typeload.ml 92 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471
  1. (*
  2. * Copyright (C)2005-2013 Haxe Foundation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  20. * DEALINGS IN THE SOFTWARE.
  21. *)
  22. open Ast
  23. open Type
  24. open Common
  25. open Typecore
  26. (*
  27. Build module structure : should be atomic - no type loading is possible
  28. *)
  29. let make_module ctx mpath file tdecls loadp =
  30. let decls = ref [] in
  31. let make_path name priv =
  32. if List.exists (fun (t,_) -> snd (t_path t) = name) !decls then error ("Type name " ^ name ^ " is already defined in this module") loadp;
  33. if priv then (fst mpath @ ["_" ^ snd mpath], name) else (fst mpath, name)
  34. in
  35. let m = {
  36. m_id = alloc_mid();
  37. m_path = mpath;
  38. m_types = [];
  39. m_extra = module_extra (Common.unique_full_path file) (Common.get_signature ctx.com) (file_time file) (if ctx.in_macro then MMacro else MCode);
  40. } in
  41. let pt = ref None in
  42. let rec make_decl acc decl =
  43. let p = snd decl in
  44. let acc = (match fst decl with
  45. | EImport _ | EUsing _ ->
  46. (match !pt with
  47. | None -> acc
  48. | Some pt ->
  49. display_error ctx "import and using may not appear after a type declaration" p;
  50. error "Previous type declaration found here" pt)
  51. | EClass d ->
  52. pt := Some p;
  53. let priv = List.mem HPrivate d.d_flags in
  54. let path = make_path d.d_name priv in
  55. let c = mk_class m path p in
  56. c.cl_module <- m;
  57. c.cl_private <- priv;
  58. c.cl_doc <- d.d_doc;
  59. c.cl_meta <- d.d_meta;
  60. decls := (TClassDecl c, decl) :: !decls;
  61. acc
  62. | EEnum d ->
  63. pt := Some p;
  64. let priv = List.mem EPrivate d.d_flags in
  65. let path = make_path d.d_name priv in
  66. let e = {
  67. e_path = path;
  68. e_module = m;
  69. e_pos = p;
  70. e_doc = d.d_doc;
  71. e_meta = d.d_meta;
  72. e_types = [];
  73. e_private = priv;
  74. e_extern = List.mem EExtern d.d_flags;
  75. e_constrs = PMap.empty;
  76. e_names = [];
  77. } in
  78. decls := (TEnumDecl e, decl) :: !decls;
  79. acc
  80. | ETypedef d ->
  81. pt := Some p;
  82. let priv = List.mem EPrivate d.d_flags in
  83. let path = make_path d.d_name priv in
  84. let t = {
  85. t_path = path;
  86. t_module = m;
  87. t_pos = p;
  88. t_doc = d.d_doc;
  89. t_private = priv;
  90. t_types = [];
  91. t_type = mk_mono();
  92. t_meta = d.d_meta;
  93. } in
  94. decls := (TTypeDecl t, decl) :: !decls;
  95. acc
  96. | EAbstract d ->
  97. let priv = List.mem APrivAbstract d.d_flags in
  98. let path = make_path d.d_name priv in
  99. let a = {
  100. a_path = path;
  101. a_private = priv;
  102. a_module = m;
  103. a_pos = p;
  104. a_doc = d.d_doc;
  105. a_types = [];
  106. a_meta = d.d_meta;
  107. a_from = [];
  108. a_to = [];
  109. a_ops = [];
  110. a_unops = [];
  111. a_impl = None;
  112. a_array = [];
  113. a_this = mk_mono();
  114. } in
  115. decls := (TAbstractDecl a, decl) :: !decls;
  116. match d.d_data with
  117. | [] when Meta.has Meta.CoreType a.a_meta ->
  118. a.a_this <- t_dynamic;
  119. acc
  120. | fields ->
  121. let rec loop = function
  122. | [] ->
  123. let params = List.map (fun t -> TPType (CTPath { tname = t.tp_name; tparams = []; tsub = None; tpackage = [] })) d.d_params in
  124. CTPath { tpackage = []; tname = d.d_name; tparams = params; tsub = None }
  125. | AIsType t :: _ -> t
  126. | _ :: l -> loop l
  127. in
  128. let this_t = loop d.d_flags in
  129. let fields = List.map (fun f ->
  130. let stat = List.mem AStatic f.cff_access in
  131. let p = f.cff_pos in
  132. match f.cff_kind with
  133. | FProp (("get" | "never"),("set" | "never"),_,_) when not stat ->
  134. (* TODO: hack to avoid issues with abstract property generation on As3 *)
  135. if Common.defined ctx.com Define.As3 then f.cff_meta <- (Meta.Extern,[],p) :: f.cff_meta;
  136. { f with cff_access = AStatic :: f.cff_access; cff_meta = (Meta.Impl,[],p) :: f.cff_meta }
  137. | FProp _ when not stat ->
  138. display_error ctx "Member property accessors must be get/set or never" p;
  139. f
  140. | FFun fu when f.cff_name = "new" && not stat ->
  141. let init p = (EVars ["this",Some this_t,None],p) in
  142. let ret p = (EReturn (Some (EConst (Ident "this"),p)),p) in
  143. if Meta.has Meta.MultiType a.a_meta then begin
  144. if List.mem AInline f.cff_access then error "MultiType constructors cannot be inline" f.cff_pos;
  145. if fu.f_expr <> None then error "MultiType constructors cannot have a body" f.cff_pos;
  146. end;
  147. let fu = {
  148. fu with
  149. f_expr = (match fu.f_expr with
  150. | None -> if Meta.has Meta.MultiType a.a_meta then Some (EConst (Ident "null"),p) else None
  151. | Some (EBlock [EBinop (OpAssign,(EConst (Ident "this"),_),e),_],_ | EBinop (OpAssign,(EConst (Ident "this"),_),e),_) ->
  152. Some (EReturn (Some e), pos e)
  153. | Some (EBlock el,p) -> Some (EBlock (init p :: el @ [ret p]),p)
  154. | Some e -> Some (EBlock [init p;e;ret p],p)
  155. );
  156. f_type = Some this_t;
  157. } in
  158. { f with cff_name = "_new"; cff_access = AStatic :: f.cff_access; cff_kind = FFun fu; cff_meta = (Meta.Impl,[],p) :: f.cff_meta }
  159. | FFun fu when not stat ->
  160. if Meta.has Meta.From f.cff_meta then error "@:from cast functions must be static" f.cff_pos;
  161. let first = if List.mem AMacro f.cff_access
  162. then CTPath ({ tpackage = ["haxe";"macro"]; tname = "Expr"; tsub = Some ("ExprOf"); tparams = [TPType this_t] })
  163. else this_t
  164. in
  165. let fu = { fu with f_args = ("this",false,Some first,None) :: fu.f_args } in
  166. { f with cff_kind = FFun fu; cff_access = AStatic :: f.cff_access; cff_meta = (Meta.Impl,[],p) :: f.cff_meta }
  167. | _ ->
  168. f
  169. ) fields in
  170. let meta = ref [] in
  171. if has_meta Meta.Dce a.a_meta then meta := (Meta.Dce,[],p) :: !meta;
  172. let acc = make_decl acc (EClass { d_name = d.d_name ^ "_Impl_"; d_flags = [HPrivate]; d_data = fields; d_doc = None; d_params = []; d_meta = !meta },p) in
  173. (match !decls with
  174. | (TClassDecl c,_) :: _ ->
  175. List.iter (fun m -> match m with
  176. | ((Meta.Build | Meta.CoreApi | Meta.Allow | Meta.Access),_,_) ->
  177. c.cl_meta <- m :: c.cl_meta;
  178. | (Meta.FakeEnum,_,_) ->
  179. c.cl_meta <- (Meta.Build,[ECall((EField((EField((EField((EConst(Ident "haxe"),p),"macro"),p),"Build"),p),"buildFakeEnum"),p),[]),p],p) :: c.cl_meta;
  180. | (Meta.Expose,el,_) ->
  181. c.cl_meta <- (Meta.Build,[ECall((EField((EField((EField((EConst(Ident "haxe"),p),"macro"),p),"Build"),p),"exposeUnderlyingFields"),p),el),p],p) :: c.cl_meta;
  182. | _ ->
  183. ()
  184. ) a.a_meta;
  185. a.a_impl <- Some c;
  186. c.cl_kind <- KAbstractImpl a
  187. | _ -> assert false);
  188. acc
  189. ) in
  190. decl :: acc
  191. in
  192. let tdecls = List.fold_left make_decl [] tdecls in
  193. let decls = List.rev !decls in
  194. m.m_types <- List.map fst decls;
  195. m, decls, List.rev tdecls
  196. let parse_file com file p =
  197. let ch = (try open_in_bin file with _ -> error ("Could not open " ^ file) p) in
  198. let t = Common.timer "parsing" in
  199. Lexer.init file;
  200. incr stats.s_files_parsed;
  201. let data = (try Parser.parse com (Lexing.from_channel ch) with e -> close_in ch; t(); raise e) in
  202. close_in ch;
  203. t();
  204. Common.log com ("Parsed " ^ file);
  205. data
  206. let parse_hook = ref parse_file
  207. let type_module_hook = ref (fun _ _ _ -> None)
  208. let type_function_params_rec = ref (fun _ _ _ _ -> assert false)
  209. let return_partial_type = ref false
  210. let type_function_param ctx t e opt p =
  211. if opt then
  212. let e = (match e with None -> Some (EConst (Ident "null"),p) | _ -> e) in
  213. ctx.t.tnull t, e
  214. else
  215. let t = match e with Some (EConst (Ident "null"),p) -> ctx.t.tnull t | _ -> t in
  216. t, e
  217. let type_var_field ctx t e stat p =
  218. if stat then ctx.curfun <- FunStatic else ctx.curfun <- FunMember;
  219. let e = type_expr ctx e (WithType t) in
  220. unify ctx e.etype t p;
  221. match t with
  222. | TType ({ t_path = ([],"UInt") },[]) | TAbstract ({ a_path = ([],"UInt") },[]) when stat -> { e with etype = t }
  223. | _ -> e
  224. let apply_macro ctx mode path el p =
  225. let cpath, meth = (match List.rev (ExtString.String.nsplit path ".") with
  226. | meth :: name :: pack -> (List.rev pack,name), meth
  227. | _ -> error "Invalid macro path" p
  228. ) in
  229. ctx.g.do_macro ctx mode cpath meth el p
  230. (** since load_type_def and load_instance are used in PASS2, they should not access the structure of a type **)
  231. (*
  232. load a type or a subtype definition
  233. *)
  234. let rec load_type_def ctx p t =
  235. let no_pack = t.tpackage = [] in
  236. let tname = (match t.tsub with None -> t.tname | Some n -> n) in
  237. try
  238. if t.tsub <> None then raise Not_found;
  239. List.find (fun t2 ->
  240. let tp = t_path t2 in
  241. tp = (t.tpackage,tname) || (no_pack && snd tp = tname)
  242. ) (ctx.m.curmod.m_types @ ctx.m.module_types)
  243. with
  244. Not_found ->
  245. let next() =
  246. let t, m = (try
  247. t, ctx.g.do_load_module ctx (t.tpackage,t.tname) p
  248. with Error (Module_not_found _,p2) as e when p == p2 ->
  249. match t.tpackage with
  250. | "std" :: l ->
  251. let t = { t with tpackage = l } in
  252. t, ctx.g.do_load_module ctx (t.tpackage,t.tname) p
  253. | _ -> raise e
  254. ) in
  255. let tpath = (t.tpackage,tname) in
  256. try
  257. List.find (fun t -> not (t_infos t).mt_private && t_path t = tpath) m.m_types
  258. with
  259. Not_found -> raise (Error (Type_not_found (m.m_path,tname),p))
  260. in
  261. (* lookup in wildcard imported packages *)
  262. try
  263. if not no_pack then raise Exit;
  264. let rec loop = function
  265. | [] -> raise Exit
  266. | wp :: l ->
  267. try
  268. load_type_def ctx p { t with tpackage = wp }
  269. with
  270. | Error (Module_not_found _,p2)
  271. | Error (Type_not_found _,p2) when p == p2 -> loop l
  272. in
  273. loop ctx.m.wildcard_packages
  274. with Exit ->
  275. (* lookup in our own package - and its upper packages *)
  276. let rec loop = function
  277. | [] -> raise Exit
  278. | (_ :: lnext) as l ->
  279. try
  280. load_type_def ctx p { t with tpackage = List.rev l }
  281. with
  282. | Error (Module_not_found _,p2)
  283. | Error (Type_not_found _,p2) when p == p2 -> loop lnext
  284. in
  285. try
  286. if not no_pack then raise Exit;
  287. (match fst ctx.m.curmod.m_path with
  288. | [] -> raise Exit
  289. | x :: _ ->
  290. (* this can occur due to haxe remoting : a module can be
  291. already defined in the "js" package and is not allowed
  292. to access the js classes *)
  293. try
  294. (match PMap.find x ctx.com.package_rules with
  295. | Forbidden -> raise Exit
  296. | _ -> ())
  297. with Not_found -> ());
  298. loop (List.rev (fst ctx.m.curmod.m_path));
  299. with
  300. Exit -> next()
  301. let check_param_constraints ctx types t pl c p =
  302. match follow t with
  303. | TMono _ -> ()
  304. | TInst({cl_kind = KTypeParameter _},_) -> ()
  305. | _ ->
  306. let ctl = (match c.cl_kind with KTypeParameter l -> l | _ -> []) in
  307. List.iter (fun ti ->
  308. let ti = apply_params types pl ti in
  309. let ti = (match follow ti with
  310. | TInst ({ cl_kind = KGeneric } as c,pl) ->
  311. (* if we solve a generic contraint, let's substitute with the actual generic instance before unifying *)
  312. let _,_, f = ctx.g.do_build_instance ctx (TClassDecl c) p in
  313. f pl
  314. | TInst({cl_kind = KGenericInstance(c2,tl)},_) ->
  315. (* build generic instance again with applied type parameters (issue 1965) *)
  316. let _,_, f = ctx.g.do_build_instance ctx (TClassDecl c2) p in
  317. f (List.map (fun t -> apply_params types pl t) tl)
  318. | _ -> ti
  319. ) in
  320. try
  321. unify_raise ctx t ti p
  322. with Error(Unify l,p) ->
  323. if not ctx.untyped then display_error ctx (error_msg (Unify (Constraint_failure (s_type_path c.cl_path) :: l))) p;
  324. ) ctl
  325. (* build an instance from a full type *)
  326. let rec load_instance ctx t p allow_no_params =
  327. try
  328. if t.tpackage <> [] || t.tsub <> None then raise Not_found;
  329. let pt = List.assoc t.tname ctx.type_params in
  330. if t.tparams <> [] then error ("Class type parameter " ^ t.tname ^ " can't have parameters") p;
  331. pt
  332. with Not_found ->
  333. let mt = load_type_def ctx p t in
  334. let is_generic = match mt with TClassDecl {cl_kind = KGeneric} -> true | _ -> false in
  335. let types , path , f = ctx.g.do_build_instance ctx mt p in
  336. if allow_no_params && t.tparams = [] then begin
  337. let pl = ref [] in
  338. pl := List.map (fun (name,t) ->
  339. match follow t with
  340. | TInst (c,_) ->
  341. let t = mk_mono() in
  342. if c.cl_kind <> KTypeParameter [] || is_generic then delay ctx PCheckConstraint (fun() -> check_param_constraints ctx types t (!pl) c p);
  343. t;
  344. | _ -> assert false
  345. ) types;
  346. f (!pl)
  347. end else if path = ([],"Dynamic") then
  348. match t.tparams with
  349. | [] -> t_dynamic
  350. | [TPType t] -> TDynamic (load_complex_type ctx p t)
  351. | _ -> error "Too many parameters for Dynamic" p
  352. else begin
  353. if List.length types <> List.length t.tparams then error ("Invalid number of type parameters for " ^ s_type_path path) p;
  354. let tparams = List.map (fun t ->
  355. match t with
  356. | TPExpr e ->
  357. let name = (match fst e with
  358. | EConst (String s) -> "S" ^ s
  359. | EConst (Int i) -> "I" ^ i
  360. | EConst (Float f) -> "F" ^ f
  361. | _ -> "Expr"
  362. ) in
  363. let c = mk_class null_module ([],name) p in
  364. c.cl_kind <- KExpr e;
  365. TInst (c,[])
  366. | TPType t -> load_complex_type ctx p t
  367. ) t.tparams in
  368. let params = List.map2 (fun t (name,t2) ->
  369. let isconst = (match t with TInst ({ cl_kind = KExpr _ },_) -> true | _ -> false) in
  370. if isconst <> (name = "Const") && t != t_dynamic then error (if isconst then "Constant value unexpected here" else "Constant value excepted as type parameter") p;
  371. match follow t2 with
  372. | TInst ({ cl_kind = KTypeParameter [] }, []) when not is_generic ->
  373. t
  374. | TInst (c,[]) ->
  375. let r = exc_protect ctx (fun r ->
  376. r := (fun() -> t);
  377. delay ctx PCheckConstraint (fun() -> check_param_constraints ctx types t tparams c p);
  378. t
  379. ) "constraint" in
  380. delay ctx PForce (fun () -> ignore(!r()));
  381. TLazy r
  382. | _ -> assert false
  383. ) tparams types in
  384. f params
  385. end
  386. (*
  387. build an instance from a complex type
  388. *)
  389. and load_complex_type ctx p t =
  390. match t with
  391. | CTParent t -> load_complex_type ctx p t
  392. | CTPath t -> load_instance ctx t p false
  393. | CTOptional _ -> error "Optional type not allowed here" p
  394. | CTExtend (t,l) ->
  395. (match load_complex_type ctx p (CTAnonymous l) with
  396. | TAnon a ->
  397. let rec loop t =
  398. match follow t with
  399. | TInst (c,tl) ->
  400. let c2 = mk_class null_module (fst c.cl_path,"+" ^ snd c.cl_path) p in
  401. c2.cl_private <- true;
  402. PMap.iter (fun f _ ->
  403. try
  404. ignore(class_field c f);
  405. error ("Cannot redefine field " ^ f) p
  406. with
  407. Not_found -> ()
  408. ) a.a_fields;
  409. (* do NOT tag as extern - for protect *)
  410. c2.cl_kind <- KExtension (c,tl);
  411. c2.cl_super <- Some (c,tl);
  412. c2.cl_fields <- a.a_fields;
  413. TInst (c2,[])
  414. | TMono _ ->
  415. error "Loop found in cascading signatures definitions. Please change order/import" p
  416. | TAnon a2 ->
  417. PMap.iter (fun f _ ->
  418. if PMap.mem f a2.a_fields then error ("Cannot redefine field " ^ f) p
  419. ) a.a_fields;
  420. mk_anon (PMap.foldi PMap.add a.a_fields a2.a_fields)
  421. | _ -> error "Can only extend classes and structures" p
  422. in
  423. let i = load_instance ctx t p false in
  424. let tr = ref None in
  425. let t = TMono tr in
  426. let r = exc_protect ctx (fun r ->
  427. r := (fun _ -> t);
  428. tr := Some (loop i);
  429. t
  430. ) "constraint" in
  431. delay ctx PForce (fun () -> ignore(!r()));
  432. TLazy r
  433. | _ -> assert false)
  434. | CTAnonymous l ->
  435. let rec loop acc f =
  436. let n = f.cff_name in
  437. let p = f.cff_pos in
  438. if PMap.mem n acc then error ("Duplicate field declaration : " ^ n) p;
  439. let topt = function
  440. | None -> error ("Explicit type required for field " ^ n) p
  441. | Some t -> load_complex_type ctx p t
  442. in
  443. let no_expr = function
  444. | None -> ()
  445. | Some (_,p) -> error "Expression not allowed here" p
  446. in
  447. let pub = ref true in
  448. let dyn = ref false in
  449. let params = ref [] in
  450. List.iter (fun a ->
  451. match a with
  452. | APublic -> ()
  453. | APrivate -> pub := false;
  454. | ADynamic when (match f.cff_kind with FFun _ -> true | _ -> false) -> dyn := true
  455. | AStatic | AOverride | AInline | ADynamic | AMacro -> error ("Invalid access " ^ Ast.s_access a) p
  456. ) f.cff_access;
  457. let t , access = (match f.cff_kind with
  458. | FVar (Some (CTPath({tpackage=[];tname="Void"})), _) | FProp (_,_,Some (CTPath({tpackage=[];tname="Void"})),_) ->
  459. error "Fields of type Void are not allowed in structures" p
  460. | FVar (t, e) ->
  461. no_expr e;
  462. topt t, Var { v_read = AccNormal; v_write = AccNormal }
  463. | FFun fd ->
  464. params := (!type_function_params_rec) ctx fd f.cff_name p;
  465. no_expr fd.f_expr;
  466. let old = ctx.type_params in
  467. ctx.type_params <- !params @ old;
  468. let args = List.map (fun (name,o,t,e) -> no_expr e; name, o, topt t) fd.f_args in
  469. let t = TFun (args,topt fd.f_type), Method (if !dyn then MethDynamic else MethNormal) in
  470. ctx.type_params <- old;
  471. t
  472. | FProp (i1,i2,t,e) ->
  473. no_expr e;
  474. let access m get =
  475. match m with
  476. | "null" -> AccNo
  477. | "never" -> AccNever
  478. | "default" -> AccNormal
  479. | "dynamic" -> AccCall
  480. | "get" when get -> AccCall
  481. | "set" when not get -> AccCall
  482. | x when get && x = "get_" ^ n -> AccCall
  483. | x when not get && x = "set_" ^ n -> AccCall
  484. | _ ->
  485. error "Custom property access is no longer supported in Haxe 3" f.cff_pos;
  486. in
  487. let t = (match t with None -> error "Type required for structure property" p | Some t -> t) in
  488. load_complex_type ctx p t, Var { v_read = access i1 true; v_write = access i2 false }
  489. ) in
  490. let cf = {
  491. cf_name = n;
  492. cf_type = t;
  493. cf_pos = p;
  494. cf_public = !pub;
  495. cf_kind = access;
  496. cf_params = !params;
  497. cf_expr = None;
  498. cf_doc = f.cff_doc;
  499. cf_meta = f.cff_meta;
  500. cf_overloads = [];
  501. } in
  502. init_meta_overloads ctx cf;
  503. PMap.add n cf acc
  504. in
  505. mk_anon (List.fold_left loop PMap.empty l)
  506. | CTFunction (args,r) ->
  507. match args with
  508. | [CTPath { tpackage = []; tparams = []; tname = "Void" }] ->
  509. TFun ([],load_complex_type ctx p r)
  510. | _ ->
  511. TFun (List.map (fun t ->
  512. let t, opt = (match t with CTOptional t -> t, true | _ -> t,false) in
  513. "",opt,load_complex_type ctx p t
  514. ) args,load_complex_type ctx p r)
  515. and init_meta_overloads ctx cf =
  516. let overloads = ref [] in
  517. cf.cf_meta <- List.filter (fun m ->
  518. match m with
  519. | (Meta.Overload,[(EFunction (fname,f),p)],_) ->
  520. if fname <> None then error "Function name must not be part of @:overload" p;
  521. (match f.f_expr with Some (EBlock [], _) -> () | _ -> error "Overload must only declare an empty method body {}" p);
  522. let old = ctx.type_params in
  523. (match cf.cf_params with
  524. | [] -> ()
  525. | l -> ctx.type_params <- List.filter (fun t -> not (List.mem t l)) ctx.type_params);
  526. let params = (!type_function_params_rec) ctx f cf.cf_name p in
  527. ctx.type_params <- params @ ctx.type_params;
  528. let topt = function None -> error "Explicit type required" p | Some t -> load_complex_type ctx p t in
  529. let args = List.map (fun (a,opt,t,_) -> a,opt,topt t) f.f_args in
  530. overloads := (args,topt f.f_type, params) :: !overloads;
  531. ctx.type_params <- old;
  532. false
  533. | (Meta.Overload,[],_) when ctx.com.config.pf_overload ->
  534. let topt (n,_,t) = match t with | TMono t when !t = None -> error ("Explicit type required for overload functions\nFor function argument '" ^ n ^ "'") cf.cf_pos | _ -> () in
  535. (match follow cf.cf_type with
  536. | TFun (args,_) -> List.iter topt args
  537. | _ -> () (* could be a variable *));
  538. true
  539. | (Meta.Overload,[],p) ->
  540. error "This platform does not support this kind of overload declaration. Try @:overload(function()... {}) instead" p
  541. | (Meta.Overload,_,p) ->
  542. error "Invalid @:overload metadata format" p
  543. | _ ->
  544. true
  545. ) cf.cf_meta;
  546. cf.cf_overloads <- List.map (fun (args,ret,params) -> { cf with cf_type = TFun (args,ret); cf_params = params }) (List.rev !overloads)
  547. let hide_types ctx =
  548. let old_m = ctx.m in
  549. let old_type_params = ctx.type_params in
  550. ctx.m <- {
  551. curmod = ctx.g.std;
  552. module_types = [];
  553. module_using = [];
  554. module_globals = PMap.empty;
  555. wildcard_packages = [];
  556. };
  557. ctx.type_params <- [];
  558. (fun() ->
  559. ctx.m <- old_m;
  560. ctx.type_params <- old_type_params;
  561. )
  562. (*
  563. load a type while ignoring the current imports or local types
  564. *)
  565. let load_core_type ctx name =
  566. let show = hide_types ctx in
  567. let t = load_instance ctx { tpackage = []; tname = name; tparams = []; tsub = None; } null_pos false in
  568. show();
  569. t
  570. let t_iterator ctx =
  571. let show = hide_types ctx in
  572. match load_type_def ctx null_pos { tpackage = []; tname = "Iterator"; tparams = []; tsub = None } with
  573. | TTypeDecl t ->
  574. show();
  575. if List.length t.t_types <> 1 then assert false;
  576. let pt = mk_mono() in
  577. apply_params t.t_types [pt] t.t_type, pt
  578. | _ ->
  579. assert false
  580. (*
  581. load either a type t or Null<Unknown> if not defined
  582. *)
  583. let load_type_opt ?(opt=false) ctx p t =
  584. let t = (match t with None -> mk_mono() | Some t -> load_complex_type ctx p t) in
  585. if opt then ctx.t.tnull t else t
  586. (* ---------------------------------------------------------------------- *)
  587. (* Structure check *)
  588. let valid_redefinition ctx f1 t1 f2 t2 =
  589. let valid t1 t2 =
  590. Type.unify t1 t2;
  591. if is_null t1 <> is_null t2 then raise (Unify_error [Cannot_unify (t1,t2)]);
  592. in
  593. let t1, t2 = (match f1.cf_params, f2.cf_params with
  594. | [], [] -> t1, t2
  595. | l1, l2 when List.length l1 = List.length l2 ->
  596. let to_check = ref [] in
  597. let monos = List.map2 (fun (name,p1) (_,p2) ->
  598. (match follow p1, follow p2 with
  599. | TInst ({ cl_kind = KTypeParameter ct1 } as c1,pl1), TInst ({ cl_kind = KTypeParameter ct2 } as c2,pl2) ->
  600. (match ct1, ct2 with
  601. | [], [] -> ()
  602. | _, _ when List.length ct1 = List.length ct2 ->
  603. (* if same constraints, they are the same type *)
  604. let check monos =
  605. List.iter2 (fun t1 t2 ->
  606. try
  607. let t1 = apply_params l1 monos (apply_params c1.cl_types pl1 t1) in
  608. let t2 = apply_params l2 monos (apply_params c2.cl_types pl2 t2) in
  609. type_eq EqStrict t1 t2
  610. with Unify_error l ->
  611. raise (Unify_error (Unify_custom "Constraints differ" :: l))
  612. ) ct1 ct2
  613. in
  614. to_check := check :: !to_check;
  615. | _ ->
  616. raise (Unify_error [Unify_custom "Different number of constraints"]))
  617. | _ -> ());
  618. TInst (mk_class null_module ([],name) Ast.null_pos,[])
  619. ) l1 l2 in
  620. List.iter (fun f -> f monos) !to_check;
  621. apply_params l1 monos t1, apply_params l2 monos t2
  622. | _ ->
  623. (* ignore type params, will create other errors later *)
  624. t1, t2
  625. ) in
  626. match follow t1, follow t2 with
  627. | TFun (args1,r1) , TFun (args2,r2) when List.length args1 = List.length args2 -> (try
  628. List.iter2 (fun (n,o1,a1) (_,o2,a2) ->
  629. if o1 <> o2 then raise (Unify_error [Not_matching_optional n]);
  630. (try valid a2 a1 with Unify_error _ -> raise (Unify_error [Cannot_unify(a1,a2)]))
  631. ) args1 args2;
  632. valid r1 r2
  633. with Unify_error l ->
  634. raise (Unify_error (Cannot_unify (t1,t2) :: l)))
  635. | _ , _ ->
  636. (* in case args differs, or if an interface var *)
  637. type_eq EqStrict t1 t2;
  638. if is_null t1 <> is_null t2 then raise (Unify_error [Cannot_unify (t1,t2)])
  639. let copy_meta meta_src meta_target sl =
  640. let meta = ref meta_target in
  641. List.iter (fun (m,e,p) ->
  642. if List.mem m sl then meta := (m,e,p) :: !meta
  643. ) meta_src;
  644. !meta
  645. let same_overload_args t1 t2 f1 f2 =
  646. if List.length f1.cf_params <> List.length f2.cf_params then
  647. false
  648. else
  649. let rec follow_skip_null t = match t with
  650. | TMono r ->
  651. (match !r with
  652. | Some t -> follow_skip_null t
  653. | _ -> t)
  654. | TLazy f ->
  655. follow_skip_null (!f())
  656. | TType ({ t_path = [],"Null" } as t, [p]) ->
  657. TType(t,[follow p])
  658. | TType (t,tl) ->
  659. follow_skip_null (apply_params t.t_types tl t.t_type)
  660. | _ -> t
  661. in
  662. let same_arg t1 t2 =
  663. let t1 = follow_skip_null t1 in
  664. let t2 = follow_skip_null t2 in
  665. match follow_skip_null t1, follow_skip_null t2 with
  666. | TType _, TType _ -> type_iseq t1 t2
  667. | TType _, _
  668. | _, TType _ -> false
  669. | _ -> type_iseq t1 t2
  670. in
  671. match follow (apply_params f1.cf_params (List.map (fun (_,t) -> t) f2.cf_params) t1), follow t2 with
  672. | TFun(a1,_), TFun(a2,_) ->
  673. (try
  674. List.for_all2 (fun (_,_,t1) (_,_,t2) ->
  675. same_arg t1 t2) a1 a2
  676. with | Invalid_argument("List.for_all2") ->
  677. false)
  678. | _ -> assert false
  679. (** retrieves all overloads from class c and field i, as (Type.t * tclass_field) list *)
  680. let rec get_overloads c i =
  681. let ret = try
  682. let f = PMap.find i c.cl_fields in
  683. (f.cf_type, f) :: (List.map (fun f -> f.cf_type, f) f.cf_overloads)
  684. with | Not_found -> []
  685. in
  686. let rsup = match c.cl_super with
  687. | None when c.cl_interface ->
  688. let ifaces = List.concat (List.map (fun (c,tl) ->
  689. List.map (fun (t,f) -> apply_params c.cl_types tl t, f) (get_overloads c i)
  690. ) c.cl_implements) in
  691. ret @ ifaces
  692. | None -> ret
  693. | Some (c,tl) ->
  694. ret @ ( List.map (fun (t,f) -> apply_params c.cl_types tl t, f) (get_overloads c i) )
  695. in
  696. ret @ (List.filter (fun (t,f) -> not (List.exists (fun (t2,f2) -> same_overload_args t t2 f f2) ret)) rsup)
  697. let check_overloads ctx c =
  698. (* check if field with same signature was declared more than once *)
  699. List.iter (fun f ->
  700. if Meta.has Meta.Overload f.cf_meta then
  701. List.iter (fun f2 ->
  702. try
  703. ignore (List.find (fun f3 -> f3 != f2 && same_overload_args f2.cf_type f3.cf_type f2 f3) (f :: f.cf_overloads));
  704. display_error ctx ("Another overloaded field of same signature was already declared : " ^ f2.cf_name) f2.cf_pos
  705. with | Not_found -> ()
  706. ) (f :: f.cf_overloads)) (c.cl_ordered_fields @ c.cl_ordered_statics)
  707. let check_overriding ctx c =
  708. let p = c.cl_pos in
  709. match c.cl_super with
  710. | None ->
  711. (match c.cl_overrides with
  712. | [] -> ()
  713. | i :: _ ->
  714. display_error ctx ("Field " ^ i.cf_name ^ " is declared 'override' but doesn't override any field") p)
  715. | Some (csup,params) ->
  716. PMap.iter (fun i f ->
  717. let check_field f get_super_field is_overload = try
  718. let p = f.cf_pos in
  719. (if is_overload && not (Meta.has Meta.Overload f.cf_meta) then
  720. display_error ctx ("Missing @:overload declaration for field " ^ i) p);
  721. let t, f2 = get_super_field csup i in
  722. (* allow to define fields that are not defined for this platform version in superclass *)
  723. (match f2.cf_kind with
  724. | Var { v_read = AccRequire _ } -> raise Not_found;
  725. | _ -> ());
  726. if ctx.com.config.pf_overload && (Meta.has Meta.Overload f2.cf_meta && not (Meta.has Meta.Overload f.cf_meta)) then
  727. display_error ctx ("Field " ^ i ^ " should be declared with @:overload since it was already declared as @:overload in superclass") p
  728. else if not (List.memq f c.cl_overrides) then
  729. display_error ctx ("Field " ^ i ^ " should be declared with 'override' since it is inherited from superclass") p
  730. else if not f.cf_public && f2.cf_public then
  731. display_error ctx ("Field " ^ i ^ " has less visibility (public/private) than superclass one") p
  732. else (match f.cf_kind, f2.cf_kind with
  733. | _, Method MethInline ->
  734. display_error ctx ("Field " ^ i ^ " is inlined and cannot be overridden") p
  735. | a, b when a = b -> ()
  736. | Method MethInline, Method MethNormal ->
  737. () (* allow to redefine a method as inlined *)
  738. | _ ->
  739. display_error ctx ("Field " ^ i ^ " has different property access than in superclass") p);
  740. try
  741. let t = apply_params csup.cl_types params t in
  742. valid_redefinition ctx f f.cf_type f2 t
  743. with
  744. Unify_error l ->
  745. display_error ctx ("Field " ^ i ^ " overloads parent class with different or incomplete type") p;
  746. display_error ctx (error_msg (Unify l)) p;
  747. with
  748. Not_found ->
  749. if List.memq f c.cl_overrides then
  750. let msg = if is_overload then
  751. ("Field " ^ i ^ " is declared 'override' but no compatible overload was found")
  752. else
  753. ("Field " ^ i ^ " is declared 'override' but doesn't override any field")
  754. in
  755. display_error ctx msg p
  756. in
  757. if ctx.com.config.pf_overload && Meta.has Meta.Overload f.cf_meta then begin
  758. let overloads = get_overloads csup i in
  759. List.iter (fun (t,f2) ->
  760. (* check if any super class fields are vars *)
  761. match f2.cf_kind with
  762. | Var _ ->
  763. display_error ctx ("A variable named '" ^ f2.cf_name ^ "' was already declared in a superclass") f.cf_pos
  764. | _ -> ()
  765. ) overloads;
  766. List.iter (fun f ->
  767. (* find the exact field being overridden *)
  768. check_field f (fun csup i ->
  769. List.find (fun (t,f2) ->
  770. same_overload_args f.cf_type (apply_params csup.cl_types params t) f f2
  771. ) overloads
  772. ) true
  773. ) f.cf_overloads
  774. end else
  775. check_field f (fun csup i ->
  776. let _, t, f2 = raw_class_field (fun f -> f.cf_type) csup i in
  777. t, f2) false
  778. ) c.cl_fields
  779. let class_field_no_interf c i =
  780. try
  781. let f = PMap.find i c.cl_fields in
  782. f.cf_type , f
  783. with Not_found ->
  784. match c.cl_super with
  785. | None ->
  786. raise Not_found
  787. | Some (c,tl) ->
  788. (* rec over class_field *)
  789. let _, t , f = raw_class_field (fun f -> f.cf_type) c i in
  790. apply_params c.cl_types tl t , f
  791. let rec check_interface ctx c intf params =
  792. let p = c.cl_pos in
  793. let rec check_field i f =
  794. (if ctx.com.config.pf_overload then
  795. List.iter (function
  796. | f2 when f != f2 ->
  797. check_field i f2
  798. | _ -> ()) f.cf_overloads);
  799. let is_overload = ref false in
  800. try
  801. let t2, f2 = class_field_no_interf c i in
  802. let t2, f2 =
  803. if ctx.com.config.pf_overload && (f2.cf_overloads <> [] || Meta.has Meta.Overload f2.cf_meta) then
  804. let overloads = get_overloads c i in
  805. is_overload := true;
  806. let t = (apply_params intf.cl_types params f.cf_type) in
  807. List.find (fun (t1,f1) -> same_overload_args t t1 f f1) overloads
  808. else
  809. t2, f2
  810. in
  811. ignore(follow f2.cf_type); (* force evaluation *)
  812. let p = (match f2.cf_expr with None -> p | Some e -> e.epos) in
  813. let mkind = function
  814. | MethNormal | MethInline -> 0
  815. | MethDynamic -> 1
  816. | MethMacro -> 2
  817. in
  818. if f.cf_public && not f2.cf_public then
  819. display_error ctx ("Field " ^ i ^ " should be public as requested by " ^ s_type_path intf.cl_path) p
  820. else if not (unify_kind f2.cf_kind f.cf_kind) || not (match f.cf_kind, f2.cf_kind with Var _ , Var _ -> true | Method m1, Method m2 -> mkind m1 = mkind m2 | _ -> false) then
  821. display_error ctx ("Field " ^ i ^ " has different property access than in " ^ s_type_path intf.cl_path ^ " (" ^ s_kind f2.cf_kind ^ " should be " ^ s_kind f.cf_kind ^ ")") p
  822. else try
  823. valid_redefinition ctx f2 t2 f (apply_params intf.cl_types params f.cf_type)
  824. with
  825. Unify_error l ->
  826. display_error ctx ("Field " ^ i ^ " has different type than in " ^ s_type_path intf.cl_path) p;
  827. display_error ctx (error_msg (Unify l)) p;
  828. with
  829. | Not_found when not c.cl_interface ->
  830. let msg = if !is_overload then
  831. let ctx = print_context() in
  832. let args = match follow f.cf_type with | TFun(args,_) -> String.concat ", " (List.map (fun (n,o,t) -> (if o then "?" else "") ^ n ^ " : " ^ (s_type ctx t)) args) | _ -> assert false in
  833. "No suitable overload for " ^ i ^ "( " ^ args ^ " ), as needed by " ^ s_type_path intf.cl_path ^ " was found"
  834. else
  835. ("Field " ^ i ^ " needed by " ^ s_type_path intf.cl_path ^ " is missing")
  836. in
  837. display_error ctx msg p
  838. | Not_found -> ()
  839. in
  840. PMap.iter check_field intf.cl_fields;
  841. List.iter (fun (i2,p2) ->
  842. check_interface ctx c i2 (List.map (apply_params intf.cl_types params) p2)
  843. ) intf.cl_implements
  844. let check_interfaces ctx c =
  845. match c.cl_path with
  846. | "Proxy" :: _ , _ -> ()
  847. | _ ->
  848. List.iter (fun (intf,params) -> check_interface ctx c intf params) c.cl_implements
  849. let rec return_flow ctx e =
  850. let error() = display_error ctx "A return is missing here" e.epos; raise Exit in
  851. let return_flow = return_flow ctx in
  852. match e.eexpr with
  853. | TReturn _ | TThrow _ -> ()
  854. | TParenthesis e | TMeta(_,e) ->
  855. return_flow e
  856. | TBlock el ->
  857. let rec loop = function
  858. | [] -> error()
  859. | [e] -> return_flow e
  860. | { eexpr = TReturn _ } :: _ | { eexpr = TThrow _ } :: _ -> ()
  861. | _ :: l -> loop l
  862. in
  863. loop el
  864. | TIf (_,e1,Some e2) ->
  865. return_flow e1;
  866. return_flow e2;
  867. | TSwitch (v,cases,Some e) ->
  868. List.iter (fun (_,e) -> return_flow e) cases;
  869. return_flow e
  870. | TSwitch ({eexpr = TMeta((Meta.Exhaustive,_,_),_)},cases,None) ->
  871. List.iter (fun (_,e) -> return_flow e) cases;
  872. | TPatMatch dt ->
  873. let rec loop d = match d with
  874. | DTExpr e -> return_flow e
  875. | DTGuard(_,dt1,dt2) ->
  876. loop dt1;
  877. (match dt2 with None -> () | Some dt -> loop dt)
  878. | DTBind (_,d) -> loop d
  879. | DTSwitch (_,cl,dto) ->
  880. List.iter (fun (_,dt) -> loop dt) cl;
  881. (match dto with None -> () | Some dt -> loop dt)
  882. | DTGoto i -> loop (dt.dt_dt_lookup.(i))
  883. in
  884. loop (dt.dt_dt_lookup.(dt.dt_first))
  885. | TTry (e,cases) ->
  886. return_flow e;
  887. List.iter (fun (_,e) -> return_flow e) cases;
  888. | TWhile({eexpr = (TConst (TBool true))},e,_) ->
  889. (* a special case for "inifite" while loops that have no break *)
  890. let rec loop e = match e.eexpr with
  891. (* ignore nested loops to not accidentally get one of its breaks *)
  892. | TWhile _ | TFor _ -> ()
  893. | TBreak -> error()
  894. | _ -> Type.iter loop e
  895. in
  896. loop e
  897. | _ ->
  898. error()
  899. (* ---------------------------------------------------------------------- *)
  900. (* PASS 1 & 2 : Module and Class Structure *)
  901. let is_generic_parameter ctx c =
  902. (* first check field parameters, then class parameters *)
  903. try
  904. ignore (List.assoc (snd c.cl_path) ctx.curfield.cf_params);
  905. Meta.has Meta.Generic ctx.curfield.cf_meta
  906. with Not_found -> try
  907. ignore(List.assoc (snd c.cl_path) ctx.type_params);
  908. (match ctx.curclass.cl_kind with | KGeneric -> true | _ -> false);
  909. with Not_found ->
  910. false
  911. let check_extends ctx c t p = match follow t with
  912. | TInst ({ cl_path = [],"Array" },_)
  913. | TInst ({ cl_path = [],"String" },_)
  914. | TInst ({ cl_path = [],"Date" },_)
  915. | TInst ({ cl_path = [],"Xml" },_) when ((not (platform ctx.com Cpp)) && (match c.cl_path with ("mt" | "flash") :: _ , _ -> false | _ -> true)) ->
  916. error "Cannot extend basic class" p;
  917. | TInst (csup,params) ->
  918. if is_parent c csup then error "Recursive class" p;
  919. begin match csup.cl_kind with
  920. | KTypeParameter _ when not (is_generic_parameter ctx csup) -> error "Cannot extend non-generic type parameters" p
  921. | _ -> csup,params
  922. end
  923. | _ -> error "Should extend by using a class" p
  924. let rec add_constructor ctx c p =
  925. match c.cl_constructor, c.cl_super with
  926. | None, Some ({ cl_constructor = Some cfsup } as csup,cparams) when not c.cl_extern ->
  927. let cf = {
  928. cfsup with
  929. cf_pos = p;
  930. cf_meta = [];
  931. cf_doc = None;
  932. cf_expr = None;
  933. } in
  934. let r = exc_protect ctx (fun r ->
  935. let t = mk_mono() in
  936. r := (fun() -> t);
  937. let ctx = { ctx with
  938. curfield = cf;
  939. pass = PTypeField;
  940. } in
  941. ignore (follow cfsup.cf_type); (* make sure it's typed *)
  942. (if ctx.com.config.pf_overload then List.iter (fun cf -> ignore (follow cf.cf_type)) cf.cf_overloads);
  943. let args = (match cfsup.cf_expr with
  944. | Some { eexpr = TFunction f } ->
  945. List.map (fun (v,def) ->
  946. (*
  947. let's optimize a bit the output by not always copying the default value
  948. into the inherited constructor when it's not necessary for the platform
  949. *)
  950. match ctx.com.platform, def with
  951. | _, Some _ when not ctx.com.config.pf_static -> v, (Some TNull)
  952. | Flash, Some (TString _) -> v, (Some TNull)
  953. | Cpp, Some (TString _) -> v, def
  954. | Cpp, Some _ -> { v with v_type = ctx.t.tnull v.v_type }, (Some TNull)
  955. | _ -> v, def
  956. ) f.tf_args
  957. | _ ->
  958. match follow cfsup.cf_type with
  959. | TFun (args,_) -> List.map (fun (n,o,t) -> alloc_var n (if o then ctx.t.tnull t else t), if o then Some TNull else None) args
  960. | _ -> assert false
  961. ) in
  962. let p = c.cl_pos in
  963. let vars = List.map (fun (v,def) -> alloc_var v.v_name (apply_params csup.cl_types cparams v.v_type), def) args in
  964. let super_call = mk (TCall (mk (TConst TSuper) (TInst (csup,cparams)) p,List.map (fun (v,_) -> mk (TLocal v) v.v_type p) vars)) ctx.t.tvoid p in
  965. let constr = mk (TFunction {
  966. tf_args = vars;
  967. tf_type = ctx.t.tvoid;
  968. tf_expr = super_call;
  969. }) (TFun (List.map (fun (v,c) -> v.v_name, c <> None, v.v_type) vars,ctx.t.tvoid)) p in
  970. cf.cf_expr <- Some constr;
  971. cf.cf_type <- t;
  972. unify ctx t constr.etype p;
  973. t
  974. ) "add_constructor" in
  975. cf.cf_type <- TLazy r;
  976. c.cl_constructor <- Some cf;
  977. delay ctx PForce (fun() -> ignore((!r)()));
  978. | _ ->
  979. (* nothing to do *)
  980. ()
  981. let set_heritance ctx c herits p =
  982. let ctx = { ctx with curclass = c; type_params = c.cl_types; } in
  983. let process_meta csup =
  984. List.iter (fun m ->
  985. match m with
  986. | Meta.Final, _, _ -> if not (Meta.has Meta.Hack c.cl_meta || (match c.cl_kind with KTypeParameter _ -> true | _ -> false)) then error "Cannot extend a final class" p;
  987. | Meta.AutoBuild, el, p -> c.cl_meta <- (Meta.Build,el,p) :: m :: c.cl_meta
  988. | _ -> ()
  989. ) csup.cl_meta
  990. in
  991. let has_interf = ref false in
  992. let rec loop = function
  993. | HPrivate | HExtern | HInterface ->
  994. ()
  995. | HExtends t ->
  996. if c.cl_super <> None then error "Cannot extend several classes" p;
  997. let t = load_instance ctx t p false in
  998. let csup,params = check_extends ctx c t p in
  999. csup.cl_build();
  1000. process_meta csup;
  1001. if c.cl_interface then begin
  1002. if not csup.cl_interface then error "Cannot extend by using a class" p;
  1003. c.cl_implements <- (csup,params) :: c.cl_implements
  1004. end else begin
  1005. if csup.cl_interface then error "Cannot extend by using an interface" p;
  1006. c.cl_super <- Some (csup,params)
  1007. end
  1008. | HImplements t ->
  1009. let t = load_instance ctx t p false in
  1010. (match follow t with
  1011. | TInst ({ cl_path = [],"ArrayAccess"; cl_extern = true; },[t]) ->
  1012. if c.cl_array_access <> None then error "Duplicate array access" p;
  1013. c.cl_array_access <- Some t
  1014. | TInst (intf,params) ->
  1015. intf.cl_build();
  1016. if is_parent c intf then error "Recursive class" p;
  1017. if c.cl_interface then error "Interfaces cannot implement another interface (use extends instead)" p;
  1018. if not intf.cl_interface then error "You can only implements an interface" p;
  1019. process_meta intf;
  1020. c.cl_implements <- (intf, params) :: c.cl_implements;
  1021. if not !has_interf then begin
  1022. delay ctx PForce (fun() -> check_interfaces ctx c);
  1023. has_interf := true;
  1024. end
  1025. | TDynamic t ->
  1026. if c.cl_dynamic <> None then error "Cannot have several dynamics" p;
  1027. c.cl_dynamic <- Some t
  1028. | _ -> error "Should implement by using an interface" p)
  1029. in
  1030. (*
  1031. resolve imports before calling build_inheritance, since it requires full paths.
  1032. that means that typedefs are not working, but that's a fair limitation
  1033. *)
  1034. let rec resolve_imports t =
  1035. match t.tpackage with
  1036. | _ :: _ -> t
  1037. | [] ->
  1038. try
  1039. let find = List.find (fun lt -> snd (t_path lt) = t.tname) in
  1040. let lt = try find ctx.m.curmod.m_types with Not_found -> find ctx.m.module_types in
  1041. { t with tpackage = fst (t_path lt) }
  1042. with
  1043. Not_found -> t
  1044. in
  1045. let herits = List.map (function
  1046. | HExtends t -> HExtends (resolve_imports t)
  1047. | HImplements t -> HImplements (resolve_imports t)
  1048. | h -> h
  1049. ) herits in
  1050. List.iter loop (List.filter (ctx.g.do_inherit ctx c p) herits)
  1051. let rec type_type_params ?(enum_constructor=false) ctx path get_params p tp =
  1052. let n = tp.tp_name in
  1053. let c = mk_class ctx.m.curmod (fst path @ [snd path],n) p in
  1054. c.cl_types <- List.map (type_type_params ctx c.cl_path get_params p) tp.tp_params;
  1055. if enum_constructor then c.cl_meta <- (Meta.EnumConstructorParam,[],c.cl_pos) :: c.cl_meta;
  1056. let t = TInst (c,List.map snd c.cl_types) in
  1057. match tp.tp_constraints with
  1058. | [] ->
  1059. c.cl_kind <- KTypeParameter [];
  1060. n, t
  1061. | _ ->
  1062. let r = exc_protect ctx (fun r ->
  1063. r := (fun _ -> t);
  1064. let ctx = { ctx with type_params = ctx.type_params @ get_params() } in
  1065. let constr = List.map (load_complex_type ctx p) tp.tp_constraints in
  1066. (* check against direct recursion *)
  1067. let rec loop t =
  1068. match follow t with
  1069. | TInst (c2,_) when c == c2 -> error "Recursive constraint parameter is not allowed" p
  1070. | TInst ({ cl_kind = KTypeParameter cl },_) ->
  1071. List.iter loop cl
  1072. | _ ->
  1073. ()
  1074. in
  1075. List.iter loop constr;
  1076. c.cl_kind <- KTypeParameter constr;
  1077. t
  1078. ) "constraint" in
  1079. delay ctx PForce (fun () -> ignore(!r()));
  1080. n, TLazy r
  1081. let type_function_params ctx fd fname p =
  1082. let params = ref [] in
  1083. params := List.map (fun tp ->
  1084. type_type_params ctx ([],fname) (fun() -> !params) p tp
  1085. ) fd.f_params;
  1086. !params
  1087. let type_function ctx args ret fmode f do_display p =
  1088. let locals = save_locals ctx in
  1089. let fargs = List.map (fun (n,c,t) ->
  1090. let c = (match c with
  1091. | None -> None
  1092. | Some e ->
  1093. let p = pos e in
  1094. let e = ctx.g.do_optimize ctx (type_expr ctx e (WithType t)) in
  1095. unify ctx e.etype t p;
  1096. match e.eexpr with
  1097. | TConst c -> Some c
  1098. | _ -> display_error ctx "Parameter default value should be constant" p; None
  1099. ) in
  1100. let v,c = add_local ctx n t, c in
  1101. if n = "this" then v.v_extra <- None,true;
  1102. v,c
  1103. ) args in
  1104. let old_ret = ctx.ret in
  1105. let old_fun = ctx.curfun in
  1106. let old_opened = ctx.opened in
  1107. ctx.curfun <- fmode;
  1108. ctx.ret <- ret;
  1109. ctx.opened <- [];
  1110. let e = match f.f_expr with None -> error "Function body required" p | Some e -> e in
  1111. let e = if not do_display then type_expr ctx e NoValue else try
  1112. if Common.defined ctx.com Define.NoCOpt then raise Exit;
  1113. type_expr ctx (Optimizer.optimize_completion_expr e) NoValue
  1114. with DisplayTypes [TMono _] | Parser.TypePath (_,None) | Exit ->
  1115. type_expr ctx e NoValue
  1116. in
  1117. let rec loop e =
  1118. match e.eexpr with
  1119. | TReturn (Some e) -> (match follow e.etype with TAbstract({a_path = [],"Void"},[]) -> () | _ -> raise Exit)
  1120. | TFunction _ -> ()
  1121. | _ -> Type.iter loop e
  1122. in
  1123. let have_ret = (try loop e; false with Exit -> true) in
  1124. if have_ret then
  1125. (try return_flow ctx e with Exit -> ())
  1126. else (try type_eq EqStrict ret ctx.t.tvoid with Unify_error _ ->
  1127. match e.eexpr with
  1128. (* accept final throw (issue #1923) *)
  1129. | TBlock el when (match List.rev el with ({eexpr = TThrow _} :: _) -> true | _ -> false) -> ()
  1130. | _ -> display_error ctx ("Missing return " ^ (s_type (print_context()) ret)) p);
  1131. let rec loop e =
  1132. match e.eexpr with
  1133. | TCall ({ eexpr = TConst TSuper },_) -> raise Exit
  1134. | TFunction _ -> ()
  1135. | _ -> Type.iter loop e
  1136. in
  1137. let has_super_constr() =
  1138. match ctx.curclass.cl_super with
  1139. | None -> false
  1140. | Some (csup,_) ->
  1141. try ignore(get_constructor (fun f->f.cf_type) csup); true with Not_found -> false
  1142. in
  1143. if fmode = FunConstructor && has_super_constr() then
  1144. (try
  1145. loop e;
  1146. display_error ctx "Missing super constructor call" p
  1147. with
  1148. Exit -> ());
  1149. locals();
  1150. let e = match ctx.curfun, ctx.vthis with
  1151. | (FunMember|FunConstructor), Some v ->
  1152. let ev = mk (TVars [v,Some (mk (TConst TThis) ctx.tthis p)]) ctx.t.tvoid p in
  1153. (match e.eexpr with
  1154. | TBlock l -> { e with eexpr = TBlock (ev::l) }
  1155. | _ -> mk (TBlock [ev;e]) e.etype p)
  1156. | _ -> e
  1157. in
  1158. List.iter (fun r -> r := Closed) ctx.opened;
  1159. ctx.ret <- old_ret;
  1160. ctx.curfun <- old_fun;
  1161. ctx.opened <- old_opened;
  1162. e , fargs
  1163. let init_core_api ctx c =
  1164. let ctx2 = (match ctx.g.core_api with
  1165. | None ->
  1166. let com2 = Common.clone ctx.com in
  1167. com2.defines <- PMap.empty;
  1168. Common.define com2 Define.CoreApi;
  1169. Common.define com2 Define.Sys;
  1170. if ctx.in_macro then Common.define com2 Define.Macro;
  1171. com2.class_path <- ctx.com.std_path;
  1172. let ctx2 = ctx.g.do_create com2 in
  1173. ctx.g.core_api <- Some ctx2;
  1174. ctx2
  1175. | Some c ->
  1176. c
  1177. ) in
  1178. let tpath = match c.cl_kind with
  1179. | KAbstractImpl a -> { tpackage = fst a.a_path; tname = snd a.a_path; tparams = []; tsub = None; }
  1180. | _ -> { tpackage = fst c.cl_path; tname = snd c.cl_path; tparams = []; tsub = None; }
  1181. in
  1182. let t = load_instance ctx2 tpath c.cl_pos true in
  1183. flush_pass ctx2 PFinal "core_final";
  1184. match t with
  1185. | TInst (ccore,_) | TAbstract({a_impl = Some ccore}, _) ->
  1186. begin try
  1187. List.iter2 (fun (n1,t1) (n2,t2) -> match follow t1, follow t2 with
  1188. | TInst({cl_kind = KTypeParameter l1},_),TInst({cl_kind = KTypeParameter l2},_) ->
  1189. begin try
  1190. List.iter2 (fun t1 t2 -> type_eq EqCoreType t2 t1) l1 l2
  1191. with
  1192. | Invalid_argument _ ->
  1193. error "Type parameters must have the same number of constraints as core type" c.cl_pos
  1194. | Unify_error l ->
  1195. display_error ctx ("Type parameter " ^ n2 ^ " has different constraint than in core type") c.cl_pos;
  1196. display_error ctx (error_msg (Unify l)) c.cl_pos
  1197. end
  1198. | t1,t2 ->
  1199. Printf.printf "%s %s" (s_type (print_context()) t1) (s_type (print_context()) t2);
  1200. assert false
  1201. ) ccore.cl_types c.cl_types;
  1202. with Invalid_argument _ ->
  1203. error "Class must have the same number of type parameters as core type" c.cl_pos
  1204. end;
  1205. (match c.cl_doc with
  1206. | None -> c.cl_doc <- ccore.cl_doc
  1207. | Some _ -> ());
  1208. let compare_fields f f2 =
  1209. let p = (match f2.cf_expr with None -> c.cl_pos | Some e -> e.epos) in
  1210. (try
  1211. type_eq EqCoreType (apply_params ccore.cl_types (List.map snd c.cl_types) f.cf_type) f2.cf_type
  1212. with Unify_error l ->
  1213. display_error ctx ("Field " ^ f.cf_name ^ " has different type than in core type") p;
  1214. display_error ctx (error_msg (Unify l)) p);
  1215. if f2.cf_public <> f.cf_public then error ("Field " ^ f.cf_name ^ " has different visibility than core type") p;
  1216. (match f2.cf_doc with
  1217. | None -> f2.cf_doc <- f.cf_doc
  1218. | Some _ -> ());
  1219. if f2.cf_kind <> f.cf_kind then begin
  1220. match f2.cf_kind, f.cf_kind with
  1221. | Method MethInline, Method MethNormal -> () (* allow to add 'inline' *)
  1222. | Method MethNormal, Method MethInline -> () (* allow to disable 'inline' *)
  1223. | _ ->
  1224. error ("Field " ^ f.cf_name ^ " has different property access than core type") p;
  1225. end;
  1226. (match follow f.cf_type, follow f2.cf_type with
  1227. | TFun (pl1,_), TFun (pl2,_) ->
  1228. if List.length pl1 != List.length pl2 then error "Argument count mismatch" p;
  1229. List.iter2 (fun (n1,_,_) (n2,_,_) ->
  1230. if n1 <> n2 then error ("Method parameter name '" ^ n2 ^ "' should be '" ^ n1 ^ "'") p;
  1231. ) pl1 pl2;
  1232. | _ -> ());
  1233. in
  1234. let check_fields fcore fl =
  1235. PMap.iter (fun i f ->
  1236. if not f.cf_public then () else
  1237. let f2 = try PMap.find f.cf_name fl with Not_found -> error ("Missing field " ^ i ^ " required by core type") c.cl_pos in
  1238. compare_fields f f2;
  1239. ) fcore;
  1240. PMap.iter (fun i f ->
  1241. let p = (match f.cf_expr with None -> c.cl_pos | Some e -> e.epos) in
  1242. if f.cf_public && not (Meta.has Meta.Hack f.cf_meta) && not (PMap.mem f.cf_name fcore) && not (List.memq f c.cl_overrides) then error ("Public field " ^ i ^ " is not part of core type") p;
  1243. ) fl;
  1244. in
  1245. check_fields ccore.cl_fields c.cl_fields;
  1246. check_fields ccore.cl_statics c.cl_statics;
  1247. (match ccore.cl_constructor, c.cl_constructor with
  1248. | None, None -> ()
  1249. | Some { cf_public = false }, _ -> ()
  1250. | Some f, Some f2 -> compare_fields f f2
  1251. | None, Some { cf_public = false } -> ()
  1252. | _ -> error "Constructor differs from core type" c.cl_pos)
  1253. | _ -> assert false
  1254. let patch_class ctx c fields =
  1255. let h = (try Some (Hashtbl.find ctx.g.type_patches c.cl_path) with Not_found -> None) in
  1256. match h with
  1257. | None -> fields
  1258. | Some (h,hcl) ->
  1259. c.cl_meta <- c.cl_meta @ hcl.tp_meta;
  1260. let rec loop acc = function
  1261. | [] -> acc
  1262. | f :: l ->
  1263. (* patch arguments types *)
  1264. (match f.cff_kind with
  1265. | FFun ff ->
  1266. let param ((n,opt,t,e) as p) =
  1267. try
  1268. let t2 = (try Hashtbl.find h (("$" ^ f.cff_name ^ "__" ^ n),false) with Not_found -> Hashtbl.find h (("$" ^ n),false)) in
  1269. n, opt, t2.tp_type, e
  1270. with Not_found ->
  1271. p
  1272. in
  1273. f.cff_kind <- FFun { ff with f_args = List.map param ff.f_args }
  1274. | _ -> ());
  1275. (* other patches *)
  1276. match (try Some (Hashtbl.find h (f.cff_name,List.mem AStatic f.cff_access)) with Not_found -> None) with
  1277. | None -> loop (f :: acc) l
  1278. | Some { tp_remove = true } -> loop acc l
  1279. | Some p ->
  1280. f.cff_meta <- f.cff_meta @ p.tp_meta;
  1281. (match p.tp_type with
  1282. | None -> ()
  1283. | Some t ->
  1284. f.cff_kind <- match f.cff_kind with
  1285. | FVar (_,e) -> FVar (Some t,e)
  1286. | FProp (get,set,_,eo) -> FProp (get,set,Some t,eo)
  1287. | FFun f -> FFun { f with f_type = Some t });
  1288. loop (f :: acc) l
  1289. in
  1290. List.rev (loop [] fields)
  1291. let rec string_list_of_expr_path (e,p) =
  1292. match e with
  1293. | EConst (Ident i) -> [i]
  1294. | EField (e,f) -> f :: string_list_of_expr_path e
  1295. | _ -> error "Invalid path" p
  1296. let build_module_def ctx mt meta fvars context_init fbuild =
  1297. let rec loop = function
  1298. | (Meta.Build,args,p) :: l ->
  1299. let epath, el = (match args with
  1300. | [ECall (epath,el),p] -> epath, el
  1301. | _ -> error "Invalid build parameters" p
  1302. ) in
  1303. let s = try String.concat "." (List.rev (string_list_of_expr_path epath)) with Error (_,p) -> error "Build call parameter must be a class path" p in
  1304. if ctx.in_macro then error "You cannot use @:build inside a macro : make sure that your enum is not used in macro" p;
  1305. let old = ctx.g.get_build_infos in
  1306. ctx.g.get_build_infos <- (fun() -> Some (mt, fvars()));
  1307. context_init();
  1308. let r = try apply_macro ctx MBuild s el p with e -> ctx.g.get_build_infos <- old; raise e in
  1309. ctx.g.get_build_infos <- old;
  1310. (match r with
  1311. | None -> error "Build failure" p
  1312. | Some e -> fbuild e; loop l)
  1313. | _ :: l -> loop l
  1314. | [] -> ()
  1315. in
  1316. (* let errors go through to prevent resume if build fails *)
  1317. loop meta
  1318. let init_class ctx c p context_init herits fields =
  1319. let ctx = {
  1320. ctx with
  1321. curclass = c;
  1322. type_params = c.cl_types;
  1323. pass = PBuildClass;
  1324. tthis = (match c.cl_kind with
  1325. | KAbstractImpl a ->
  1326. (match a.a_this with
  1327. | TMono r when !r = None -> TAbstract (a,List.map snd c.cl_types)
  1328. | t -> t)
  1329. | _ -> TInst (c,List.map snd c.cl_types));
  1330. on_error = (fun ctx msg ep ->
  1331. ctx.com.error msg ep;
  1332. (* macros expressions might reference other code, let's recall which class we are actually compiling *)
  1333. if ep.pfile <> c.cl_pos.pfile then ctx.com.error "Defined in this class" c.cl_pos
  1334. );
  1335. } in
  1336. incr stats.s_classes_built;
  1337. let fields = patch_class ctx c fields in
  1338. let fields = ref fields in
  1339. let get_fields() = !fields in
  1340. build_module_def ctx (TClassDecl c) c.cl_meta get_fields context_init (fun (e,p) ->
  1341. match e with
  1342. | EVars [_,Some (CTAnonymous f),None] ->
  1343. List.iter (fun f ->
  1344. if List.mem AMacro f.cff_access then
  1345. (match ctx.g.macros with
  1346. | Some (_,mctx) when Hashtbl.mem mctx.g.types_module c.cl_path ->
  1347. (* assume that if we had already a macro with the same name, it has not been changed during the @:build operation *)
  1348. if not (List.exists (fun f2 -> f2.cff_name = f.cff_name && List.mem AMacro f2.cff_access) (!fields)) then
  1349. error "Class build macro cannot return a macro function when the class has already been compiled into the macro context" p
  1350. | _ -> ())
  1351. ) f;
  1352. fields := f
  1353. | _ -> error "Class build macro must return a single variable with anonymous fields" p
  1354. );
  1355. let fields = !fields in
  1356. let core_api = Meta.has Meta.CoreApi c.cl_meta in
  1357. let is_class_macro = Meta.has Meta.Macro c.cl_meta in
  1358. if is_class_macro then display_error ctx "Macro classes are no longer allowed in haxe 3" p;
  1359. let fields, herits = if is_class_macro && not ctx.in_macro then begin
  1360. c.cl_extern <- true;
  1361. List.filter (fun f -> List.mem AStatic f.cff_access) fields, []
  1362. end else fields, herits in
  1363. if core_api && not ctx.com.display then delay ctx PForce (fun() -> init_core_api ctx c);
  1364. let rec extends_public c =
  1365. Meta.has Meta.PublicFields c.cl_meta ||
  1366. match c.cl_super with
  1367. | None -> false
  1368. | Some (c,_) -> extends_public c
  1369. in
  1370. let extends_public = extends_public c in
  1371. let is_public access parent =
  1372. if List.mem APrivate access then
  1373. false
  1374. else if List.mem APublic access then
  1375. true
  1376. else match parent with
  1377. | Some { cf_public = p } -> p
  1378. | _ -> c.cl_extern || c.cl_interface || extends_public
  1379. in
  1380. let rec get_parent c name =
  1381. match c.cl_super with
  1382. | None -> None
  1383. | Some (csup,_) ->
  1384. try
  1385. Some (PMap.find name csup.cl_fields)
  1386. with
  1387. Not_found -> get_parent csup name
  1388. in
  1389. let type_opt ctx p t =
  1390. match t with
  1391. | None when c.cl_extern || c.cl_interface ->
  1392. display_error ctx "Type required for extern classes and interfaces" p;
  1393. t_dynamic
  1394. | None when core_api ->
  1395. display_error ctx "Type required for core api classes" p;
  1396. t_dynamic
  1397. | _ ->
  1398. load_type_opt ctx p t
  1399. in
  1400. let rec has_field f = function
  1401. | None -> false
  1402. | Some (c,_) ->
  1403. PMap.exists f c.cl_fields || has_field f c.cl_super || List.exists (fun i -> has_field f (Some i)) c.cl_implements
  1404. in
  1405. (match c.cl_super with None -> () | Some _ -> delay ctx PForce (fun() -> check_overriding ctx c));
  1406. if ctx.com.config.pf_overload then delay ctx PForce (fun() -> check_overloads ctx c);
  1407. (* ----------------------- COMPLETION ----------------------------- *)
  1408. let display_file = if ctx.com.display then Common.unique_full_path p.pfile = (!Parser.resume_display).pfile else false in
  1409. let cp = !Parser.resume_display in
  1410. let delayed_expr = ref [] in
  1411. let rec is_full_type t =
  1412. match t with
  1413. | TFun (args,ret) -> is_full_type ret && List.for_all (fun (_,_,t) -> is_full_type t) args
  1414. | TMono r -> (match !r with None -> false | Some t -> is_full_type t)
  1415. | TAbstract _ | TInst _ | TEnum _ | TLazy _ | TDynamic _ | TAnon _ | TType _ -> true
  1416. in
  1417. let bind_type ctx cf r p macro =
  1418. if ctx.com.display then begin
  1419. let cp = !Parser.resume_display in
  1420. if display_file && (cp.pmin = 0 || (p.pmin <= cp.pmin && p.pmax >= cp.pmax)) then begin
  1421. if macro && not ctx.in_macro then
  1422. (* force macro system loading of this class in order to get completion *)
  1423. delay ctx PTypeField (fun() -> ignore(ctx.g.do_macro ctx MExpr c.cl_path cf.cf_name [] p))
  1424. else begin
  1425. cf.cf_type <- TLazy r;
  1426. delayed_expr := (ctx,Some r) :: !delayed_expr;
  1427. end
  1428. end else begin
  1429. if not (is_full_type cf.cf_type) then begin
  1430. delayed_expr := (ctx, None) :: !delayed_expr;
  1431. cf.cf_type <- TLazy r;
  1432. end;
  1433. end
  1434. end else if macro && not ctx.in_macro then
  1435. ()
  1436. else begin
  1437. cf.cf_type <- TLazy r;
  1438. delayed_expr := (ctx,Some r) :: !delayed_expr;
  1439. end
  1440. in
  1441. let bind_var ctx cf e stat inline =
  1442. let p = cf.cf_pos in
  1443. if not stat && has_field cf.cf_name c.cl_super then error ("Redefinition of variable " ^ cf.cf_name ^ " in subclass is not allowed") p;
  1444. let t = cf.cf_type in
  1445. match e with
  1446. | None -> ()
  1447. | Some e ->
  1448. let check_cast e =
  1449. (* insert cast to keep explicit field type (issue #1901) *)
  1450. if not (type_iseq e.etype cf.cf_type)
  1451. then mk (TCast(e,None)) cf.cf_type e.epos
  1452. else e
  1453. in
  1454. let r = exc_protect ctx (fun r ->
  1455. (* type constant init fields (issue #1956) *)
  1456. if not !return_partial_type || (match fst e with EConst _ -> true | _ -> false) then begin
  1457. r := (fun() -> t);
  1458. context_init();
  1459. if ctx.com.verbose then Common.log ctx.com ("Typing " ^ (if ctx.in_macro then "macro " else "") ^ s_type_path c.cl_path ^ "." ^ cf.cf_name);
  1460. let e = type_var_field ctx t e stat p in
  1461. let e = (match cf.cf_kind with
  1462. | Var v when c.cl_extern || Meta.has Meta.Extern cf.cf_meta ->
  1463. if not stat then begin
  1464. display_error ctx "Extern non-static variables may not be initialized" p;
  1465. e
  1466. end else if v.v_read <> AccInline then begin
  1467. display_error ctx "Extern non-inline variables may not be initialized" p;
  1468. e
  1469. end else begin
  1470. match Optimizer.make_constant_expression ctx e with
  1471. | Some e -> e
  1472. | None -> display_error ctx "Extern variable initialization must be a constant value" p; e
  1473. end
  1474. | Var v when not stat || (v.v_read = AccInline) ->
  1475. let e = match Optimizer.make_constant_expression ctx e with Some e -> check_cast e | None -> display_error ctx "Variable initialization must be a constant value" p; e in
  1476. e
  1477. | _ ->
  1478. e
  1479. ) in
  1480. cf.cf_expr <- Some e;
  1481. cf.cf_type <- t;
  1482. end;
  1483. t
  1484. ) "bind_var" in
  1485. bind_type ctx cf r (snd e) false
  1486. in
  1487. (* ----------------------- FIELD INIT ----------------------------- *)
  1488. let loop_cf f =
  1489. let name = f.cff_name in
  1490. let p = f.cff_pos in
  1491. if name.[0] = '$' && not ctx.com.display then error "Field names starting with a dollar are not allowed" p;
  1492. let stat = List.mem AStatic f.cff_access in
  1493. let extern = Meta.has Meta.Extern f.cff_meta || c.cl_extern in
  1494. let is_abstract,allow_inline =
  1495. match c.cl_kind, f.cff_kind with
  1496. | KAbstractImpl _, _ -> true,true
  1497. |_, FFun _ -> false,ctx.g.doinline || extern
  1498. | _ -> false,true
  1499. in
  1500. let inline = List.mem AInline f.cff_access && allow_inline in
  1501. let override = List.mem AOverride f.cff_access in
  1502. let is_macro = Meta.has Meta.Macro f.cff_meta in
  1503. if is_macro then ctx.com.warning "@:macro should now be 'macro' accessor" p;
  1504. let is_macro = is_macro || List.mem AMacro f.cff_access in
  1505. List.iter (fun acc ->
  1506. match (acc, f.cff_kind) with
  1507. | APublic, _ | APrivate, _ | AStatic, _ -> ()
  1508. | ADynamic, FFun _ | AOverride, FFun _ | AMacro, FFun _ | AInline, FFun _ | AInline, FVar _ -> ()
  1509. | _, FVar _ -> error ("Invalid accessor '" ^ Ast.s_access acc ^ "' for variable " ^ name) p
  1510. | _, FProp _ -> error ("Invalid accessor '" ^ Ast.s_access acc ^ "' for property " ^ name) p
  1511. ) f.cff_access;
  1512. if override then (match c.cl_super with None -> error "Invalid override: class has no super class" p | _ -> ());
  1513. (* build the per-field context *)
  1514. let ctx = {
  1515. ctx with
  1516. pass = PBuildClass; (* will be set later to PTypeExpr *)
  1517. } in
  1518. match f.cff_kind with
  1519. | FVar (t,e) ->
  1520. if not stat && is_abstract then error"Cannot declare member variable in abstract" p;
  1521. if inline && not stat then error "Inline variable must be static" p;
  1522. if inline && e = None then error "Inline variable must be initialized" p;
  1523. let t = (match t with
  1524. | None when not stat && e = None ->
  1525. error ("Type required for member variable " ^ name) p;
  1526. | None ->
  1527. mk_mono()
  1528. | Some t ->
  1529. let old = ctx.type_params in
  1530. if stat then ctx.type_params <- [];
  1531. let t = load_complex_type ctx p t in
  1532. if stat then ctx.type_params <- old;
  1533. t
  1534. ) in
  1535. let cf = {
  1536. cf_name = name;
  1537. cf_doc = f.cff_doc;
  1538. cf_meta = f.cff_meta;
  1539. cf_type = t;
  1540. cf_pos = f.cff_pos;
  1541. cf_kind = Var (if inline then { v_read = AccInline ; v_write = AccNever } else { v_read = AccNormal; v_write = AccNormal });
  1542. cf_expr = None;
  1543. cf_public = is_public f.cff_access None;
  1544. cf_params = [];
  1545. cf_overloads = [];
  1546. } in
  1547. ctx.curfield <- cf;
  1548. bind_var ctx cf e stat inline;
  1549. f, false, cf
  1550. | FFun fd ->
  1551. let params = type_function_params ctx fd f.cff_name p in
  1552. if inline && c.cl_interface then error "You can't declare inline methods in interfaces" p;
  1553. if Meta.has Meta.Generic f.cff_meta then begin
  1554. if params = [] then error "Generic functions must have type parameters" p;
  1555. end;
  1556. let is_macro = is_macro || (is_class_macro && stat) in
  1557. let f, stat, fd = if not is_macro || stat then
  1558. f, stat, fd
  1559. else if ctx.in_macro then
  1560. (* non-static macros methods are turned into static when we are running the macro *)
  1561. { f with cff_access = AStatic :: f.cff_access }, true, fd
  1562. else
  1563. (* remove display of first argument which will contain the "this" expression *)
  1564. f, stat, { fd with f_args = match fd.f_args with [] -> [] | _ :: l -> l }
  1565. in
  1566. let fd = if not is_macro then
  1567. fd
  1568. else begin
  1569. (* a class with a macro cannot be extern in macro context (issue #2015) *)
  1570. c.cl_extern <- false;
  1571. if ctx.in_macro then
  1572. let texpr = CTPath { tpackage = ["haxe";"macro"]; tname = "Expr"; tparams = []; tsub = None } in
  1573. {
  1574. f_params = fd.f_params;
  1575. f_type = (match fd.f_type with None -> Some texpr | t -> t);
  1576. f_args = List.map (fun (a,o,t,e) -> a,o,(match t with None -> Some texpr | _ -> t),e) fd.f_args;
  1577. f_expr = fd.f_expr;
  1578. }
  1579. else
  1580. let tdyn = Some (CTPath { tpackage = []; tname = "Dynamic"; tparams = []; tsub = None }) in
  1581. let to_dyn = function
  1582. | { tpackage = ["haxe";"macro"]; tname = "Expr"; tsub = Some ("ExprOf"); tparams = [TPType t] } -> Some t
  1583. | { tpackage = []; tname = ("ExprOf"); tsub = None; tparams = [TPType t] } -> Some t
  1584. | { tpackage = ["haxe"]; tname = ("PosInfos"); tsub = None; tparams = [] } -> error "haxe.PosInfos is not allowed on macro functions, use Context.currentPos() instead" p
  1585. | _ -> tdyn
  1586. in
  1587. {
  1588. f_params = fd.f_params;
  1589. f_type = (match fd.f_type with Some (CTPath t) -> to_dyn t | _ -> tdyn);
  1590. f_args = List.map (fun (a,o,t,_) -> a,o,(match t with Some (CTPath t) -> to_dyn t | _ -> tdyn),None) fd.f_args;
  1591. f_expr = None;
  1592. }
  1593. end in
  1594. let parent = (if not stat then get_parent c name else None) in
  1595. let dynamic = List.mem ADynamic f.cff_access || (match parent with Some { cf_kind = Method MethDynamic } -> true | _ -> false) in
  1596. if inline && dynamic then error "You can't have both 'inline' and 'dynamic'" p;
  1597. ctx.type_params <- (match c.cl_kind with
  1598. | KAbstractImpl a when Meta.has Meta.Impl f.cff_meta || Meta.has Meta.From f.cff_meta || Meta.has Meta.MultiType a.a_meta && Meta.has Meta.To f.cff_meta ->
  1599. params @ a.a_types
  1600. | _ ->
  1601. if stat then params else params @ ctx.type_params);
  1602. let constr = (name = "new") in
  1603. let ret = if constr then ctx.t.tvoid else type_opt ctx p fd.f_type in
  1604. let args = List.map (fun (name,opt,t,c) ->
  1605. let t, c = type_function_param ctx (type_opt ctx p t) c opt p in
  1606. name, c, t
  1607. ) fd.f_args in
  1608. let t = TFun (fun_args args,ret) in
  1609. if c.cl_interface && not stat && fd.f_expr <> None then error "An interface method cannot have a body" p;
  1610. if constr then begin
  1611. if c.cl_interface then error "An interface cannot have a constructor" p;
  1612. if stat then error "A constructor must not be static" p;
  1613. match fd.f_type with
  1614. | None | Some (CTPath { tpackage = []; tname = "Void" }) -> ()
  1615. | _ -> error "A class constructor can't have a return value" p
  1616. end;
  1617. let cf = {
  1618. cf_name = name;
  1619. cf_doc = f.cff_doc;
  1620. cf_meta = f.cff_meta;
  1621. cf_type = t;
  1622. cf_pos = f.cff_pos;
  1623. cf_kind = Method (if is_macro then MethMacro else if inline then MethInline else if dynamic then MethDynamic else MethNormal);
  1624. cf_expr = None;
  1625. cf_public = is_public f.cff_access parent;
  1626. cf_params = params;
  1627. cf_overloads = [];
  1628. } in
  1629. let do_bind = ref (not (cf.cf_name <> "__init__" && (c.cl_extern && not inline) || c.cl_interface)) in
  1630. (match c.cl_kind with
  1631. | KAbstractImpl a ->
  1632. let m = mk_mono() in
  1633. let ta = TAbstract(a, List.map (fun _ -> mk_mono()) a.a_types) in
  1634. let tthis = if Meta.has Meta.Impl f.cff_meta || Meta.has Meta.To f.cff_meta then monomorphs a.a_types a.a_this else a.a_this in
  1635. let rec loop ml = match ml with
  1636. | (Meta.From,_,_) :: _ ->
  1637. if is_macro then error "Macro cast functions are not supported" p;
  1638. (* the return type of a from-function must be the abstract, not the underlying type *)
  1639. (try type_eq EqStrict ret ta with Unify_error l -> error (error_msg (Unify l)) p);
  1640. let t = match t with
  1641. | TFun([_,_,t],_) -> t
  1642. | _ -> error "@:from cast functions must accept exactly one argument" p
  1643. in
  1644. a.a_from <- (t,Some cf) :: a.a_from;
  1645. | (Meta.To,_,_) :: _ ->
  1646. if is_macro then error "Macro cast functions are not supported" p;
  1647. let args = if Meta.has Meta.MultiType a.a_meta then begin
  1648. (* the return type of multitype @:to functions must unify with a_this *)
  1649. delay ctx PFinal (fun () -> unify ctx m tthis f.cff_pos);
  1650. (* the arguments must be compatible with the original constructor, which we have to find at this point *)
  1651. try (match follow (monomorphs a.a_types (PMap.find "_new" c.cl_statics).cf_type) with
  1652. | TFun(args,_) -> List.map (fun (_,_,t) -> t) args
  1653. | _ -> assert false)
  1654. with Not_found ->
  1655. error "Constructor of multi-type abstract must be defined before the individual @:to-functions are" cf.cf_pos
  1656. end else [] in
  1657. (* the first argument of a to-function must be the underlying type, not the abstract *)
  1658. (try unify_raise ctx t (tfun (tthis :: args) m) f.cff_pos with Error (Unify l,p) -> error (error_msg (Unify l)) p);
  1659. if not (Meta.has Meta.Impl cf.cf_meta) then cf.cf_meta <- (Meta.Impl,[],cf.cf_pos) :: cf.cf_meta;
  1660. a.a_to <- (follow m, Some cf) :: a.a_to
  1661. | (Meta.ArrayAccess,_,_) :: _ ->
  1662. if is_macro then error "Macro array-access functions are not supported" p;
  1663. a.a_array <- cf :: a.a_array;
  1664. | (Meta.Op,[EBinop(op,_,_),_],_) :: _ ->
  1665. if is_macro then error "Macro operator functions are not supported" p;
  1666. let targ = if Meta.has Meta.Impl f.cff_meta then tthis else ta in
  1667. let left_eq = type_iseq t (tfun [targ;m] (mk_mono())) in
  1668. let right_eq = type_iseq t (tfun [mk_mono();targ] (mk_mono())) in
  1669. if not (left_eq || right_eq) then error ("The left or right argument type must be " ^ (s_type (print_context()) targ)) f.cff_pos;
  1670. if right_eq && Meta.has Meta.Commutative f.cff_meta then error ("@:commutative is only allowed if the right argument is not " ^ (s_type (print_context()) targ)) f.cff_pos;
  1671. a.a_ops <- (op,cf) :: a.a_ops;
  1672. if fd.f_expr = None then do_bind := false;
  1673. | (Meta.Op,[EUnop(op,flag,_),_],_) :: _ ->
  1674. if is_macro then error "Macro operator functions are not supported" p;
  1675. let targ = if Meta.has Meta.Impl f.cff_meta then tthis else ta in
  1676. (try type_eq EqStrict t (tfun [targ] (mk_mono())) with Unify_error l -> raise (Error ((Unify l),f.cff_pos)));
  1677. a.a_unops <- (op,flag,cf) :: a.a_unops;
  1678. if fd.f_expr = None then do_bind := false;
  1679. | _ :: ml ->
  1680. loop ml
  1681. | [] ->
  1682. ()
  1683. in
  1684. loop f.cff_meta;
  1685. if f.cff_name = "_new" && Meta.has Meta.MultiType a.a_meta then do_bind := false;
  1686. | _ ->
  1687. ());
  1688. init_meta_overloads ctx cf;
  1689. ctx.curfield <- cf;
  1690. let r = exc_protect ctx (fun r ->
  1691. if not !return_partial_type then begin
  1692. r := (fun() -> t);
  1693. context_init();
  1694. incr stats.s_methods_typed;
  1695. if ctx.com.verbose then Common.log ctx.com ("Typing " ^ (if ctx.in_macro then "macro " else "") ^ s_type_path c.cl_path ^ "." ^ name);
  1696. let fmode = (match c.cl_kind with
  1697. | KAbstractImpl _ ->
  1698. (match args with
  1699. | ("this",_,_) :: _ -> FunMemberAbstract
  1700. | _ when name = "_new" -> FunMemberAbstract
  1701. | _ -> FunStatic)
  1702. | _ ->
  1703. if constr then FunConstructor else if stat then FunStatic else FunMember
  1704. ) in
  1705. let display_field = display_file && (f.cff_pos.pmin <= cp.pmin && f.cff_pos.pmax >= cp.pmax) in
  1706. let e , fargs = type_function ctx args ret fmode fd display_field p in
  1707. let f = {
  1708. tf_args = fargs;
  1709. tf_type = ret;
  1710. tf_expr = e;
  1711. } in
  1712. if stat && name = "__init__" then
  1713. (match e.eexpr with
  1714. | TBlock [] | TBlock [{ eexpr = TConst _ }] | TConst _ | TObjectDecl [] -> ()
  1715. | _ -> c.cl_init <- Some e);
  1716. cf.cf_expr <- Some (mk (TFunction f) t p);
  1717. cf.cf_type <- t;
  1718. end;
  1719. t
  1720. ) "type_fun" in
  1721. if !do_bind then bind_type ctx cf r (match fd.f_expr with Some e -> snd e | None -> f.cff_pos) is_macro;
  1722. f, constr, cf
  1723. | FProp (get,set,t,eo) ->
  1724. (match c.cl_kind with
  1725. | KAbstractImpl a when Meta.has Meta.Impl f.cff_meta ->
  1726. ctx.type_params <- a.a_types;
  1727. | _ -> ());
  1728. let ret = (match t, eo with
  1729. | None, None -> error "Property must either define a type or a default value" p;
  1730. | None, _ -> mk_mono()
  1731. | Some t, _ -> load_complex_type ctx p t
  1732. ) in
  1733. let t_get,t_set = match c.cl_kind with
  1734. | KAbstractImpl a when Meta.has Meta.Impl f.cff_meta ->
  1735. if Meta.has Meta.IsVar f.cff_meta then error "Abstract properties cannot be real variables" f.cff_pos;
  1736. let ta = apply_params a.a_types (List.map snd a.a_types) a.a_this in
  1737. tfun [ta] ret, tfun [ta;ret] ret
  1738. | _ -> tfun [] ret, tfun [ret] ret
  1739. in
  1740. let check_method m t req_name =
  1741. if ctx.com.display then () else
  1742. try
  1743. let _, t2, f = (if stat then let f = PMap.find m c.cl_statics in Some c, f.cf_type, f else class_field c m) in
  1744. (* accessors must be public on As3 (issue #1872) *)
  1745. if Common.defined ctx.com Define.As3 then f.cf_meta <- (Meta.Public,[],p) :: f.cf_meta;
  1746. (match f.cf_kind with
  1747. | Method MethMacro ->
  1748. display_error ctx "Macro methods cannot be used as property accessor" p;
  1749. display_error ctx "Accessor method is here" f.cf_pos;
  1750. | _ -> ());
  1751. unify_raise ctx t2 t f.cf_pos;
  1752. (match req_name with None -> () | Some n -> display_error ctx ("Please use " ^ n ^ " to name your property access method") f.cf_pos);
  1753. with
  1754. | Error (Unify l,p) -> raise (Error (Stack (Custom ("In method " ^ m ^ " required by property " ^ name),Unify l),p))
  1755. | Not_found ->
  1756. if req_name <> None then display_error ctx "Custom property accessor is no longer supported, please use get/set" p else
  1757. if not (c.cl_interface || c.cl_extern) then display_error ctx ("Method " ^ m ^ " required by property " ^ name ^ " is missing") p
  1758. in
  1759. let get = (match get with
  1760. | "null" -> AccNo
  1761. | "dynamic" -> AccCall
  1762. | "never" -> AccNever
  1763. | "default" -> AccNormal
  1764. | _ ->
  1765. let get = if get = "get" then "get_" ^ name else get in
  1766. delay ctx PForce (fun() -> check_method get t_get (if get <> "get" && get <> "get_" ^ name then Some ("get_" ^ name) else None));
  1767. AccCall
  1768. ) in
  1769. let set = (match set with
  1770. | "null" ->
  1771. (* standard flash library read-only variables can't be accessed for writing, even in subclasses *)
  1772. if c.cl_extern && (match c.cl_path with "flash" :: _ , _ -> true | _ -> false) && ctx.com.platform = Flash then
  1773. AccNever
  1774. else
  1775. AccNo
  1776. | "never" -> AccNever
  1777. | "dynamic" -> AccCall
  1778. | "default" -> AccNormal
  1779. | _ ->
  1780. let set = if set = "set" then "set_" ^ name else set in
  1781. delay ctx PForce (fun() -> check_method set t_set (if set <> "set" && set <> "set_" ^ name then Some ("set_" ^ name) else None));
  1782. AccCall
  1783. ) in
  1784. if set = AccNormal && (match get with AccCall -> true | _ -> false) then error "Unsupported property combination" p;
  1785. let cf = {
  1786. cf_name = name;
  1787. cf_doc = f.cff_doc;
  1788. cf_meta = f.cff_meta;
  1789. cf_pos = f.cff_pos;
  1790. cf_kind = Var { v_read = get; v_write = set };
  1791. cf_expr = None;
  1792. cf_type = ret;
  1793. cf_public = is_public f.cff_access None;
  1794. cf_params = [];
  1795. cf_overloads = [];
  1796. } in
  1797. ctx.curfield <- cf;
  1798. bind_var ctx cf eo stat inline;
  1799. f, false, cf
  1800. in
  1801. let rec check_require = function
  1802. | [] -> None
  1803. | (Meta.Require,conds,_) :: l ->
  1804. let rec loop = function
  1805. | [] -> check_require l
  1806. | e :: l ->
  1807. let sc = match fst e with
  1808. | EConst (Ident s) -> s
  1809. | _ -> ""
  1810. in
  1811. if not (Parser.is_true (Parser.eval ctx.com e)) then
  1812. Some (sc,(match List.rev l with (EConst (String msg),_) :: _ -> Some msg | _ -> None))
  1813. else
  1814. loop l
  1815. in
  1816. loop conds
  1817. | _ :: l ->
  1818. check_require l
  1819. in
  1820. let cl_req = check_require c.cl_meta in
  1821. List.iter (fun f ->
  1822. let p = f.cff_pos in
  1823. try
  1824. let fd , constr, f = loop_cf f in
  1825. let is_static = List.mem AStatic fd.cff_access in
  1826. if (is_static || constr) && c.cl_interface && f.cf_name <> "__init__" then error "You can't declare static fields in interfaces" p;
  1827. begin try
  1828. let _,args,_ = Meta.get Meta.IfFeature f.cf_meta in
  1829. List.iter (fun e -> match fst e with
  1830. | EConst(String s) ->
  1831. ctx.m.curmod.m_extra.m_features <- (s,(c,f,is_static)) :: ctx.m.curmod.m_extra.m_features;
  1832. | _ ->
  1833. error "String expected" (pos e)
  1834. ) args
  1835. with Not_found -> () end;
  1836. let req = check_require fd.cff_meta in
  1837. let req = (match req with None -> if is_static || constr then cl_req else None | _ -> req) in
  1838. (match req with
  1839. | None -> ()
  1840. | Some r -> f.cf_kind <- Var { v_read = AccRequire (fst r, snd r); v_write = AccRequire (fst r, snd r) });
  1841. if constr then begin
  1842. match c.cl_constructor with
  1843. | None ->
  1844. c.cl_constructor <- Some f
  1845. | Some ctor when ctx.com.config.pf_overload ->
  1846. if Meta.has Meta.Overload f.cf_meta && Meta.has Meta.Overload ctor.cf_meta then
  1847. ctor.cf_overloads <- f :: ctor.cf_overloads
  1848. else if Meta.has Meta.Overload f.cf_meta <> Meta.has Meta.Overload ctor.cf_meta then
  1849. display_error ctx ("If using overloaded constructors, all constructors must be declared with @:overload") (if Meta.has Meta.Overload f.cf_meta then ctor.cf_pos else f.cf_pos)
  1850. | Some ctor ->
  1851. display_error ctx "Duplicate constructor" p
  1852. end else if not is_static || f.cf_name <> "__init__" then begin
  1853. let dup = if is_static then PMap.exists f.cf_name c.cl_fields || has_field f.cf_name c.cl_super else PMap.exists f.cf_name c.cl_statics in
  1854. if dup then error ("Same field name can't be use for both static and instance : " ^ f.cf_name) p;
  1855. if List.mem AOverride fd.cff_access then c.cl_overrides <- f :: c.cl_overrides;
  1856. let is_var f = match f.cf_kind with | Var _ -> true | _ -> false in
  1857. if PMap.mem f.cf_name (if is_static then c.cl_statics else c.cl_fields) then
  1858. if ctx.com.config.pf_overload && Meta.has Meta.Overload f.cf_meta && not (is_var f) then
  1859. let mainf = PMap.find f.cf_name (if is_static then c.cl_statics else c.cl_fields) in
  1860. if is_var mainf then display_error ctx "Cannot declare a variable with same name as a method" mainf.cf_pos;
  1861. (if not (Meta.has Meta.Overload mainf.cf_meta) then display_error ctx ("Overloaded methods must have @:overload metadata") mainf.cf_pos);
  1862. mainf.cf_overloads <- f :: mainf.cf_overloads
  1863. else
  1864. display_error ctx ("Duplicate class field declaration : " ^ f.cf_name) p
  1865. else
  1866. if is_static then begin
  1867. c.cl_statics <- PMap.add f.cf_name f c.cl_statics;
  1868. c.cl_ordered_statics <- f :: c.cl_ordered_statics;
  1869. end else begin
  1870. c.cl_fields <- PMap.add f.cf_name f c.cl_fields;
  1871. c.cl_ordered_fields <- f :: c.cl_ordered_fields;
  1872. end;
  1873. end
  1874. with Error (Custom str,p2) when p = p2 ->
  1875. display_error ctx str p
  1876. ) fields;
  1877. (match c.cl_kind with
  1878. | KAbstractImpl a ->
  1879. a.a_to <- List.rev a.a_to;
  1880. a.a_from <- List.rev a.a_from;
  1881. a.a_ops <- List.rev a.a_ops;
  1882. a.a_unops <- List.rev a.a_unops;
  1883. | _ -> ());
  1884. c.cl_ordered_statics <- List.rev c.cl_ordered_statics;
  1885. c.cl_ordered_fields <- List.rev c.cl_ordered_fields;
  1886. (*
  1887. make sure a default contructor with same access as super one will be added to the class structure at some point.
  1888. *)
  1889. (* add_constructor does not deal with overloads correctly *)
  1890. if not ctx.com.config.pf_overload then add_constructor ctx c p;
  1891. (* check overloaded constructors *)
  1892. (if ctx.com.config.pf_overload then match c.cl_constructor with
  1893. | Some ctor ->
  1894. List.iter (fun f ->
  1895. try
  1896. (* TODO: consider making a broader check, and treat some types, like TAnon and type parameters as Dynamic *)
  1897. ignore(List.find (fun f2 -> f != f2 && same_overload_args f.cf_type f2.cf_type f f2) (ctor :: ctor.cf_overloads));
  1898. display_error ctx ("Another overloaded field of same signature was already declared : " ^ f.cf_name) f.cf_pos;
  1899. with Not_found -> ()
  1900. ) (ctor :: ctor.cf_overloads)
  1901. | _ -> ());
  1902. (* push delays in reverse order so they will be run in correct order *)
  1903. List.iter (fun (ctx,r) ->
  1904. ctx.pass <- PTypeField;
  1905. (match r with
  1906. | None -> ()
  1907. | Some r -> delay ctx PTypeField (fun() -> ignore((!r)())))
  1908. ) !delayed_expr
  1909. let resolve_typedef t =
  1910. match t with
  1911. | TClassDecl _ | TEnumDecl _ | TAbstractDecl _ -> t
  1912. | TTypeDecl td ->
  1913. match follow td.t_type with
  1914. | TEnum (e,_) -> TEnumDecl e
  1915. | TInst (c,_) -> TClassDecl c
  1916. | TAbstract (a,_) -> TAbstractDecl a
  1917. | _ -> t
  1918. let add_module ctx m p =
  1919. let decl_type t =
  1920. let t = t_infos t in
  1921. try
  1922. let m2 = Hashtbl.find ctx.g.types_module t.mt_path in
  1923. if m.m_path <> m2 && String.lowercase (s_type_path m2) = String.lowercase (s_type_path m.m_path) then error ("Module " ^ s_type_path m2 ^ " is loaded with a different case than " ^ s_type_path m.m_path) p;
  1924. error ("Type name " ^ s_type_path t.mt_path ^ " is redefined from module " ^ s_type_path m2) p
  1925. with
  1926. Not_found ->
  1927. Hashtbl.add ctx.g.types_module t.mt_path m.m_path
  1928. in
  1929. List.iter decl_type m.m_types;
  1930. Hashtbl.add ctx.g.modules m.m_path m
  1931. (*
  1932. In this pass, we can access load and access other modules types, but we cannot follow them or access their structure
  1933. since they have not been setup. We also build a context_init list that will be evaluated the first time we evaluate
  1934. an expression into the context
  1935. *)
  1936. let rec init_module_type ctx context_init do_init (decl,p) =
  1937. let get_type name =
  1938. try List.find (fun t -> snd (t_infos t).mt_path = name) ctx.m.curmod.m_types with Not_found -> assert false
  1939. in
  1940. match decl with
  1941. | EImport (path,mode) ->
  1942. let rec loop acc = function
  1943. | x :: l when is_lower_ident (fst x) -> loop (x::acc) l
  1944. | rest -> List.rev acc, rest
  1945. in
  1946. let pack, rest = loop [] path in
  1947. (match rest with
  1948. | [] ->
  1949. (match mode with
  1950. | IAll ->
  1951. ctx.m.wildcard_packages <- List.map fst pack :: ctx.m.wildcard_packages
  1952. | _ ->
  1953. (match List.rev path with
  1954. | [] -> assert false
  1955. | (_,p) :: _ -> error "Module name must start with an uppercase letter" p))
  1956. | (tname,p2) :: rest ->
  1957. let p1 = (match pack with [] -> p2 | (_,p1) :: _ -> p1) in
  1958. let p = punion p1 p2 in
  1959. let md = ctx.g.do_load_module ctx (List.map fst pack,tname) p in
  1960. let types = md.m_types in
  1961. let no_private t = not (t_infos t).mt_private in
  1962. let chk_private t p = if (t_infos t).mt_private then error "You can't import a private type" p in
  1963. let has_name name t = snd (t_infos t).mt_path = name in
  1964. let get_type tname =
  1965. let t = (try List.find (has_name tname) types with Not_found -> error (string_error tname (List.map (fun mt -> snd (t_infos mt).mt_path) types) ("Module " ^ s_type_path md.m_path ^ " does not define type " ^ tname)) p) in
  1966. chk_private t p;
  1967. t
  1968. in
  1969. let rebind t name =
  1970. let _, _, f = ctx.g.do_build_instance ctx t p in
  1971. (* create a temp private typedef, does not register it in module *)
  1972. TTypeDecl {
  1973. t_path = (fst md.m_path @ ["_" ^ snd md.m_path],name);
  1974. t_module = md;
  1975. t_pos = p;
  1976. t_private = true;
  1977. t_doc = None;
  1978. t_meta = [];
  1979. t_types = (t_infos t).mt_types;
  1980. t_type = f (List.map snd (t_infos t).mt_types);
  1981. }
  1982. in
  1983. let add_static_init t name s =
  1984. let name = (match name with None -> s | Some n -> n) in
  1985. match resolve_typedef t with
  1986. | TClassDecl c ->
  1987. c.cl_build();
  1988. ignore(PMap.find s c.cl_statics);
  1989. ctx.m.module_globals <- PMap.add name (TClassDecl c,s) ctx.m.module_globals
  1990. | TEnumDecl e ->
  1991. ignore(PMap.find s e.e_constrs);
  1992. ctx.m.module_globals <- PMap.add name (TEnumDecl e,s) ctx.m.module_globals
  1993. | _ ->
  1994. raise Not_found
  1995. in
  1996. (match mode with
  1997. | INormal | IAsName _ ->
  1998. let name = (match mode with IAsName n -> Some n | _ -> None) in
  1999. (match rest with
  2000. | [] ->
  2001. (match name with
  2002. | None ->
  2003. ctx.m.module_types <- List.filter no_private types @ ctx.m.module_types
  2004. | Some newname ->
  2005. ctx.m.module_types <- rebind (get_type tname) newname :: ctx.m.module_types);
  2006. | [tsub,p2] ->
  2007. let p = punion p1 p2 in
  2008. (try
  2009. let tsub = List.find (has_name tsub) types in
  2010. chk_private tsub p;
  2011. ctx.m.module_types <- (match name with None -> tsub | Some n -> rebind tsub n) :: ctx.m.module_types
  2012. with Not_found ->
  2013. (* this might be a static property, wait later to check *)
  2014. let tmain = get_type tname in
  2015. context_init := (fun() ->
  2016. try
  2017. add_static_init tmain name tsub
  2018. with Not_found ->
  2019. error (s_type_path (t_infos tmain).mt_path ^ " has no field or subtype " ^ tsub) p
  2020. ) :: !context_init)
  2021. | (tsub,p2) :: (fname,p3) :: rest ->
  2022. (match rest with
  2023. | [] -> ()
  2024. | (n,p) :: _ -> error ("Unexpected " ^ n) p);
  2025. let tsub = get_type tsub in
  2026. context_init := (fun() ->
  2027. try
  2028. add_static_init tsub name fname
  2029. with Not_found ->
  2030. error (s_type_path (t_infos tsub).mt_path ^ " has no field " ^ fname) (punion p p3)
  2031. ) :: !context_init;
  2032. )
  2033. | IAll ->
  2034. let t = (match rest with
  2035. | [] -> get_type tname
  2036. | [tsub,_] -> get_type tsub
  2037. | _ :: (n,p) :: _ -> error ("Unexpected " ^ n) p
  2038. ) in
  2039. context_init := (fun() ->
  2040. match resolve_typedef t with
  2041. | TClassDecl c
  2042. | TAbstractDecl {a_impl = Some c} ->
  2043. c.cl_build();
  2044. PMap.iter (fun _ cf -> if not (has_meta Meta.NoImportGlobal cf.cf_meta) then ctx.m.module_globals <- PMap.add cf.cf_name (TClassDecl c,cf.cf_name) ctx.m.module_globals) c.cl_statics
  2045. | TEnumDecl e ->
  2046. PMap.iter (fun _ c -> if not (has_meta Meta.NoImportGlobal c.ef_meta) then ctx.m.module_globals <- PMap.add c.ef_name (TEnumDecl e,c.ef_name) ctx.m.module_globals) e.e_constrs
  2047. | _ ->
  2048. error "No statics to import from this type" p
  2049. ) :: !context_init
  2050. ))
  2051. | EUsing t ->
  2052. (* do the import first *)
  2053. let types = (match t.tsub with
  2054. | None ->
  2055. let md = ctx.g.do_load_module ctx (t.tpackage,t.tname) p in
  2056. let types = List.filter (fun t -> not (t_infos t).mt_private) md.m_types in
  2057. ctx.m.module_types <- types @ ctx.m.module_types;
  2058. types
  2059. | Some _ ->
  2060. let t = load_type_def ctx p t in
  2061. ctx.m.module_types <- t :: ctx.m.module_types;
  2062. [t]
  2063. ) in
  2064. (* delay the using since we need to resolve typedefs *)
  2065. let filter_classes types =
  2066. let rec loop acc types = match types with
  2067. | td :: l ->
  2068. (match resolve_typedef td with
  2069. | TClassDecl c | TAbstractDecl({a_impl = Some c}) ->
  2070. loop (c :: acc) l
  2071. | td ->
  2072. loop acc l)
  2073. | [] ->
  2074. acc
  2075. in
  2076. loop [] types
  2077. in
  2078. context_init := (fun() -> ctx.m.module_using <- filter_classes types @ ctx.m.module_using) :: !context_init
  2079. | EClass d ->
  2080. let c = (match get_type d.d_name with TClassDecl c -> c | _ -> assert false) in
  2081. let herits = d.d_flags in
  2082. if Meta.has Meta.Generic c.cl_meta && c.cl_types <> [] then c.cl_kind <- KGeneric;
  2083. if c.cl_path = (["haxe";"macro"],"MacroType") then c.cl_kind <- KMacroType;
  2084. c.cl_extern <- List.mem HExtern herits;
  2085. c.cl_interface <- List.mem HInterface herits;
  2086. let build() =
  2087. c.cl_build <- (fun()->());
  2088. set_heritance ctx c herits p;
  2089. init_class ctx c p do_init d.d_flags d.d_data
  2090. in
  2091. ctx.pass <- PBuildClass;
  2092. ctx.curclass <- c;
  2093. c.cl_build <- make_pass ctx build;
  2094. ctx.pass <- PBuildModule;
  2095. ctx.curclass <- null_class;
  2096. delay ctx PBuildClass (fun() -> c.cl_build());
  2097. | EEnum d ->
  2098. let e = (match get_type d.d_name with TEnumDecl e -> e | _ -> assert false) in
  2099. let ctx = { ctx with type_params = e.e_types } in
  2100. let h = (try Some (Hashtbl.find ctx.g.type_patches e.e_path) with Not_found -> None) in
  2101. (match h with
  2102. | None -> ()
  2103. | Some (h,hcl) ->
  2104. Hashtbl.iter (fun _ _ -> error "Field type patch not supported for enums" e.e_pos) h;
  2105. e.e_meta <- e.e_meta @ hcl.tp_meta);
  2106. let constructs = ref d.d_data in
  2107. let get_constructs() =
  2108. List.map (fun c ->
  2109. {
  2110. cff_name = c.ec_name;
  2111. cff_doc = c.ec_doc;
  2112. cff_meta = c.ec_meta;
  2113. cff_pos = c.ec_pos;
  2114. cff_access = [];
  2115. cff_kind = (match c.ec_args, c.ec_params with
  2116. | [], [] -> FVar (c.ec_type,None)
  2117. | _ -> FFun { f_params = c.ec_params; f_type = c.ec_type; f_expr = None; f_args = List.map (fun (n,o,t) -> n,o,Some t,None) c.ec_args });
  2118. }
  2119. ) (!constructs)
  2120. in
  2121. let init () = List.iter (fun f -> f()) !context_init in
  2122. build_module_def ctx (TEnumDecl e) e.e_meta get_constructs init (fun (e,p) ->
  2123. match e with
  2124. | EVars [_,Some (CTAnonymous fields),None] ->
  2125. constructs := List.map (fun f ->
  2126. let args, params, t = (match f.cff_kind with
  2127. | FVar (t,None) -> [], [], t
  2128. | FFun { f_params = pl; f_type = t; f_expr = (None|Some (EBlock [],_)); f_args = al } ->
  2129. let al = List.map (fun (n,o,t,_) -> match t with None -> error "Missing function parameter type" f.cff_pos | Some t -> n,o,t) al in
  2130. al, pl, t
  2131. | _ ->
  2132. error "Invalid enum constructor in @:build result" p
  2133. ) in
  2134. {
  2135. ec_name = f.cff_name;
  2136. ec_doc = f.cff_doc;
  2137. ec_meta = f.cff_meta;
  2138. ec_pos = f.cff_pos;
  2139. ec_args = args;
  2140. ec_params = params;
  2141. ec_type = t;
  2142. }
  2143. ) fields
  2144. | _ -> error "Enum build macro must return a single variable with anonymous object fields" p
  2145. );
  2146. let et = TEnum (e,List.map snd e.e_types) in
  2147. let names = ref [] in
  2148. let index = ref 0 in
  2149. let is_flat = ref true in
  2150. List.iter (fun c ->
  2151. let p = c.ec_pos in
  2152. let params = ref [] in
  2153. params := List.map (fun tp -> type_type_params ~enum_constructor:true ctx ([],c.ec_name) (fun() -> !params) c.ec_pos tp) c.ec_params;
  2154. let params = !params in
  2155. let ctx = { ctx with type_params = params @ ctx.type_params } in
  2156. let rt = (match c.ec_type with
  2157. | None -> et
  2158. | Some t ->
  2159. let t = load_complex_type ctx p t in
  2160. (match follow t with
  2161. | TEnum (te,_) when te == e ->
  2162. ()
  2163. | _ ->
  2164. error "Explicit enum type must be of the same enum type" p);
  2165. t
  2166. ) in
  2167. let t = (match c.ec_args with
  2168. | [] -> rt
  2169. | l ->
  2170. is_flat := false;
  2171. let pnames = ref PMap.empty in
  2172. TFun (List.map (fun (s,opt,t) ->
  2173. (match t with CTPath({tpackage=[];tname="Void"}) -> error "Arguments of type Void are not allowed in enum constructors" c.ec_pos | _ -> ());
  2174. if PMap.mem s (!pnames) then error ("Duplicate parameter '" ^ s ^ "' in enum constructor " ^ c.ec_name) p;
  2175. pnames := PMap.add s () (!pnames);
  2176. s, opt, load_type_opt ~opt ctx p (Some t)
  2177. ) l, rt)
  2178. ) in
  2179. if PMap.mem c.ec_name e.e_constrs then error ("Duplicate constructor " ^ c.ec_name) p;
  2180. e.e_constrs <- PMap.add c.ec_name {
  2181. ef_name = c.ec_name;
  2182. ef_type = t;
  2183. ef_pos = p;
  2184. ef_doc = c.ec_doc;
  2185. ef_index = !index;
  2186. ef_params = params;
  2187. ef_meta = c.ec_meta;
  2188. } e.e_constrs;
  2189. incr index;
  2190. names := c.ec_name :: !names;
  2191. ) (!constructs);
  2192. e.e_names <- List.rev !names;
  2193. e.e_extern <- e.e_extern;
  2194. if !is_flat then e.e_meta <- (Meta.FlatEnum,[],e.e_pos) :: e.e_meta;
  2195. | ETypedef d ->
  2196. let t = (match get_type d.d_name with TTypeDecl t -> t | _ -> assert false) in
  2197. let ctx = { ctx with type_params = t.t_types } in
  2198. let tt = load_complex_type ctx p d.d_data in
  2199. (*
  2200. we exceptionnaly allow follow here because we don't care the type we get as long as it's not our own
  2201. *)
  2202. if t.t_type == follow tt then error "Recursive typedef is not allowed" p;
  2203. (match t.t_type with
  2204. | TMono r ->
  2205. (match !r with
  2206. | None -> r := Some tt;
  2207. | Some _ -> assert false);
  2208. | _ -> assert false);
  2209. | EAbstract d ->
  2210. let a = (match get_type d.d_name with TAbstractDecl a -> a | _ -> assert false) in
  2211. let ctx = { ctx with type_params = a.a_types } in
  2212. let is_type = ref false in
  2213. let load_type t from =
  2214. let t = load_complex_type ctx p t in
  2215. if not (Meta.has Meta.CoreType a.a_meta) then begin
  2216. if !is_type then begin
  2217. delay ctx PFinal (fun () ->
  2218. let at = monomorphs a.a_types a.a_this in
  2219. (try (if from then Type.unify t at else Type.unify at t) with Unify_error _ -> error "You can only declare from/to with compatible types" p)
  2220. );
  2221. end else
  2222. error "Missing underlying type declaration or @:coreType declaration" p;
  2223. end;
  2224. t
  2225. in
  2226. List.iter (function
  2227. | AFromType t -> a.a_from <- (load_type t true, None) :: a.a_from
  2228. | AToType t -> a.a_to <- (load_type t false, None) :: a.a_to
  2229. | AIsType t ->
  2230. if a.a_impl = None then error "Abstracts with underlying type must have an implementation" a.a_pos;
  2231. let at = load_complex_type ctx p t in
  2232. (match at with TAbstract(a2,_) when a == a2 -> error "Abstract underlying type cannot be recursive" a.a_pos | _ -> ());
  2233. a.a_this <- at;
  2234. is_type := true;
  2235. | APrivAbstract -> ()
  2236. ) d.d_flags;
  2237. if not !is_type && (match a.a_impl with Some _ -> true | None -> not (Meta.has Meta.CoreType a.a_meta)) then
  2238. error "Abstract is missing underlying type declaration" a.a_pos
  2239. let type_module ctx m file tdecls p =
  2240. let m, decls, tdecls = make_module ctx m file tdecls p in
  2241. add_module ctx m p;
  2242. (* define the per-module context for the next pass *)
  2243. let ctx = {
  2244. com = ctx.com;
  2245. g = ctx.g;
  2246. t = ctx.t;
  2247. m = {
  2248. curmod = m;
  2249. module_types = ctx.g.std.m_types;
  2250. module_using = [];
  2251. module_globals = PMap.empty;
  2252. wildcard_packages = [];
  2253. };
  2254. meta = [];
  2255. this_stack = [];
  2256. pass = PBuildModule;
  2257. on_error = (fun ctx msg p -> ctx.com.error msg p);
  2258. macro_depth = ctx.macro_depth;
  2259. curclass = null_class;
  2260. curfield = null_field;
  2261. tthis = ctx.tthis;
  2262. ret = ctx.ret;
  2263. locals = PMap.empty;
  2264. type_params = [];
  2265. curfun = FunStatic;
  2266. untyped = false;
  2267. in_super_call = false;
  2268. in_macro = ctx.in_macro;
  2269. in_display = false;
  2270. in_loop = false;
  2271. opened = [];
  2272. vthis = None;
  2273. } in
  2274. (* here is an additional PASS 1 phase, which define the type parameters for all module types.
  2275. Constraints are handled lazily (no other type is loaded) because they might be recursive anyway *)
  2276. List.iter (fun d ->
  2277. match d with
  2278. | (TClassDecl c, (EClass d, p)) ->
  2279. c.cl_types <- List.map (type_type_params ctx c.cl_path (fun() -> c.cl_types) p) d.d_params;
  2280. | (TEnumDecl e, (EEnum d, p)) ->
  2281. e.e_types <- List.map (type_type_params ctx e.e_path (fun() -> e.e_types) p) d.d_params;
  2282. | (TTypeDecl t, (ETypedef d, p)) ->
  2283. t.t_types <- List.map (type_type_params ctx t.t_path (fun() -> t.t_types) p) d.d_params;
  2284. | (TAbstractDecl a, (EAbstract d, p)) ->
  2285. a.a_types <- List.map (type_type_params ctx a.a_path (fun() -> a.a_types) p) d.d_params;
  2286. | _ ->
  2287. assert false
  2288. ) decls;
  2289. (* setup module types *)
  2290. let context_init = ref [] in
  2291. let do_init() =
  2292. match !context_init with
  2293. | [] -> ()
  2294. | l -> context_init := []; List.iter (fun f -> f()) (List.rev l)
  2295. in
  2296. List.iter (init_module_type ctx context_init do_init) tdecls;
  2297. m
  2298. let resolve_module_file com m remap p =
  2299. let forbid = ref false in
  2300. let file = (match m with
  2301. | [] , name -> name
  2302. | x :: l , name ->
  2303. let x = (try
  2304. match PMap.find x com.package_rules with
  2305. | Forbidden -> forbid := true; x
  2306. | Directory d -> d
  2307. | Remap d -> remap := d :: l; d
  2308. with Not_found -> x
  2309. ) in
  2310. String.concat "/" (x :: l) ^ "/" ^ name
  2311. ) ^ ".hx" in
  2312. let file = Common.find_file com file in
  2313. let file = (match String.lowercase (snd m) with
  2314. | "con" | "aux" | "prn" | "nul" | "com1" | "com2" | "com3" | "lpt1" | "lpt2" | "lpt3" when Sys.os_type = "Win32" ->
  2315. (* these names are reserved by the OS - old DOS legacy, such files cannot be easily created but are reported as visible *)
  2316. if (try (Unix.stat file).Unix.st_size with _ -> 0) > 0 then file else raise Not_found
  2317. | _ -> file
  2318. ) in
  2319. if !forbid then begin
  2320. let _, decls = (!parse_hook) com file p in
  2321. let meta = (match decls with
  2322. | (EClass d,_) :: _ -> d.d_meta
  2323. | (EEnum d,_) :: _ -> d.d_meta
  2324. | (EAbstract d,_) :: _ -> d.d_meta
  2325. | (ETypedef d,_) :: _ -> d.d_meta
  2326. | _ -> []
  2327. ) in
  2328. if not (Meta.has Meta.NoPackageRestrict meta) then begin
  2329. let x = (match fst m with [] -> assert false | x :: _ -> x) in
  2330. raise (Forbid_package ((x,m,p),[],if Common.defined com Define.Macro then "macro" else platform_name com.platform));
  2331. end;
  2332. end;
  2333. file
  2334. let parse_module ctx m p =
  2335. let remap = ref (fst m) in
  2336. let file = resolve_module_file ctx.com m remap p in
  2337. let pack, decls = (!parse_hook) ctx.com file p in
  2338. if pack <> !remap then begin
  2339. let spack m = if m = [] then "<empty>" else String.concat "." m in
  2340. if p == Ast.null_pos then
  2341. display_error ctx ("Invalid commandline class : " ^ s_type_path m ^ " should be " ^ s_type_path (pack,snd m)) p
  2342. else
  2343. display_error ctx ("Invalid package : " ^ spack (fst m) ^ " should be " ^ spack pack) p
  2344. end;
  2345. file, if !remap <> fst m then
  2346. (* build typedefs to redirect to real package *)
  2347. List.rev (List.fold_left (fun acc (t,p) ->
  2348. let build f d =
  2349. let priv = List.mem f d.d_flags in
  2350. (ETypedef {
  2351. d_name = d.d_name;
  2352. d_doc = None;
  2353. d_meta = [];
  2354. d_params = d.d_params;
  2355. d_flags = if priv then [EPrivate] else [];
  2356. d_data = CTPath (if priv then { tpackage = []; tname = "Dynamic"; tparams = []; tsub = None; } else
  2357. {
  2358. tpackage = !remap;
  2359. tname = d.d_name;
  2360. tparams = List.map (fun tp ->
  2361. TPType (CTPath { tpackage = []; tname = tp.tp_name; tparams = []; tsub = None; })
  2362. ) d.d_params;
  2363. tsub = None;
  2364. });
  2365. },p) :: acc
  2366. in
  2367. match t with
  2368. | EClass d -> build HPrivate d
  2369. | EEnum d -> build EPrivate d
  2370. | ETypedef d -> build EPrivate d
  2371. | EAbstract d -> build APrivAbstract d
  2372. | EImport _ | EUsing _ -> acc
  2373. ) [(EImport (List.map (fun s -> s,null_pos) (!remap @ [snd m]),INormal),null_pos)] decls)
  2374. else
  2375. decls
  2376. let load_module ctx m p =
  2377. let m2 = (try
  2378. Hashtbl.find ctx.g.modules m
  2379. with
  2380. Not_found ->
  2381. match !type_module_hook ctx m p with
  2382. | Some m -> m
  2383. | None ->
  2384. let file, decls = (try
  2385. parse_module ctx m p
  2386. with Not_found ->
  2387. let rec loop = function
  2388. | [] ->
  2389. raise (Error (Module_not_found m,p))
  2390. | load :: l ->
  2391. match load m p with
  2392. | None -> loop l
  2393. | Some (file,(_,a)) -> file, a
  2394. in
  2395. loop ctx.com.load_extern_type
  2396. ) in
  2397. try
  2398. type_module ctx m file decls p
  2399. with Forbid_package (inf,pl,pf) when p <> Ast.null_pos ->
  2400. raise (Forbid_package (inf,p::pl,pf))
  2401. ) in
  2402. add_dependency ctx.m.curmod m2;
  2403. if ctx.pass = PTypeField then flush_pass ctx PBuildClass "load_module";
  2404. m2
  2405. ;;
  2406. type_function_params_rec := type_function_params