is the value closer to negative infinity. If the
- * arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If
- * one argument is positive zero and the other is negative zero,
- * the result is negative zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of {@code a} and {@code b}.
- */
- @:overload public static function min(a : Single, b : Single) : Single;
-
- /**
- * Returns the smaller of two {@code double} values. That
- * is, the result is the value closer to negative infinity. If the
- * arguments have the same value, the result is that same
- * value. If either value is NaN, then the result is NaN. Unlike
- * the numerical comparison operators, this method considers
- * negative zero to be strictly smaller than positive zero. If one
- * argument is positive zero and the other is negative zero, the
- * result is negative zero.
- *
- * @param a an argument.
- * @param b another argument.
- * @return the smaller of {@code a} and {@code b}.
- */
- @:overload public static function min(a : Float, b : Float) : Float;
-
- /**
- * Returns the size of an ulp of the argument. An ulp of a
- * {@code double} value is the positive distance between this
- * floating-point value and the {@code double} value next
- * larger in magnitude. Note that for non-NaN <i>x</i>,
- * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive or negative infinity, then the
- * result is positive infinity.
- * <li> If the argument is positive or negative zero, then the result is
- * {@code Double.MIN_VALUE}.
- * <li> If the argument is ±{@code Double.MAX_VALUE}, then
- * the result is equal to 2<sup>971</sup>.
- * </ul>
- *
- * @param d the floating-point value whose ulp is to be returned
- * @return the size of an ulp of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- @:require(java5) @:overload public static function ulp(d : Float) : Float;
-
- /**
- * Returns the size of an ulp of the argument. An ulp of a
- * {@code float} value is the positive distance between this
- * floating-point value and the {@code float} value next
- * larger in magnitude. Note that for non-NaN <i>x</i>,
- * <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive or negative infinity, then the
- * result is positive infinity.
- * <li> If the argument is positive or negative zero, then the result is
- * {@code Float.MIN_VALUE}.
- * <li> If the argument is ±{@code Float.MAX_VALUE}, then
- * the result is equal to 2<sup>104</sup>.
- * </ul>
- *
- * @param f the floating-point value whose ulp is to be returned
- * @return the size of an ulp of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- @:require(java5) @:overload public static function ulp(f : Single) : Single;
-
- /**
- * Returns the signum function of the argument; zero if the argument
- * is zero, 1.0 if the argument is greater than zero, -1.0 if the
- * argument is less than zero.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive zero or negative zero, then the
- * result is the same as the argument.
- * </ul>
- *
- * @param d the floating-point value whose signum is to be returned
- * @return the signum function of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- @:require(java5) @:overload public static function signum(d : Float) : Float;
-
- /**
- * Returns the signum function of the argument; zero if the argument
- * is zero, 1.0f if the argument is greater than zero, -1.0f if the
- * argument is less than zero.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, then the result is NaN.
- * <li> If the argument is positive zero or negative zero, then the
- * result is the same as the argument.
- * </ul>
- *
- * @param f the floating-point value whose signum is to be returned
- * @return the signum function of the argument
- * @author Joseph D. Darcy
- * @since 1.5
- */
- @:require(java5) @:overload public static function signum(f : Single) : Single;
-
- /**
- * Returns the hyperbolic sine of a {@code double} value.
- * The hyperbolic sine of <i>x</i> is defined to be
- * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2
- * where <i>e</i> is {@linkplain Math#E Euler's number}.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is infinite, then the result is an infinity
- * with the same sign as the argument.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * <p>The computed result must be within 2.5 ulps of the exact result.
- *
- * @param x The number whose hyperbolic sine is to be returned.
- * @return The hyperbolic sine of {@code x}.
- * @since 1.5
- */
- @:require(java5) @:overload public static function sinh(x : Float) : Float;
-
- /**
- * Returns the hyperbolic cosine of a {@code double} value.
- * The hyperbolic cosine of <i>x</i> is defined to be
- * (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2
- * where <i>e</i> is {@linkplain Math#E Euler's number}.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is infinite, then the result is positive
- * infinity.
- *
- * <li>If the argument is zero, then the result is {@code 1.0}.
- *
- * </ul>
- *
- * <p>The computed result must be within 2.5 ulps of the exact result.
- *
- * @param x The number whose hyperbolic cosine is to be returned.
- * @return The hyperbolic cosine of {@code x}.
- * @since 1.5
- */
- @:require(java5) @:overload public static function cosh(x : Float) : Float;
-
- /**
- * Returns the hyperbolic tangent of a {@code double} value.
- * The hyperbolic tangent of <i>x</i> is defined to be
- * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>),
- * in other words, {@linkplain Math#sinh
- * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note
- * that the absolute value of the exact tanh is always less than
- * 1.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li>If the argument is NaN, then the result is NaN.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * <li>If the argument is positive infinity, then the result is
- * {@code +1.0}.
- *
- * <li>If the argument is negative infinity, then the result is
- * {@code -1.0}.
- *
- * </ul>
- *
- * <p>The computed result must be within 2.5 ulps of the exact result.
- * The result of {@code tanh} for any finite input must have
- * an absolute value less than or equal to 1. Note that once the
- * exact result of tanh is within 1/2 of an ulp of the limit value
- * of ±1, correctly signed ±{@code 1.0} should
- * be returned.
- *
- * @param x The number whose hyperbolic tangent is to be returned.
- * @return The hyperbolic tangent of {@code x}.
- * @since 1.5
- */
- @:require(java5) @:overload public static function tanh(x : Float) : Float;
-
- /**
- * Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
- * without intermediate overflow or underflow.
- *
- * <p>Special cases:
- * <ul>
- *
- * <li> If either argument is infinite, then the result
- * is positive infinity.
- *
- * <li> If either argument is NaN and neither argument is infinite,
- * then the result is NaN.
- *
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact
- * result. If one parameter is held constant, the results must be
- * semi-monotonic in the other parameter.
- *
- * @param x a value
- * @param y a value
- * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
- * without intermediate overflow or underflow
- * @since 1.5
- */
- @:require(java5) @:overload public static function hypot(x : Float, y : Float) : Float;
-
- /**
- * Returns <i>e</i><sup>x</sup> -1. Note that for values of
- * <i>x</i> near 0, the exact sum of
- * {@code expm1(x)} + 1 is much closer to the true
- * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
- *
- * <p>Special cases:
- * <ul>
- * <li>If the argument is NaN, the result is NaN.
- *
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- *
- * <li>If the argument is negative infinity, then the result is
- * -1.0.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic. The result of
- * {@code expm1} for any finite input must be greater than or
- * equal to {@code -1.0}. Note that once the exact result of
- * <i>e</i><sup>{@code x}</sup> - 1 is within 1/2
- * ulp of the limit value -1, {@code -1.0} should be
- * returned.
- *
- * @param x the exponent to raise <i>e</i> to in the computation of
- * <i>e</i><sup>{@code x}</sup> -1.
- * @return the value <i>e</i><sup>{@code x}</sup> - 1.
- * @since 1.5
- */
- @:require(java5) @:overload public static function expm1(x : Float) : Float;
-
- /**
- * Returns the natural logarithm of the sum of the argument and 1.
- * Note that for small values {@code x}, the result of
- * {@code log1p(x)} is much closer to the true result of ln(1
- * + {@code x}) than the floating-point evaluation of
- * {@code log(1.0+x)}.
- *
- * <p>Special cases:
- *
- * <ul>
- *
- * <li>If the argument is NaN or less than -1, then the result is
- * NaN.
- *
- * <li>If the argument is positive infinity, then the result is
- * positive infinity.
- *
- * <li>If the argument is negative one, then the result is
- * negative infinity.
- *
- * <li>If the argument is zero, then the result is a zero with the
- * same sign as the argument.
- *
- * </ul>
- *
- * <p>The computed result must be within 1 ulp of the exact result.
- * Results must be semi-monotonic.
- *
- * @param x a value
- * @return the value ln({@code x} + 1), the natural
- * log of {@code x} + 1
- * @since 1.5
- */
- @:require(java5) @:overload public static function log1p(x : Float) : Float;
-
- /**
- * Returns the first floating-point argument with the sign of the
- * second floating-point argument. Note that unlike the {@link
- * StrictMath#copySign(double, double) StrictMath.copySign}
- * method, this method does not require NaN {@code sign}
- * arguments to be treated as positive values; implementations are
- * permitted to treat some NaN arguments as positive and other NaN
- * arguments as negative to allow greater performance.
- *
- * @param magnitude the parameter providing the magnitude of the result
- * @param sign the parameter providing the sign of the result
- * @return a value with the magnitude of {@code magnitude}
- * and the sign of {@code sign}.
- * @since 1.6
- */
- @:require(java6) @:overload public static function copySign(magnitude : Float, sign : Float) : Float;
-
- /**
- * Returns the first floating-point argument with the sign of the
- * second floating-point argument. Note that unlike the {@link
- * StrictMath#copySign(float, float) StrictMath.copySign}
- * method, this method does not require NaN {@code sign}
- * arguments to be treated as positive values; implementations are
- * permitted to treat some NaN arguments as positive and other NaN
- * arguments as negative to allow greater performance.
- *
- * @param magnitude the parameter providing the magnitude of the result
- * @param sign the parameter providing the sign of the result
- * @return a value with the magnitude of {@code magnitude}
- * and the sign of {@code sign}.
- * @since 1.6
- */
- @:require(java6) @:overload public static function copySign(magnitude : Single, sign : Single) : Single;
-
- /**
- * Returns the unbiased exponent used in the representation of a
- * {@code float}. Special cases:
- *
- * <ul>
- * <li>If the argument is NaN or infinite, then the result is
- * {@link Float#MAX_EXPONENT} + 1.
- * <li>If the argument is zero or subnormal, then the result is
- * {@link Float#MIN_EXPONENT} -1.
- * </ul>
- * @param f a {@code float} value
- * @return the unbiased exponent of the argument
- * @since 1.6
- */
- @:require(java6) @:overload public static function getExponent(f : Single) : Int;
-
- /**
- * Returns the unbiased exponent used in the representation of a
- * {@code double}. Special cases:
- *
- * <ul>
- * <li>If the argument is NaN or infinite, then the result is
- * {@link Double#MAX_EXPONENT} + 1.
- * <li>If the argument is zero or subnormal, then the result is
- * {@link Double#MIN_EXPONENT} -1.
- * </ul>
- * @param d a {@code double} value
- * @return the unbiased exponent of the argument
- * @since 1.6
- */
- @:require(java6) @:overload public static function getExponent(d : Float) : Int;
-
- /**
- * Returns the floating-point number adjacent to the first
- * argument in the direction of the second argument. If both
- * arguments compare as equal the second argument is returned.
- *
- * <p>
- * Special cases:
- * <ul>
- * <li> If either argument is a NaN, then NaN is returned.
- *
- * <li> If both arguments are signed zeros, {@code direction}
- * is returned unchanged (as implied by the requirement of
- * returning the second argument if the arguments compare as
- * equal).
- *
- * <li> If {@code start} is
- * ±{@link Double#MIN_VALUE} and {@code direction}
- * has a value such that the result should have a smaller
- * magnitude, then a zero with the same sign as {@code start}
- * is returned.
- *
- * <li> If {@code start} is infinite and
- * {@code direction} has a value such that the result should
- * have a smaller magnitude, {@link Double#MAX_VALUE} with the
- * same sign as {@code start} is returned.
- *
- * <li> If {@code start} is equal to ±
- * {@link Double#MAX_VALUE} and {@code direction} has a
- * value such that the result should have a larger magnitude, an
- * infinity with same sign as {@code start} is returned.
- * </ul>
- *
- * @param start starting floating-point value
- * @param direction value indicating which of
- * {@code start}'s neighbors or {@code start} should
- * be returned
- * @return The floating-point number adjacent to {@code start} in the
- * direction of {@code direction}.
- * @since 1.6
- */
- @:require(java6) @:overload public static function nextAfter(start : Float, direction : Float) : Float;
-
- /**
- * Returns the floating-point number adjacent to the first
- * argument in the direction of the second argument. If both
- * arguments compare as equal a value equivalent to the second argument
- * is returned.
- *
- * <p>
- * Special cases:
- * <ul>
- * <li> If either argument is a NaN, then NaN is returned.
- *
- * <li> If both arguments are signed zeros, a value equivalent
- * to {@code direction} is returned.
- *
- * <li> If {@code start} is
- * ±{@link Float#MIN_VALUE} and {@code direction}
- * has a value such that the result should have a smaller
- * magnitude, then a zero with the same sign as {@code start}
- * is returned.
- *
- * <li> If {@code start} is infinite and
- * {@code direction} has a value such that the result should
- * have a smaller magnitude, {@link Float#MAX_VALUE} with the
- * same sign as {@code start} is returned.
- *
- * <li> If {@code start} is equal to ±
- * {@link Float#MAX_VALUE} and {@code direction} has a
- * value such that the result should have a larger magnitude, an
- * infinity with same sign as {@code start} is returned.
- * </ul>
- *
- * @param start starting floating-point value
- * @param direction value indicating which of
- * {@code start}'s neighbors or {@code start} should
- * be returned
- * @return The floating-point number adjacent to {@code start} in the
- * direction of {@code direction}.
- * @since 1.6
- */
- @:require(java6) @:overload public static function nextAfter(start : Single, direction : Float) : Single;
-
- /**
- * Returns the floating-point value adjacent to {@code d} in
- * the direction of positive infinity. This method is
- * semantically equivalent to {@code nextAfter(d,
- * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
- * implementation may run faster than its equivalent
- * {@code nextAfter} call.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, the result is NaN.
- *
- * <li> If the argument is positive infinity, the result is
- * positive infinity.
- *
- * <li> If the argument is zero, the result is
- * {@link Double#MIN_VALUE}
- *
- * </ul>
- *
- * @param d starting floating-point value
- * @return The adjacent floating-point value closer to positive
- * infinity.
- * @since 1.6
- */
- @:require(java6) @:overload public static function nextUp(d : Float) : Float;
-
- /**
- * Returns the floating-point value adjacent to {@code f} in
- * the direction of positive infinity. This method is
- * semantically equivalent to {@code nextAfter(f,
- * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
- * implementation may run faster than its equivalent
- * {@code nextAfter} call.
- *
- * <p>Special Cases:
- * <ul>
- * <li> If the argument is NaN, the result is NaN.
- *
- * <li> If the argument is positive infinity, the result is
- * positive infinity.
- *
- * <li> If the argument is zero, the result is
- * {@link Float#MIN_VALUE}
- *
- * </ul>
- *
- * @param f starting floating-point value
- * @return The adjacent floating-point value closer to positive
- * infinity.
- * @since 1.6
- */
- @:require(java6) @:overload public static function nextUp(f : Single) : Single;
-
- /**
- * Return {@code d} ×
- * 2<sup>{@code scaleFactor}</sup> rounded as if performed
- * by a single correctly rounded floating-point multiply to a
- * member of the double value set. See the Java
- * Language Specification for a discussion of floating-point
- * value sets. If the exponent of the result is between {@link
- * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
- * answer is calculated exactly. If the exponent of the result
- * would be larger than {@code Double.MAX_EXPONENT}, an
- * infinity is returned. Note that if the result is subnormal,
- * precision may be lost; that is, when {@code scalb(x, n)}
- * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
- * <i>x</i>. When the result is non-NaN, the result has the same
- * sign as {@code d}.
- *
- * <p>Special cases:
- * <ul>
- * <li> If the first argument is NaN, NaN is returned.
- * <li> If the first argument is infinite, then an infinity of the
- * same sign is returned.
- * <li> If the first argument is zero, then a zero of the same
- * sign is returned.
- * </ul>
- *
- * @param d number to be scaled by a power of two.
- * @param scaleFactor power of 2 used to scale {@code d}
- * @return {@code d} × 2<sup>{@code scaleFactor}</sup>
- * @since 1.6
- */
- @:require(java6) @:overload public static function scalb(d : Float, scaleFactor : Int) : Float;
-
- /**
- * Return {@code f} ×
- * 2<sup>{@code scaleFactor}</sup> rounded as if performed
- * by a single correctly rounded floating-point multiply to a
- * member of the float value set. See the Java
- * Language Specification for a discussion of floating-point
- * value sets. If the exponent of the result is between {@link
- * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
- * answer is calculated exactly. If the exponent of the result
- * would be larger than {@code Float.MAX_EXPONENT}, an
- * infinity is returned. Note that if the result is subnormal,
- * precision may be lost; that is, when {@code scalb(x, n)}
- * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
- * <i>x</i>. When the result is non-NaN, the result has the same
- * sign as {@code f}.
- *
- * <p>Special cases:
- * <ul>
- * <li> If the first argument is NaN, NaN is returned.
- * <li> If the first argument is infinite, then an infinity of the
- * same sign is returned.
- * <li> If the first argument is zero, then a zero of the same
- * sign is returned.
- * </ul>
- *
- * @param f number to be scaled by a power of two.
- * @param scaleFactor power of 2 used to scale {@code f}
- * @return {@code f} × 2<sup>{@code scaleFactor}</sup>
- * @since 1.6
- */
- @:require(java6) @:overload public static function scalb(f : Single, scaleFactor : Int) : Single;
-
-
- }
|