123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945 |
- /*
- * Copyright (C)2005-2023 Haxe Foundation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
- package haxe.math.bigint;
- import haxe.math.bigint.BigIntException;
- import haxe.math.bigint.BigIntError;
- import haxe.math.bigint.BigIntHelper;
- import haxe.ds.Vector;
- /* Original code courtesy Chuck Batson (github.com/cbatson) */
- /**
- A collection of static helper functions for performing arithmetic
- on `BigInt_` objects.
- **/
- class BigIntArithmetic {
- /**
- Compare a big integer with an Int.
- Returns -1 if `a < b`; otherwise
- returns 1 if `a > b`; otherwise
- returns 0 (`a == b`).
- **/
- public static function compareInt(a:BigInt_, b:Int):Int {
- if (a.m_count > 1) {
- return a.sign();
- }
- var x:Int = a.m_data.get(0);
- var lt:Int = (x - b) ^ ((x ^ b) & ((x - b) ^ x)); // "Hacker's Delight" p. 23
- var gt:Int = (b - x) ^ ((x ^ b) & ((b - x) ^ b));
- return (lt >> 31) | (gt >>> 31);
- }
- /**
- Compare two big integers.
- Returns -1 if `a < b`; otherwise
- returns 1 if `a > b`; otherwise
- returns 0 (`a == b`).
- **/
- public static function compare(a:BigInt_, b:BigInt_):Int {
- if (a != b) {
- var c:Int = (a.sign() & 7) + (b.sign() & 3);
- switch (c) {
- case 1, 2: // a and b are positive
- if (a.m_count > b.m_count) {
- return 1;
- }
- if (a.m_count < b.m_count) {
- return -1;
- }
- case 3, 4: // a is positive, b is negative
- return 1;
- case 7, 8: // a is negative, b is positive
- return -1;
- case 10: // a and b are negative
- if (a.m_count > b.m_count) {
- return -1;
- }
- if (a.m_count < b.m_count) {
- return 1;
- }
- }
- return MultiwordArithmetic.compareUnsigned(a.m_data, b.m_data, a.m_count);
- }
- return 0;
- }
- /**
- Perform the unary negation of big integer `operand` and put
- the result into big integer `result`.
- Ok for `result` and `operand` to be the same object.
- **/
- public static function negate(result:MutableBigInt_, operand:BigInt_):Void {
- var c:Int = 1;
- var x:Int32 = 0;
- var z:Int = 0;
- result.ensureCapacity(operand.m_count + 1, result == operand); // overflow may add a digit
- for (i in 0...operand.m_count) {
- x = ~operand.m_data.get(i);
- z = x + c;
- result.m_data.set(i, z);
- c = (x & ~z) >>> 31; // "Hacker's Delight" p. 38
- }
- result.m_count = operand.m_count;
- // detect overflow; intuitively, this can only occur for inputs of 2 ^ (32 * N - 1).
- if ((~x & z) < 0) {
- result.m_data.set(result.m_count++, 0);
- } else {
- // Handle compacting; intuitively, this can only occur for inputs of -[2 ^ (32 * N - 1)].
- // TODO: good way to detect this specific scenario?
- result.compact();
- }
- }
- /**
- Add big integer `operand2` to big integer `operand1` and put
- the result into big integer `result`.
- Ok for `result`, `operand1`, and `operand2` to be the same object.
- **/
- public static function add(result:MutableBigInt_, operand1:BigInt_, operand2:BigInt_):Void {
- var c:Int = 0;
- var x:Int32 = 0, y:Int32 = 0, z:Int = 0;
- if (operand1.m_count == operand2.m_count) {
- result.ensureCapacity(operand1.m_count + 1, (result == operand1) || (result == operand2));
- for (i in 0...operand1.m_count) {
- x = operand1.m_data.get(i);
- y = operand2.m_data.get(i);
- z = x + y + c;
- result.m_data.set(i, z);
- c = ((x & y) | ((x | y) & ~z)) >>> 31; // "Hacker's Delight" p. 38
- }
- result.m_count = operand1.m_count;
- } else {
- // longer operand is put into o1
- var o1 = (operand1.m_count > operand2.m_count) ? operand1 : operand2;
- var o2 = (operand1.m_count > operand2.m_count) ? operand2 : operand1;
- result.ensureCapacity(o1.m_count + 1, (result == operand1) || (result == operand2));
- var s:Int = (o2.sign() == -1) ? -1 : 0;
- for (i in 0...o2.m_count) {
- x = o1.m_data.get(i);
- y = o2.m_data.get(i);
- z = x + y + c;
- result.m_data.set(i, z);
- c = ((x & y) | ((x | y) & ~z)) >>> 31; // "Hacker's Delight" p. 38
- }
- y = s;
- for (i in o2.m_count...o1.m_count) {
- x = o1.m_data.get(i);
- z = x + y + c;
- result.m_data.set(i, z);
- c = ((x & y) | ((x | y) & ~z)) >>> 31; // "Hacker's Delight" p. 38
- }
- result.m_count = o1.m_count;
- }
- var o:Int = (z ^ x) & (z ^ y); // "Hacker's Delight" p. 29
- if (o < 0) // overflow flag is in sign bit
- {
- result.m_data.set(result.m_count++, ~(z >> 31));
- } else {
- result.compact(); // TODO: True that this will only ever eliminate at most one digit? Lighter way to detect?
- }
- }
- /**
- Add integer `operand2` to big integer `operand1` and put the
- result into big integer `result`.
- Ok for `result` and `operand1` to be the same object.
- **/
- public static function addInt(result:MutableBigInt_, operand1:BigInt_, operand2:Int):Void {
- var c:Int = 0;
- var x:Int32;
- var y:Int = operand2;
- var z:Int;
- result.ensureCapacity(operand1.m_count + 1, result == operand1);
- if (operand1.m_count > 1) {
- x = operand1.m_data.get(0);
- z = x + y;
- c = ((x & y) | ((x | y) & ~z)) >>> 31; // "Hacker's Delight" p. 38
- result.m_data.set(0, z);
- y >>= 31;
- for (i in 1...operand1.m_count - 1) {
- x = operand1.m_data.get(i);
- z = x + y + c;
- result.m_data.set(i, z);
- c = ((x & y) | ((x | y) & ~z)) >>> 31; // "Hacker's Delight" p. 38
- }
- }
- x = operand1.m_data.get(operand1.m_count - 1);
- z = x + y + c;
- result.m_data.set(operand1.m_count - 1, z);
- result.m_count = operand1.m_count;
- var o:Int = (z ^ x) & (z ^ y); // "Hacker's Delight" p. 29
- if (o < 0) // overflow flag is in sign bit
- {
- result.m_data.set(result.m_count++, x >> 31);
- } else if (result.m_count > 1) {
- if (z == (result.m_data.get(result.m_count - 2) >> 31)) {
- --result.m_count;
- }
- }
- }
- /**
- Subtract big integer `operand2` from big integer `operand1`
- and put the result into big integer `result`.
- Ok for `result`, `operand1`, and `operand2` to be the same object.
- **/
- public static function subtract(result:MutableBigInt_, operand1:BigInt_, operand2:BigInt_):Void {
- var c:Int32 = 0;
- var x:Int = 0, y:Int = 0, z:Int = 0;
- if (operand1.m_count == operand2.m_count) {
- result.ensureCapacity(operand1.m_count + 1, (result == operand1) || (result == operand2));
- for (i in 0...operand1.m_count) {
- x = operand1.m_data.get(i);
- y = operand2.m_data.get(i);
- z = x - y - c;
- result.m_data.set(i, z);
- c = ((~x & y) | (~(x ^ y) & z)) >>> 31; // "Hacker's Delight" p. 38
- }
- result.m_count = operand1.m_count;
- } else if (operand1.m_count > operand2.m_count) {
- // operand1 is longer
- result.ensureCapacity(operand1.m_count + 1, (result == operand1) || (result == operand2));
- var s:Int = (operand2.sign() == -1) ? -1 : 0;
- for (i in 0...operand2.m_count) {
- x = operand1.m_data.get(i);
- y = operand2.m_data.get(i);
- z = x - y - c;
- result.m_data.set(i, z);
- c = ((~x & y) | (~(x ^ y) & z)) >>> 31; // "Hacker's Delight" p. 38
- }
- y = s;
- for (i in operand2.m_count...operand1.m_count) {
- x = operand1.m_data.get(i);
- z = x - y - c;
- result.m_data.set(i, z);
- c = ((~x & y) | (~(x ^ y) & z)) >>> 31; // "Hacker's Delight" p. 38
- }
- result.m_count = operand1.m_count;
- } else {
- // operand2 is longer
- result.ensureCapacity(operand2.m_count + 1, (result == operand1) || (result == operand2));
- var s:Int = (operand1.sign() == -1) ? -1 : 0;
- for (i in 0...operand1.m_count) {
- x = operand1.m_data.get(i);
- y = operand2.m_data.get(i);
- z = x - y - c;
- result.m_data.set(i, z);
- c = ((~x & y) | (~(x ^ y) & z)) >>> 31; // "Hacker's Delight" p. 38
- }
- x = s;
- for (i in operand1.m_count...operand2.m_count) {
- y = operand2.m_data.get(i);
- z = x - y - c;
- result.m_data.set(i, z);
- c = ((~x & y) | (~(x ^ y) & z)) >>> 31; // "Hacker's Delight" p. 38
- }
- result.m_count = operand2.m_count;
- }
- var o:Int = (x ^ y) & (z ^ x); // "Hacker's Delight" p. 29
- if (o < 0) // overflow flag is in sign bit
- {
- result.m_data.set(result.m_count++, ~(z >> 31));
- } else {
- result.compact(); // TODO: True that this will only ever eliminate at most one digit? Lighter way to detect?
- }
- }
- /**
- Subtract integer `operand2` from big integer `operand1` and
- put the result into big integer `result`.
- Ok for `result` and `operand1` to be the same object.
- **/
- public static function subtractInt(result:MutableBigInt_, operand1:BigInt_, operand2:Int):Void {
- var c:Int = 0;
- var x:Int;
- var y:Int = operand2;
- var z:Int;
- result.ensureCapacity(operand1.m_count + 1, result == operand1);
- if (operand1.m_count > 1) {
- x = operand1.m_data.get(0);
- z = x - y;
- c = ((~x & y) | (~(x ^ y) & z)) >>> 31; // "Hacker's Delight" p. 38
- result.m_data.set(0, z);
- y >>= 31;
- for (i in 1...operand1.m_count - 1) {
- x = operand1.m_data.get(i);
- z = x - y - c;
- result.m_data.set(i, z);
- c = ((~x & y) | (~(x ^ y) & z)) >>> 31; // "Hacker's Delight" p. 38
- }
- }
- x = operand1.m_data.get(operand1.m_count - 1);
- z = x - y - c;
- result.m_data.set(operand1.m_count - 1, z);
- result.m_count = operand1.m_count;
- var o:Int = (x ^ y) & (z ^ x); // "Hacker's Delight" p. 29
- if (o < 0) // overflow flag is in sign bit
- {
- result.m_data.set(result.m_count++, x >> 31);
- } else if (result.m_count > 1) {
- if (z == (result.m_data.get(result.m_count - 2) >> 31)) {
- --result.m_count;
- }
- }
- }
- /**
- Multiply big integer `operand1` by integer `operand2` and put
- the result into `result`.
- `result` may not refer the same object as either `operand1`
- or `operand2`; however, `operand1` and `operand2` may be the
- same object.
- **/
- public static function multiplyInt(result:MutableBigInt_, operand1:BigInt_, operand2:Int):Void {
- // TODO: Optimize.
- multiply(result, operand1, BigInt_.fromInt(operand2));
- }
- /**
- Multiply big integer `operand1` by big integer `operand2` and
- put the result into `result`.
- `result` may not refer the same object as either `operand1`
- or `operand2`; however, `operand1` and `operand2` may be the
- same object.
- **/
- private static function multiplyTraditional(result:MutableBigInt_, operand1:BigInt_, operand2:BigInt_):Void {
- // Implements Figure 8-1 (p. 172) from "Hacker's Delight", Second Edition; Henry S. Warren, Jr.; 2013.
- if ((operand1 == result) || (operand2 == result)) {
- throw new BigIntException(BigIntError.INVALID_ARGUMENT);
- }
- if (operand1.isZero() || operand2.isZero()) {
- result.setFromInt(0);
- return;
- }
- var resultSize:Int = operand1.m_count + operand2.m_count;
- result.ensureCapacity(resultSize, false); // always overwrite result
- for (i in 0...resultSize) {
- result.m_data.set(i, 0);
- }
- result.m_count = resultSize;
- var b:Int, k:Int, t:Int;
- var u:Int, v:Int, w:Int;
- var m:Int = operand1.m_count << 1;
- var n:Int = operand2.m_count << 1;
- for (j in 0...n) {
- v = operand2.getShort(j);
- k = 0;
- for (i in 0...m) {
- u = operand1.getShort(i);
- w = result.getShort(i + j);
- t = u * v + w + k;
- result.setShort(i + j, t);
- k = t >>> 16;
- }
- result.setShort(j + m, k);
- }
- // Now result has the unsigned product. Correct by
- // subtracting v * 2 ^ (16m) if u < 0, and
- // subtracting u * 2 ^ (16n) if v < 0.
- // TODO: Do these as 32-bit operations.
- if (operand1.isNegative()) {
- b = 0;
- for (j in 0...n) {
- w = result.getShort(j + m);
- v = operand2.getShort(j);
- t = w - v - b;
- result.setShort(j + m, t);
- b = t >>> 31;
- }
- }
- if (operand2.isNegative()) {
- b = 0;
- for (i in 0...m) {
- w = result.getShort(i + n);
- u = operand1.getShort(i);
- t = w - u - b;
- result.setShort(i + n, t);
- b = t >>> 31;
- }
- }
- result.compact();
- }
- /**
- Divide the big integer `dividend` by the integer `divisor`.
- The quotient of the division is put into `quotientOut`;
- the remainder is the return value.
- `quotientOut` may refer to `dividend`.
- `work`, if supplied, must not refer to any of the inputs.
- **/
- public static function divideInt(dividend:BigInt_, divisor:Int, quotientOut:MutableBigInt_, work:MutableBigInt_ = null):Int {
- // TODO: Consider optimizing this case.
- var remainder = new MutableBigInt_();
- var divisorBi = BigInt_.fromInt(divisor);
- divide(dividend, divisorBi, quotientOut, remainder, work);
- return remainder.m_data.get(0);
- }
- /**
- Divide the big integer `dividend` by the big integer `divisor`.
- The quotient of the division is put into `quotientOut`;
- the remainder is put into `remainderOut`.
- `remainderOut` may be `null` if the remainder value is not
- needed.
- `dividend` and `divisor` may refer to the same object.
- `quotientOut` and `remainderOut` must not refer to the same
- object; but either may refer to the inputs.
- `work`, if supplied, must not refer to any of the inputs.
- **/
- public static function divide(dividend:BigInt_, divisor:BigInt_, quotientOut:MutableBigInt_, remainderOut:MutableBigInt_,
- work:MutableBigInt_ = null):Void {
- var dividendSign = dividend.sign();
- var divisorSign = divisor.sign();
- // Create a combined case value: 0 = both positive, 1 = dividend positive/divisor negative,
- // 2 = dividend negative/divisor positive, 3 = both negative
- var c:Int = 0;
- if (dividendSign == -1)
- c += 2;
- if (divisorSign == -1)
- c += 1;
-
- switch (c) {
- case 0: // dividend positive, divisor positive
- multiwordUnsignedDivide(dividend, divisor, quotientOut, remainderOut, work);
- case 1: // dividend positive, divisor negative
- negate(quotientOut, divisor);
- multiwordUnsignedDivide(dividend, quotientOut, quotientOut, remainderOut, work);
- negate(quotientOut, quotientOut);
- case 2: // dividend negative, divisor positive
- negate(quotientOut, dividend);
- multiwordUnsignedDivide(quotientOut, divisor, quotientOut, remainderOut, work);
- negate(quotientOut, quotientOut);
- if (remainderOut != null) {
- negate(remainderOut, remainderOut);
- }
- case 3: // dividend negative, divisor negative
- if (remainderOut == null) {
- // TODO: use work buffer rather than creating an object here
- remainderOut = new MutableBigInt_();
- }
- negate(quotientOut, dividend);
- negate(remainderOut, divisor);
- multiwordUnsignedDivide(quotientOut, remainderOut, quotientOut, remainderOut, work);
- negate(remainderOut, remainderOut);
- }
- }
- /*
- Unsigned division; inputs must not be negative.
- `remainderOut` may be `null` if the remainder value is not
- needed.
- `dividend` and `divisor` may refer to the same object.
- `quotientOut` and `remainderOut` must not refer to the same
- object; but either may refer to the inputs.
- `work`, if supplied, must not refer to any of the inputs.
- */
- private static function multiwordUnsignedDivide(dividend:BigInt_, divisor:BigInt_, quotientOut:MutableBigInt_, remainderOut:MutableBigInt_,
- work:MutableBigInt_ = null):Void {
- if ((quotientOut == null) || (dividend == null) || (divisor == null)) {
- throw new BigIntException(BigIntError.INVALID_ARGUMENT);
- }
- if ((work == dividend) || (work == divisor) || (work == quotientOut)) {
- throw new BigIntException(BigIntError.INVALID_ARGUMENT);
- }
- var dividendInts:Int = dividend.getUnsignedDigitCount();
- var divisorInts:Int = divisor.getUnsignedDigitCount();
- var quotientLength:Int = MultiwordArithmetic.getDivisionQuotientLengthUnsigned(dividendInts, divisorInts);
- if (remainderOut != null) {
- if (work == remainderOut) {
- throw new BigIntException(BigIntError.INVALID_ARGUMENT);
- }
- remainderOut.ensureCapacity(divisor.m_count, (remainderOut == dividend) || (remainderOut == divisor));
- }
- quotientOut.ensureCapacity(quotientLength + 1, (quotientOut == dividend) || (quotientOut == divisor)); // +1 in case we need leading 0 digit
- if (work == null) {
- work = new MutableBigInt_();
- }
- work.ensureCapacity(dividendInts + divisorInts + 1, false);
- MultiwordArithmetic.divideUnsigned(dividend.m_data, dividendInts, divisor.m_data, divisorInts, quotientOut.m_data,
- (remainderOut != null) ? remainderOut.m_data : null, work.m_data);
- quotientOut.m_count = quotientLength;
- if (quotientOut.isNegative()) {
- quotientOut.m_data.set(quotientOut.m_count++, 0);
- } else {
- quotientOut.compact();
- }
- if (remainderOut != null) {
- remainderOut.m_count = divisorInts;
- if (remainderOut.isNegative()) {
- remainderOut.m_data.set(remainderOut.m_count++, 0);
- } else {
- remainderOut.compact();
- }
- }
- }
- /**
- Shift big integer `operand1` to the left by `operand2` bits
- and put the result into big integer `result`.
- Ok for `result` and `operand1` to be the same object.
- **/
- public static function arithmeticShiftLeft(result:MutableBigInt_, operand1:BigInt_, operand2:Int):Void {
- if (operand2 < 0) {
- throw new BigIntException(BigIntError.INVALID_ARGUMENT);
- }
- if ((operand2 == 0) || operand1.isZero()) {
- result.copyFrom(operand1);
- return;
- }
- result.ensureCapacity(operand1.m_count + ((operand2 + 31) >> 5), result == operand1);
- var whole:Int = operand2 >> 5; // whole digits portion
- var n:Int = operand2 & 0x1f; // sub digit poortion
- if (n > 0) {
- asl32(result.m_data, whole, operand1.m_data, operand1.m_count, n);
- result.m_count = operand1.m_count + whole + 1;
- result.compact();
- } else if (whole > 0) {
- for (i in 0...operand1.m_count) {
- result.m_data.set(operand1.m_count - i - 1 + whole, operand1.m_data.get(operand1.m_count - i - 1));
- }
- result.m_count = operand1.m_count + whole;
- }
- for (i in 0...whole) {
- result.m_data.set(i, 0);
- }
- }
- /**
- Shift big integer `operand1` to the right by `operand2` bits
- and put the result into big integer `result`.
- Ok for `result` and `operand1` to be the same object.
- **/
- public static function arithmeticShiftRight(result:MutableBigInt_, operand1:BigInt_, operand2:Int):Void {
- if (operand2 < 0) {
- throw new BigIntException(BigIntError.INVALID_ARGUMENT);
- }
- if ((operand2 == 0) || operand1.isZero()) {
- result.copyFrom(operand1);
- return;
- }
- result.ensureCapacity(operand1.m_count, result == operand1);
- var whole:Int = operand2 >> 5; // whole digits portion
- var n:Int = operand2 & 0x1f; // sub digit poortion
- if (whole >= operand1.m_count) {
- result.m_data.set(0, (operand1.sign() == -1) ? -1 : 0);
- result.m_count = 1;
- } else if (n > 0) {
- MultiwordArithmetic._asr32(result.m_data, operand1.m_data, operand1.m_count, whole, n);
- result.m_count = operand1.m_count - whole;
- result.compact();
- } else if (whole > 0) {
- for (i in 0...operand1.m_count - whole) {
- result.m_data.set(i, operand1.m_data.get(i + whole));
- }
- result.m_count = operand1.m_count - whole;
- }
- }
- /**
- Returns the value, 0 or 1, of the bit at 2^`index` place.
- **/
- public static inline function getBit(value:BigInt_, index:Int):Int {
- return MultiwordArithmetic.getBitSigned(value.m_data, value.m_count, index);
- }
- /**
- Returns the bitwise AND of `operand1` with `operand2`.
- **/
- public static inline function bitwiseAndInt(operand1:BigInt_, operand2:Int):Int {
- return operand1.m_data.get(0) & operand2;
- }
- /**
- Returns the bitwise AND of two big integers.
- @return A new `BigInt_` holding the result.
- **/
- public static inline function bitwiseAnd(operand1:BigInt_, operand2:BigInt_):BigInt_ {
- var result:MutableBigInt_ = new MutableBigInt_();
- if ((operand1.m_count > operand2.m_count)) {
- result.m_count = (operand2.sign() == 1) ? operand2.m_count : operand1.m_count;
- } else {
- result.m_count = (operand1.sign() == 1) ? operand1.m_count : operand2.m_count;
- }
- result.ensureCapacity(result.m_count, false);
- for (i in 0...result.m_count) {
- if (i > (operand1.m_count - 1)) {
- result.m_data.set(i, operand2.m_data.get(i));
- } else if (i > (operand2.m_count - 1)) {
- result.m_data.set(i, operand1.m_data.get(i));
- } else {
- result.m_data.set(i, (operand1.m_data.get(i) & operand2.m_data.get(i)));
- }
- }
- result.compact();
- return result;
- }
- /**
- Returns the bitwise OR of `operand1` with `operand2`.
- **/
- public static inline function bitwiseOr(operand1:BigInt_, operand2:BigInt_):BigInt_ {
- var result:MutableBigInt_ = new MutableBigInt_();
- result.m_count = (operand1.m_count > operand2.m_count) ? operand1.m_count : operand2.m_count;
- result.ensureCapacity(result.m_count, false);
- var operand1Positive:Bool = operand1.sign() == 1;
- var operand2Positive:Bool = operand2.sign() == 1;
- for (i in 0...result.m_count) {
- if (i > (operand1.m_count - 1)) {
- result.m_data.set(i, (operand1Positive ? operand2.m_data.get(i) : 0xffffffff));
- } else if (i > (operand2.m_count - 1)) {
- result.m_data.set(i, (operand2Positive ? operand1.m_data.get(i) : 0xffffffff));
- } else {
- result.m_data.set(i, (operand1.m_data.get(i) | operand2.m_data.get(i)));
- }
- }
- result.compact();
- return result;
- }
- /**
- Returns the bitwise XOR of two big integers.
- @return A new `BigInt_` holding the result.
- **/
- public static inline function bitwiseXor(operand1:BigInt_, operand2:BigInt_):BigInt_ {
- var result:MutableBigInt_ = new MutableBigInt_();
- result.m_count = (operand1.m_count > operand2.m_count) ? operand1.m_count : operand2.m_count;
- result.ensureCapacity(result.m_count, false);
- var operand1Positive:Bool = operand1.sign() == 1;
- var operand2Positive:Bool = operand2.sign() == 1;
- for (i in 0...result.m_count) {
- if (i > (operand1.m_count - 1)) {
- result.m_data.set(i, (operand1Positive ? operand2.m_data.get(i) : (operand2.m_data.get(i) ^ 0xffffffff)));
- } else if (i > (operand2.m_count - 1)) {
- result.m_data.set(i, (operand2Positive ? operand1.m_data.get(i) : (operand1.m_data.get(i) ^ 0xffffffff)));
- } else {
- result.m_data.set(i, (operand1.m_data.get(i) ^ operand2.m_data.get(i)));
- }
- }
- result.compact();
- return result;
- }
- /**
- Returns the bitwise NOT (inversion) of a big integer.
- @return A new `BigInt_` holding the result.
- **/
- public static inline function bitwiseNot(operand:BigInt_):BigInt_ {
- var result:MutableBigInt_ = new MutableBigInt_();
- result.copyFrom(operand);
- for (i in 0...result.m_count) {
- result.m_data.set(i, ~operand.m_data.get(i));
- }
- result.compact();
- return result;
- }
- /**
- Returns `floor(log2(input))`.
- @param input The `BigInt_` operand.
- @return The integer base-2 logarithm.
- **/
- public static function floorLog2(input:BigInt_):Int {
- return (input.m_count << 5) - BigIntHelper.nlz(input.m_data.get(input.m_count - 1));
- }
- //-----------------------------------------------------------------------
- // Private helpers
- //-----------------------------------------------------------------------
- // assumes 0 < shift < 32
- // ok if output == input
- private static inline function asl32(output:Vector<Int>, outputOffset:Int, input:Vector<Int>, inputSize:Int, shift:Int32):Void {
- var x:Int = input.get(inputSize - 1) >> 31; // sign extend
- var r:Int = 32 - shift;
- var y:Int;
- while (inputSize > 0) {
- y = input[inputSize - 1];
- x = (x << shift) | (y >>> r);
- output.set(inputSize + outputOffset, x);
- x = y;
- --inputSize;
- }
- output.set(outputOffset, x << shift);
- }
- // assumes 0 < shift < 32
- // ok if output == input
- private static inline function lsl32(output:Vector<Int>, outputOffset:Int, input:Vector<Int>, inputSize:Int, shift:Int32):Void {
- var x:Int = 0;
- var r:Int = 32 - shift;
- var y:Int;
- while (inputSize > 0) {
- y = input[inputSize - 1];
- x = (x << shift) | (y >>> r);
- output.set(inputSize + outputOffset, x);
- x = y;
- --inputSize;
- }
- output.set(outputOffset, x << shift);
- }
- // assumes 0 < shift < 32
- // ok if output == input
- private static inline function lsr32(output:Vector<Int>, input:Vector<Int>, inputSize:Int, inputOffset:Int, shift:Int32):Void {
- var r:Int = 32 - shift;
- var i:Int = 0;
- while (i < inputSize - 1) {
- output.set(i, (input.get(inputOffset + i) >>> shift) | (input.get(inputOffset + i + 1) << r));
- ++i;
- }
- output.set(i, input.get(inputOffset + i) >>> shift);
- }
- private static inline function copy(output:Vector<Int>, outputOffset:Int, input:Vector<Int>, inputOffset:Int, length:Int):Void {
- for (i in 0...length) {
- output.set(outputOffset + i, input.get(inputOffset + i));
- }
- }
-
- private static function nextPowerOfTwo(value:Int):Int {
- if (value <= 0)
- return 1;
- value--;
- value |= value >> 1;
- value |= value >> 2;
- value |= value >> 4;
- value |= value >> 8;
- value |= value >> 16;
- return value + 1;
- }
- private static function splitAtPowerOfTwo(value:BigInt_, splitBits:Int, high:MutableBigInt_, low:MutableBigInt_):Void {
- if (splitBits <= 0) {
- high.setFromInt(0);
- low.copyFrom(value);
- return;
- }
- var wordBoundary:Int = splitBits >> 5;
- var bitOffset:Int = splitBits & 0x1f; // modulo 32
- if (wordBoundary >= value.m_count) {
- high.setFromInt(0);
- low.copyFrom(value);
- return;
- }
- low.ensureCapacity(wordBoundary + 1, false);
- // Copy the lower words
- for (i in 0...wordBoundary) {
- low.m_data.set(i, value.m_data.get(i));
- }
- if (bitOffset > 0 && wordBoundary < value.m_count) {
- var mask:Int = (1 << bitOffset) - 1;
- low.m_data.set(wordBoundary, value.m_data.get(wordBoundary) & mask);
- low.m_count = wordBoundary + 1;
- } else {
- low.m_count = wordBoundary;
- }
-
- // Ensure low part is always treated as positive
- // by adding a leading zero if the most significant bit is set
- if (low.m_count > 0 && low.m_data.get(low.m_count - 1) < 0) {
- low.ensureCapacity(low.m_count + 1, false);
- low.m_data.set(low.m_count, 0);
- low.m_count++;
- }
-
- low.compact();
- BigIntArithmetic.arithmeticShiftRight(high, value, splitBits);
- }
-
- public static function multiply(result:MutableBigInt_, operand1:BigInt_, operand2:BigInt_):Void {
- if ((operand1 == result) || (operand2 == result)) {
- throw new BigIntException(BigIntError.INVALID_ARGUMENT);
- }
- if (operand1.isZero() || operand2.isZero()) {
- result.setFromInt(0);
- return;
- }
- var bitLength1 = operand1.bitLength();
- var bitLength2 = operand2.bitLength();
- if (bitLength1 < 512 || bitLength2 < 512) {
- BigIntArithmetic.multiplyTraditional(result, operand1, operand2);
- return;
- }
- var maxBits = (bitLength1 > bitLength2) ? bitLength1 : bitLength2;
- var splitBits = nextPowerOfTwo(maxBits >> 1);
- if (splitBits < 256)
- splitBits = 256;
- multiplyKaratsuba(result, operand1, operand2, splitBits);
- }
-
- private static function multiplyKaratsuba(result:MutableBigInt_, x:BigInt_, y:BigInt_, splitBits:Int):Void {
- if (x.bitLength() < 512 || y.bitLength() < 512) {
- BigIntArithmetic.multiplyTraditional(result, x, y);
- return;
- }
- var x1 = new MutableBigInt_();
- var x0 = new MutableBigInt_();
- splitAtPowerOfTwo(x, splitBits, x1, x0);
- var y1 = new MutableBigInt_();
- var y0 = new MutableBigInt_();
- splitAtPowerOfTwo(y, splitBits, y1, y0);
- var z2 = new MutableBigInt_(); // x1 * y1
- var z0 = new MutableBigInt_(); // x0 * y0
- var z1 = new MutableBigInt_(); // (x1 + x0) * (y1 + y0) - z2 - z0
- // z2 = x1 * y1
- multiplyKaratsuba(z2, x1, y1, splitBits >> 1);
- // z0 = x0 * y0
- multiplyKaratsuba(z0, x0, y0, splitBits >> 1);
- // z1 = (x1 + x0) * (y1 + y0) - z2 - z0
- var sum_x = new MutableBigInt_();
- var sum_y = new MutableBigInt_();
- BigIntArithmetic.add(sum_x, x1, x0);
- BigIntArithmetic.add(sum_y, y1, y0);
- multiplyKaratsuba(z1, sum_x, sum_y, splitBits >> 1);
- BigIntArithmetic.subtract(z1, z1, z2);
- BigIntArithmetic.subtract(z1, z1, z0);
- // result = z2 * 2^(2*splitBits) + z1 * 2^splitBits + z0
- var temp1 = new MutableBigInt_();
- var temp2 = new MutableBigInt_();
- // z2 * 2^(2*splitBits)
- BigIntArithmetic.arithmeticShiftLeft(temp1, z2, 2 * splitBits);
- // z1 * 2^splitBits
- BigIntArithmetic.arithmeticShiftLeft(temp2, z1, splitBits);
- BigIntArithmetic.add(result, temp1, temp2);
- BigIntArithmetic.add(result, result, z0);
- }
-
- /**
- Squaring operation using power-of-two splitting.
- @param result The output BigInt for the square
- @param operand The operand to square
- **/
- public static function square(result:MutableBigInt_, operand:BigInt_):Void {
- if (operand == result) {
- throw new BigIntException(BigIntError.INVALID_ARGUMENT);
- }
- if (operand.isZero()) {
- result.setFromInt(0);
- return;
- }
- var bitLength = operand.bitLength();
- if (bitLength < 512) {
- BigIntArithmetic.multiplyTraditional(result, operand, operand);
- return;
- }
- var splitBits = nextPowerOfTwo(bitLength >> 1);
- if (splitBits < 256)
- splitBits = 256;
- var high = new MutableBigInt_();
- var low = new MutableBigInt_();
- splitAtPowerOfTwo(operand, splitBits, high, low);
- // Calculate (high + low)^2 = high^2 + 2*high*low + low^2
- var highSquared = new MutableBigInt_();
- var lowSquared = new MutableBigInt_();
- var crossProduct = new MutableBigInt_();
- square(highSquared, high);
- square(lowSquared, low);
- // Calculate 2 * high * low
- multiplyKaratsuba(crossProduct, high, low, splitBits >> 1);
- BigIntArithmetic.arithmeticShiftLeft(crossProduct, crossProduct, 1);
- // Combine results: result = high^2 * 2^(2*splitBits) + 2*high*low * 2^splitBits + low^2
- var temp1 = new MutableBigInt_();
- var temp2 = new MutableBigInt_();
- BigIntArithmetic.arithmeticShiftLeft(temp1, highSquared, 2 * splitBits);
- BigIntArithmetic.arithmeticShiftLeft(temp2, crossProduct, splitBits);
- BigIntArithmetic.add(result, temp1, temp2);
- BigIntArithmetic.add(result, result, lowSquared);
- }
- }
|