typeload.ml 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953
  1. (*
  2. * Haxe Compiler
  3. * Copyright (c)2005-2008 Nicolas Cannasse
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *)
  19. open Ast
  20. open Type
  21. open Common
  22. open Typecore
  23. (*
  24. Build module structure : should be atomic - no type loading is possible
  25. *)
  26. let make_module ctx mpath file tdecls loadp =
  27. let decls = ref [] in
  28. let make_path name priv =
  29. if List.exists (fun (t,_) -> snd (t_path t) = name) !decls then error ("Type name " ^ name ^ " is already defined in this module") loadp;
  30. if priv then (fst mpath @ ["_" ^ snd mpath], name) else (fst mpath, name)
  31. in
  32. let m = {
  33. m_id = alloc_mid();
  34. m_path = mpath;
  35. m_types = [];
  36. m_extra = module_extra (Common.unique_full_path file) (Common.get_signature ctx.com) (file_time file) (if ctx.in_macro then MMacro else MCode);
  37. } in
  38. let pt = ref None in
  39. List.iter (fun decl ->
  40. let p = snd decl in
  41. match fst decl with
  42. | EImport _ | EUsing _ when Common.defined ctx.com Define.Haxe3 ->
  43. (match !pt with
  44. | None -> ()
  45. | Some pt ->
  46. display_error ctx "import and using may not appear after a type declaration" p;
  47. error "Previous type declaration found here" pt)
  48. | EImport _ | EUsing _ -> ()
  49. | EClass d ->
  50. pt := Some p;
  51. let priv = List.mem HPrivate d.d_flags in
  52. let path = make_path d.d_name priv in
  53. let c = mk_class m path p in
  54. c.cl_module <- m;
  55. c.cl_private <- priv;
  56. c.cl_doc <- d.d_doc;
  57. c.cl_meta <- d.d_meta;
  58. decls := (TClassDecl c, decl) :: !decls
  59. | EEnum d ->
  60. pt := Some p;
  61. let priv = List.mem EPrivate d.d_flags in
  62. let path = make_path d.d_name priv in
  63. let e = {
  64. e_path = path;
  65. e_module = m;
  66. e_pos = p;
  67. e_doc = d.d_doc;
  68. e_meta = d.d_meta;
  69. e_types = [];
  70. e_private = priv;
  71. e_extern = List.mem EExtern d.d_flags;
  72. e_constrs = PMap.empty;
  73. e_names = [];
  74. } in
  75. decls := (TEnumDecl e, decl) :: !decls
  76. | ETypedef d ->
  77. pt := Some p;
  78. let priv = List.mem EPrivate d.d_flags in
  79. let path = make_path d.d_name priv in
  80. let t = {
  81. t_path = path;
  82. t_module = m;
  83. t_pos = p;
  84. t_doc = d.d_doc;
  85. t_private = priv;
  86. t_types = [];
  87. t_type = mk_mono();
  88. t_meta = d.d_meta;
  89. } in
  90. decls := (TTypeDecl t, decl) :: !decls
  91. | EAbstract d ->
  92. let priv = List.mem APrivAbstract d.d_flags in
  93. let path = make_path d.d_name priv in
  94. let a = {
  95. a_path = path;
  96. a_private = priv;
  97. a_module = m;
  98. a_pos = p;
  99. a_doc = d.d_doc;
  100. a_types = [];
  101. a_meta = d.d_meta;
  102. a_sub = [];
  103. a_super = [];
  104. } in
  105. decls := (TAbstractDecl a, decl) :: !decls
  106. ) tdecls;
  107. let decls = List.rev !decls in
  108. m.m_types <- List.map fst decls;
  109. m, decls
  110. let parse_file com file p =
  111. let ch = (try open_in_bin file with _ -> error ("Could not open " ^ file) p) in
  112. let t = Common.timer "parsing" in
  113. Lexer.init file;
  114. incr stats.s_files_parsed;
  115. let data = (try Parser.parse com (Lexing.from_channel ch) with e -> close_in ch; t(); raise e) in
  116. close_in ch;
  117. t();
  118. Common.log com ("Parsed " ^ file);
  119. data
  120. let parse_hook = ref parse_file
  121. let type_module_hook = ref (fun _ _ _ -> None)
  122. let type_function_params_rec = ref (fun _ _ _ _ -> assert false)
  123. let return_partial_type = ref false
  124. let type_function_param ctx t e opt p =
  125. if opt then
  126. let e = (match e with None -> Some (EConst (Ident "null"),p) | _ -> e) in
  127. ctx.t.tnull t, e
  128. else
  129. t, e
  130. let type_var_field ctx t e stat p =
  131. if stat then ctx.curfun <- FStatic;
  132. let e = type_expr_with_type ctx e (Some t) false in
  133. unify ctx e.etype t p;
  134. match t with
  135. | TType ({ t_path = ([],"UInt") },[]) | TAbstract ({ a_path = ([],"UInt") },[]) when stat -> { e with etype = t }
  136. | _ -> e
  137. let apply_macro ctx mode path el p =
  138. let cpath, meth = (match List.rev (ExtString.String.nsplit path ".") with
  139. | meth :: name :: pack -> (List.rev pack,name), meth
  140. | _ -> error "Invalid macro path" p
  141. ) in
  142. ctx.g.do_macro ctx mode cpath meth el p
  143. (** since load_type_def and load_instance are used in PASS2, they should not access the structure of a type **)
  144. (*
  145. load a type or a subtype definition
  146. *)
  147. let rec load_type_def ctx p t =
  148. let no_pack = t.tpackage = [] in
  149. let tname = (match t.tsub with None -> t.tname | Some n -> n) in
  150. try
  151. if t.tsub <> None then raise Not_found;
  152. List.find (fun t2 ->
  153. let tp = t_path t2 in
  154. tp = (t.tpackage,tname) || (no_pack && snd tp = tname)
  155. ) (ctx.m.curmod.m_types @ ctx.m.module_types)
  156. with
  157. Not_found ->
  158. let next() =
  159. let t, m = (try
  160. t, ctx.g.do_load_module ctx (t.tpackage,t.tname) p
  161. with Error (Module_not_found _,p2) as e when p == p2 ->
  162. match t.tpackage with
  163. | "std" :: l ->
  164. let t = { t with tpackage = l } in
  165. t, ctx.g.do_load_module ctx (t.tpackage,t.tname) p
  166. | _ -> raise e
  167. ) in
  168. let tpath = (t.tpackage,tname) in
  169. try
  170. List.find (fun t -> not (t_infos t).mt_private && t_path t = tpath) m.m_types
  171. with
  172. Not_found -> raise (Error (Type_not_found (m.m_path,tname),p))
  173. in
  174. (* lookup in wildcard imported packages *)
  175. try
  176. if not no_pack then raise Exit;
  177. let rec loop = function
  178. | [] -> raise Exit
  179. | wp :: l ->
  180. try
  181. load_type_def ctx p { t with tpackage = wp }
  182. with
  183. | Error (Module_not_found _,p2)
  184. | Error (Type_not_found _,p2) when p == p2 -> loop l
  185. in
  186. loop ctx.m.wildcard_packages
  187. with Exit ->
  188. (* lookup in our own package - and its upper packages *)
  189. let rec loop = function
  190. | [] -> raise Exit
  191. | (_ :: lnext) as l ->
  192. try
  193. load_type_def ctx p { t with tpackage = List.rev l }
  194. with
  195. | Error (Module_not_found _,p2)
  196. | Error (Type_not_found _,p2) when p == p2 -> loop lnext
  197. in
  198. try
  199. if not no_pack then raise Exit;
  200. (match fst ctx.m.curmod.m_path with
  201. | [] -> raise Exit
  202. | x :: _ ->
  203. (* this can occur due to haxe remoting : a module can be
  204. already defined in the "js" package and is not allowed
  205. to access the js classes *)
  206. try
  207. (match PMap.find x ctx.com.package_rules with
  208. | Forbidden -> raise Exit
  209. | _ -> ())
  210. with Not_found -> ());
  211. loop (List.rev (fst ctx.m.curmod.m_path));
  212. with
  213. Exit -> next()
  214. let check_param_constraints ctx types t pl c p =
  215. match follow t with
  216. | TMono _ -> ()
  217. | _ ->
  218. let ctl = (match c.cl_kind with KTypeParameter l -> l | _ -> []) in
  219. List.iter (fun ti ->
  220. let ti = apply_params types pl ti in
  221. let ti = (match follow ti with
  222. | TInst ({ cl_kind = KGeneric }as c,pl) ->
  223. (* if we solve a generic contraint, let's substitute with the actual generic instance before unifying *)
  224. let _,_, f = ctx.g.do_build_instance ctx (TClassDecl c) p in
  225. f pl
  226. | _ -> ti
  227. ) in
  228. unify ctx t ti p
  229. ) ctl
  230. (* build an instance from a full type *)
  231. let rec load_instance ctx t p allow_no_params =
  232. try
  233. if t.tpackage <> [] || t.tsub <> None then raise Not_found;
  234. let pt = List.assoc t.tname ctx.type_params in
  235. if t.tparams <> [] then error ("Class type parameter " ^ t.tname ^ " can't have parameters") p;
  236. pt
  237. with Not_found ->
  238. let mt = load_type_def ctx p t in
  239. let is_generic = match mt with TClassDecl {cl_kind = KGeneric} -> true | _ -> false in
  240. let types , path , f = ctx.g.do_build_instance ctx mt p in
  241. if allow_no_params && t.tparams = [] then begin
  242. let pl = ref [] in
  243. pl := List.map (fun (name,t) ->
  244. match follow t with
  245. | TInst (c,_) ->
  246. let t = mk_mono() in
  247. if c.cl_kind <> KTypeParameter [] || is_generic then delay ctx PCheckConstraint (fun() -> check_param_constraints ctx types t (!pl) c p);
  248. t;
  249. | _ -> assert false
  250. ) types;
  251. f (!pl)
  252. end else if path = ([],"Dynamic") then
  253. match t.tparams with
  254. | [] -> t_dynamic
  255. | [TPType t] -> TDynamic (load_complex_type ctx p t)
  256. | _ -> error "Too many parameters for Dynamic" p
  257. else begin
  258. if List.length types <> List.length t.tparams then error ("Invalid number of type parameters for " ^ s_type_path path) p;
  259. let tparams = List.map (fun t ->
  260. match t with
  261. | TPExpr e ->
  262. let name = (match fst e with
  263. | EConst (String s) -> "S" ^ s
  264. | EConst (Int i) -> "I" ^ i
  265. | EConst (Float f) -> "F" ^ f
  266. | _ -> "Expr"
  267. ) in
  268. let c = mk_class null_module ([],name) p in
  269. c.cl_kind <- KExpr e;
  270. TInst (c,[])
  271. | TPType t -> load_complex_type ctx p t
  272. ) t.tparams in
  273. let params = List.map2 (fun t (name,t2) ->
  274. let isconst = (match t with TInst ({ cl_kind = KExpr _ },_) -> true | _ -> false) in
  275. if isconst <> (name = "Const") && t != t_dynamic then error (if isconst then "Constant value unexpected here" else "Constant value excepted as type parameter") p;
  276. match follow t2 with
  277. | TInst ({ cl_kind = KTypeParameter [] }, []) when not is_generic ->
  278. t
  279. | TInst (c,[]) ->
  280. let r = exc_protect ctx (fun r ->
  281. r := (fun() -> t);
  282. delay ctx PCheckConstraint (fun() -> check_param_constraints ctx types t tparams c p);
  283. t
  284. ) "constraint" in
  285. delay ctx PForce (fun () -> ignore(!r()));
  286. TLazy r
  287. | _ -> assert false
  288. ) tparams types in
  289. f params
  290. end
  291. (*
  292. build an instance from a complex type
  293. *)
  294. and load_complex_type ctx p t =
  295. match t with
  296. | CTParent t -> load_complex_type ctx p t
  297. | CTPath t -> load_instance ctx t p false
  298. | CTOptional _ -> error "Optional type not allowed here" p
  299. | CTExtend (t,l) ->
  300. (match load_complex_type ctx p (CTAnonymous l) with
  301. | TAnon a ->
  302. let rec loop t =
  303. match follow t with
  304. | TInst (c,tl) ->
  305. let c2 = mk_class null_module (fst c.cl_path,"+" ^ snd c.cl_path) p in
  306. c2.cl_private <- true;
  307. PMap.iter (fun f _ ->
  308. try
  309. ignore(class_field c f);
  310. error ("Cannot redefine field " ^ f) p
  311. with
  312. Not_found -> ()
  313. ) a.a_fields;
  314. (* do NOT tag as extern - for protect *)
  315. c2.cl_kind <- KExtension (c,tl);
  316. c2.cl_super <- Some (c,tl);
  317. c2.cl_fields <- a.a_fields;
  318. TInst (c2,[])
  319. | TMono _ ->
  320. error "Please ensure correct initialization of cascading signatures" p
  321. | TAnon a2 ->
  322. PMap.iter (fun f _ ->
  323. if PMap.mem f a2.a_fields then error ("Cannot redefine field " ^ f) p
  324. ) a.a_fields;
  325. mk_anon (PMap.foldi PMap.add a.a_fields a2.a_fields)
  326. | _ -> error "Can only extend classes and structures" p
  327. in
  328. let i = load_instance ctx t p false in
  329. let tr = ref None in
  330. let t = TMono tr in
  331. let r = exc_protect ctx (fun r ->
  332. r := (fun _ -> t);
  333. tr := Some (loop i);
  334. t
  335. ) "constraint" in
  336. delay ctx PForce (fun () -> ignore(!r()));
  337. TLazy r
  338. | _ -> assert false)
  339. | CTAnonymous l ->
  340. let rec loop acc f =
  341. let n = f.cff_name in
  342. let p = f.cff_pos in
  343. if PMap.mem n acc then error ("Duplicate field declaration : " ^ n) p;
  344. let topt = function
  345. | None -> error ("Explicit type required for field " ^ n) p
  346. | Some t -> load_complex_type ctx p t
  347. in
  348. let no_expr = function
  349. | None -> ()
  350. | Some (_,p) -> error "Expression not allowed here" p
  351. in
  352. let pub = ref true in
  353. let dyn = ref false in
  354. List.iter (fun a ->
  355. match a with
  356. | APublic -> ()
  357. | APrivate -> pub := false;
  358. | ADynamic when (match f.cff_kind with FFun _ -> true | _ -> false) -> dyn := true
  359. | AStatic | AOverride | AInline | ADynamic -> error ("Invalid access " ^ Ast.s_access a) p
  360. ) f.cff_access;
  361. let t , access = (match f.cff_kind with
  362. | FVar (Some (CTPath({tpackage=[];tname="Void"})), _) | FProp (_,_,Some (CTPath({tpackage=[];tname="Void"})),_) ->
  363. error "Fields of type Void are not allowed in structures" p
  364. | FVar (t, e) ->
  365. no_expr e;
  366. topt t, Var { v_read = AccNormal; v_write = AccNormal }
  367. | FFun f ->
  368. if f.f_params <> [] then error "Type parameters are not allowed in structures" p;
  369. no_expr f.f_expr;
  370. let args = List.map (fun (name,o,t,e) -> no_expr e; name, o, topt t) f.f_args in
  371. TFun (args,topt f.f_type), Method (if !dyn then MethDynamic else MethNormal)
  372. | FProp (i1,i2,t,e) ->
  373. no_expr e;
  374. let access m get =
  375. match m with
  376. | "null" -> AccNo
  377. | "never" -> AccNever
  378. | "default" -> AccNormal
  379. | "dynamic" -> AccCall ((if get then "get_" else "set_") ^ n)
  380. | "get" when get -> AccCall ("get_" ^ n)
  381. | "set" when not get -> AccCall ("set_" ^ n)
  382. | x when get && x = "get_" ^ n -> AccCall x
  383. | x when not get && x = "set_" ^ n -> AccCall x
  384. | _ ->
  385. (if Common.defined ctx.com Define.Haxe3 then error else ctx.com.warning) "Property custom access is no longer supported in Haxe3+" f.cff_pos;
  386. AccCall m
  387. in
  388. let t = (match t with None -> error "Type required for structure property" p | Some t -> t) in
  389. load_complex_type ctx p t, Var { v_read = access i1 true; v_write = access i2 false }
  390. ) in
  391. let cf = {
  392. cf_name = n;
  393. cf_type = t;
  394. cf_pos = p;
  395. cf_public = !pub;
  396. cf_kind = access;
  397. cf_params = [];
  398. cf_expr = None;
  399. cf_doc = f.cff_doc;
  400. cf_meta = f.cff_meta;
  401. cf_overloads = [];
  402. } in
  403. init_meta_overloads ctx cf;
  404. PMap.add n cf acc
  405. in
  406. mk_anon (List.fold_left loop PMap.empty l)
  407. | CTFunction (args,r) ->
  408. match args with
  409. | [CTPath { tpackage = []; tparams = []; tname = "Void" }] ->
  410. TFun ([],load_complex_type ctx p r)
  411. | _ ->
  412. TFun (List.map (fun t ->
  413. let t, opt = (match t with CTOptional t -> t, true | _ -> t,false) in
  414. "",opt,load_complex_type ctx p t
  415. ) args,load_complex_type ctx p r)
  416. and init_meta_overloads ctx cf =
  417. let overloads = ref [] in
  418. cf.cf_meta <- List.filter (fun m ->
  419. match m with
  420. | (":overload",[(EFunction (fname,f),p)],_) ->
  421. if fname <> None then error "Function name must not be part of @:overload" p;
  422. (match f.f_expr with Some (EBlock [], _) -> () | _ -> error "Overload must only declare an empty method body {}" p);
  423. let old = ctx.type_params in
  424. (match cf.cf_params with
  425. | [] -> ()
  426. | l -> ctx.type_params <- List.filter (fun t -> not (List.mem t l)) ctx.type_params);
  427. let params = (!type_function_params_rec) ctx f cf.cf_name p in
  428. ctx.type_params <- params @ ctx.type_params;
  429. let topt = function None -> error "Explicit type required" p | Some t -> load_complex_type ctx p t in
  430. let args = List.map (fun (a,opt,t,_) -> a,opt,topt t) f.f_args in
  431. overloads := (args,topt f.f_type, params) :: !overloads;
  432. ctx.type_params <- old;
  433. false
  434. | _ ->
  435. true
  436. ) cf.cf_meta;
  437. cf.cf_overloads <- List.map (fun (args,ret,params) -> { cf with cf_type = TFun (args,ret); cf_params = params }) (List.rev !overloads)
  438. let hide_types ctx =
  439. let old_m = ctx.m in
  440. let old_type_params = ctx.type_params in
  441. ctx.m <- {
  442. curmod = ctx.g.std;
  443. module_types = [];
  444. module_using = [];
  445. module_globals = PMap.empty;
  446. wildcard_packages = [];
  447. };
  448. ctx.type_params <- [];
  449. (fun() ->
  450. ctx.m <- old_m;
  451. ctx.type_params <- old_type_params;
  452. )
  453. (*
  454. load a type while ignoring the current imports or local types
  455. *)
  456. let load_core_type ctx name =
  457. let show = hide_types ctx in
  458. let t = load_instance ctx { tpackage = []; tname = name; tparams = []; tsub = None; } null_pos false in
  459. show();
  460. t
  461. let t_iterator ctx =
  462. let show = hide_types ctx in
  463. match load_type_def ctx null_pos { tpackage = []; tname = "Iterator"; tparams = []; tsub = None } with
  464. | TTypeDecl t ->
  465. show();
  466. if List.length t.t_types <> 1 then assert false;
  467. let pt = mk_mono() in
  468. apply_params t.t_types [pt] t.t_type, pt
  469. | _ ->
  470. assert false
  471. (*
  472. load either a type t or Null<Unknown> if not defined
  473. *)
  474. let load_type_opt ?(opt=false) ctx p t =
  475. let t = (match t with None -> mk_mono() | Some t -> load_complex_type ctx p t) in
  476. if opt then ctx.t.tnull t else t
  477. (* ---------------------------------------------------------------------- *)
  478. (* Structure check *)
  479. let valid_redefinition ctx f1 t1 f2 t2 =
  480. let valid t1 t2 =
  481. unify_raise ctx t1 t2 f1.cf_pos;
  482. if is_null t1 <> is_null t2 then raise (Unify_error [Cannot_unify (t1,t2)]);
  483. in
  484. let t1, t2 = (match f1.cf_params, f2.cf_params with
  485. | [], [] -> t1, t2
  486. | l1, l2 when List.length l1 = List.length l2 ->
  487. let to_check = ref [] in
  488. let monos = List.map2 (fun (name,p1) (_,p2) ->
  489. (match follow p1, follow p2 with
  490. | TInst ({ cl_kind = KTypeParameter ct1 } as c1,pl1), TInst ({ cl_kind = KTypeParameter ct2 } as c2,pl2) ->
  491. (match ct1, ct2 with
  492. | [], [] -> ()
  493. | _, _ when List.length ct1 = List.length ct2 ->
  494. (* if same constraints, they are the same type *)
  495. let check monos =
  496. List.iter2 (fun t1 t2 ->
  497. try
  498. let t1 = apply_params l1 monos (apply_params c1.cl_types pl1 t1) in
  499. let t2 = apply_params l2 monos (apply_params c2.cl_types pl2 t2) in
  500. type_eq EqStrict t1 t2
  501. with Unify_error l ->
  502. raise (Unify_error (Unify_custom "Constraints differ" :: l))
  503. ) ct1 ct2
  504. in
  505. to_check := check :: !to_check;
  506. | _ ->
  507. raise (Unify_error [Unify_custom "Different number of constraints"]))
  508. | _ -> ());
  509. TInst (mk_class null_module ([],name) Ast.null_pos,[])
  510. ) l1 l2 in
  511. List.iter (fun f -> f monos) !to_check;
  512. apply_params l1 monos t1, apply_params l2 monos t2
  513. | _ ->
  514. (* ignore type params, will create other errors later *)
  515. t1, t2
  516. ) in
  517. match follow t1, follow t2 with
  518. | TFun (args1,r1) , TFun (args2,r2) when List.length args1 = List.length args2 ->
  519. List.iter2 (fun (n,o1,a1) (_,o2,a2) ->
  520. if o1 <> o2 then raise (Unify_error [Not_matching_optional n]);
  521. valid a2 a1;
  522. ) args1 args2;
  523. valid r1 r2;
  524. | _ , _ ->
  525. (* in case args differs, or if an interface var *)
  526. type_eq EqStrict t1 t2;
  527. if is_null t1 <> is_null t2 then raise (Unify_error [Cannot_unify (t1,t2)])
  528. let copy_meta meta_src meta_target sl =
  529. let meta = ref meta_target in
  530. List.iter (fun (m,e,p) ->
  531. if List.mem m sl then meta := (m,e,p) :: !meta
  532. ) meta_src;
  533. !meta
  534. let check_overriding ctx c =
  535. let p = c.cl_pos in
  536. match c.cl_super with
  537. | None ->
  538. (match c.cl_overrides with
  539. | [] -> ()
  540. | i :: _ ->
  541. display_error ctx ("Field " ^ i ^ " is declared 'override' but doesn't override any field") p)
  542. | Some (csup,params) ->
  543. PMap.iter (fun i f ->
  544. let p = f.cf_pos in
  545. try
  546. let t , f2 = raw_class_field (fun f -> f.cf_type) csup i in
  547. (* allow to define fields that are not defined for this platform version in superclass *)
  548. (match f2.cf_kind with
  549. | Var { v_read = AccRequire _ } -> raise Not_found;
  550. | _ -> ());
  551. if not (List.mem i c.cl_overrides) then
  552. display_error ctx ("Field " ^ i ^ " should be declared with 'override' since it is inherited from superclass") p
  553. else if not f.cf_public && f2.cf_public then
  554. display_error ctx ("Field " ^ i ^ " has less visibility (public/private) than superclass one") p
  555. else (match f.cf_kind, f2.cf_kind with
  556. | _, Method MethInline ->
  557. display_error ctx ("Field " ^ i ^ " is inlined and cannot be overridden") p
  558. | a, b when a = b -> ()
  559. | Method MethInline, Method MethNormal ->
  560. () (* allow to redefine a method as inlined *)
  561. | _ ->
  562. display_error ctx ("Field " ^ i ^ " has different property access than in superclass") p);
  563. try
  564. let t = apply_params csup.cl_types params t in
  565. valid_redefinition ctx f f.cf_type f2 t
  566. with
  567. Unify_error l ->
  568. display_error ctx ("Field " ^ i ^ " overload parent class with different or incomplete type") p;
  569. display_error ctx (error_msg (Unify l)) p;
  570. with
  571. Not_found ->
  572. if List.mem i c.cl_overrides then display_error ctx ("Field " ^ i ^ " is declared 'override' but doesn't override any field") p
  573. ) c.cl_fields
  574. let class_field_no_interf c i =
  575. try
  576. let f = PMap.find i c.cl_fields in
  577. f.cf_type , f
  578. with Not_found ->
  579. match c.cl_super with
  580. | None ->
  581. raise Not_found
  582. | Some (c,tl) ->
  583. (* rec over class_field *)
  584. let t , f = raw_class_field (fun f -> f.cf_type) c i in
  585. apply_params c.cl_types tl t , f
  586. let rec check_interface ctx c intf params =
  587. let p = c.cl_pos in
  588. PMap.iter (fun i f ->
  589. try
  590. let t2, f2 = class_field_no_interf c i in
  591. ignore(follow f2.cf_type); (* force evaluation *)
  592. let p = (match f2.cf_expr with None -> p | Some e -> e.epos) in
  593. let mkind = function
  594. | MethNormal | MethInline -> 0
  595. | MethDynamic -> 1
  596. | MethMacro -> 2
  597. in
  598. if f.cf_public && not f2.cf_public then
  599. display_error ctx ("Field " ^ i ^ " should be public as requested by " ^ s_type_path intf.cl_path) p
  600. else if not (unify_kind f2.cf_kind f.cf_kind) || not (match f.cf_kind, f2.cf_kind with Var _ , Var _ -> true | Method m1, Method m2 -> mkind m1 = mkind m2 | _ -> false) then
  601. display_error ctx ("Field " ^ i ^ " has different property access than in " ^ s_type_path intf.cl_path ^ " (" ^ s_kind f2.cf_kind ^ " should be " ^ s_kind f.cf_kind ^ ")") p
  602. else try
  603. valid_redefinition ctx f2 t2 f (apply_params intf.cl_types params f.cf_type)
  604. with
  605. Unify_error l ->
  606. display_error ctx ("Field " ^ i ^ " has different type than in " ^ s_type_path intf.cl_path) p;
  607. display_error ctx (error_msg (Unify l)) p;
  608. with
  609. Not_found ->
  610. if not c.cl_interface then display_error ctx ("Field " ^ i ^ " needed by " ^ s_type_path intf.cl_path ^ " is missing") p
  611. ) intf.cl_fields;
  612. List.iter (fun (i2,p2) ->
  613. check_interface ctx c i2 (List.map (apply_params intf.cl_types params) p2)
  614. ) intf.cl_implements
  615. let check_interfaces ctx c =
  616. match c.cl_path with
  617. | "Proxy" :: _ , _ -> ()
  618. | _ ->
  619. List.iter (fun (intf,params) -> check_interface ctx c intf params) c.cl_implements
  620. let rec return_flow ctx e =
  621. let error() = display_error ctx "A return is missing here" e.epos; raise Exit in
  622. let return_flow = return_flow ctx in
  623. match e.eexpr with
  624. | TReturn _ | TThrow _ -> ()
  625. | TParenthesis e ->
  626. return_flow e
  627. | TBlock el ->
  628. let rec loop = function
  629. | [] -> error()
  630. | [e] -> return_flow e
  631. | { eexpr = TReturn _ } :: _ | { eexpr = TThrow _ } :: _ -> ()
  632. | _ :: l -> loop l
  633. in
  634. loop el
  635. | TIf (_,e1,Some e2) ->
  636. return_flow e1;
  637. return_flow e2;
  638. | TSwitch (v,cases,Some e) ->
  639. List.iter (fun (_,e) -> return_flow e) cases;
  640. return_flow e
  641. | TSwitch (e,cases,None) when (match follow e.etype with TEnum _ -> true | _ -> false) ->
  642. List.iter (fun (_,e) -> return_flow e) cases;
  643. | TMatch (_,_,cases,def) ->
  644. List.iter (fun (_,_,e) -> return_flow e) cases;
  645. (match def with None -> () | Some e -> return_flow e)
  646. | TTry (e,cases) ->
  647. return_flow e;
  648. List.iter (fun (_,e) -> return_flow e) cases;
  649. | TWhile({eexpr = (TConst (TBool true))},e,_) ->
  650. (* a special case for "inifite" while loops that have no break *)
  651. let rec loop e = match e.eexpr with
  652. (* ignore nested loops to not accidentally get one of its breaks *)
  653. | TWhile _ | TFor _ -> ()
  654. | TBreak -> error()
  655. | _ -> Type.iter loop e
  656. in
  657. loop e
  658. | _ ->
  659. error()
  660. (* ---------------------------------------------------------------------- *)
  661. (* PASS 1 & 2 : Module and Class Structure *)
  662. let set_heritance ctx c herits p =
  663. let ctx = { ctx with curclass = c; type_params = c.cl_types; } in
  664. let process_meta csup =
  665. List.iter (fun m ->
  666. match m with
  667. | ":final", _, _ -> if not (Type.has_meta ":hack" c.cl_meta || (match c.cl_kind with KTypeParameter _ -> true | _ -> false)) then error "Cannot extend a final class" p;
  668. | ":autoBuild", el, p -> c.cl_meta <- (":build",el,p) :: m :: c.cl_meta
  669. | _ -> ()
  670. ) csup.cl_meta
  671. in
  672. let has_interf = ref false in
  673. let rec loop = function
  674. | HPrivate | HExtern | HInterface ->
  675. ()
  676. | HExtends t ->
  677. if c.cl_super <> None then error "Cannot extend several classes" p;
  678. let t = load_instance ctx t p false in
  679. (match follow t with
  680. | TInst ({ cl_path = [],"Array" },_)
  681. | TInst ({ cl_path = [],"String" },_)
  682. | TInst ({ cl_path = [],"Date" },_)
  683. | TInst ({ cl_path = [],"Xml" },_) when ((not (platform ctx.com Cpp)) && (match c.cl_path with "mt" :: _ , _ -> false | _ -> true)) ->
  684. error "Cannot extend basic class" p;
  685. | TInst (csup,params) ->
  686. csup.cl_build();
  687. if is_parent c csup then error "Recursive class" p;
  688. if c.cl_interface then error "Cannot extend an interface" p;
  689. if csup.cl_interface then error "Cannot extend by using an interface" p;
  690. process_meta csup;
  691. c.cl_super <- Some (csup,params)
  692. | _ -> error "Should extend by using a class" p)
  693. | HImplements t ->
  694. let t = load_instance ctx t p false in
  695. (match follow t with
  696. | TInst ({ cl_path = [],"ArrayAccess"; cl_extern = true; },[t]) ->
  697. if c.cl_array_access <> None then error "Duplicate array access" p;
  698. c.cl_array_access <- Some t
  699. | TInst (intf,params) ->
  700. intf.cl_build();
  701. if is_parent c intf then error "Recursive class" p;
  702. process_meta intf;
  703. c.cl_implements <- (intf, params) :: c.cl_implements;
  704. if not !has_interf then begin
  705. delay ctx PForce (fun() -> check_interfaces ctx c);
  706. has_interf := true;
  707. end
  708. | TDynamic t ->
  709. if c.cl_dynamic <> None then error "Cannot have several dynamics" p;
  710. c.cl_dynamic <- Some t
  711. | _ -> error "Should implement by using an interface or a class" p)
  712. in
  713. (*
  714. resolve imports before calling build_inheritance, since it requires full paths.
  715. that means that typedefs are not working, but that's a fair limitation
  716. *)
  717. let rec resolve_imports t =
  718. match t.tpackage with
  719. | _ :: _ -> t
  720. | [] ->
  721. try
  722. let find = List.find (fun lt -> snd (t_path lt) = t.tname) in
  723. let lt = try find ctx.m.curmod.m_types with Not_found -> find ctx.m.module_types in
  724. { t with tpackage = fst (t_path lt) }
  725. with
  726. Not_found -> t
  727. in
  728. let herits = List.map (function
  729. | HExtends t -> HExtends (resolve_imports t)
  730. | HImplements t -> HImplements (resolve_imports t)
  731. | h -> h
  732. ) herits in
  733. List.iter loop (List.filter (ctx.g.do_inherit ctx c p) herits)
  734. let rec type_type_params ctx path get_params p tp =
  735. let n = tp.tp_name in
  736. let c = mk_class ctx.m.curmod (fst path @ [snd path],n) p in
  737. c.cl_types <- List.map (type_type_params ctx c.cl_path get_params p) tp.tp_params;
  738. let t = TInst (c,List.map snd c.cl_types) in
  739. match tp.tp_constraints with
  740. | [] ->
  741. c.cl_kind <- KTypeParameter [];
  742. n, t
  743. | _ ->
  744. let r = exc_protect ctx (fun r ->
  745. r := (fun _ -> t);
  746. let ctx = { ctx with type_params = ctx.type_params @ get_params() } in
  747. c.cl_kind <- KTypeParameter (List.map (load_complex_type ctx p) tp.tp_constraints);
  748. t
  749. ) "constraint" in
  750. delay ctx PForce (fun () -> ignore(!r()));
  751. n, TLazy r
  752. let type_function_params ctx fd fname p =
  753. let params = ref [] in
  754. params := List.map (fun tp ->
  755. type_type_params ctx ([],fname) (fun() -> !params) p tp
  756. ) fd.f_params;
  757. !params
  758. let type_function ctx args ret fmode f p =
  759. let locals = save_locals ctx in
  760. let fargs = List.map (fun (n,c,t) ->
  761. let c = (match c with
  762. | None -> None
  763. | Some e ->
  764. let p = pos e in
  765. let e = ctx.g.do_optimize ctx (type_expr ctx e true) in
  766. unify ctx e.etype t p;
  767. match e.eexpr with
  768. | TConst c -> Some c
  769. | _ -> display_error ctx "Parameter default value should be constant" p; None
  770. ) in
  771. add_local ctx n t, c
  772. ) args in
  773. let old_ret = ctx.ret in
  774. let old_fun = ctx.curfun in
  775. let old_opened = ctx.opened in
  776. ctx.curfun <- fmode;
  777. ctx.ret <- ret;
  778. ctx.opened <- [];
  779. let e = type_expr ctx (match f.f_expr with None -> error "Function body required" p | Some e -> e) false in
  780. let rec loop e =
  781. match e.eexpr with
  782. | TReturn (Some _) -> raise Exit
  783. | TFunction _ -> ()
  784. | _ -> Type.iter loop e
  785. in
  786. let have_ret = (try loop e; false with Exit -> true) in
  787. if have_ret then
  788. (try return_flow ctx e with Exit -> ())
  789. else (try type_eq EqStrict ret ctx.t.tvoid with Unify_error _ -> display_error ctx ("Missing return " ^ (s_type (print_context()) ret)) p);
  790. let rec loop e =
  791. match e.eexpr with
  792. | TCall ({ eexpr = TConst TSuper },_) -> raise Exit
  793. | TFunction _ -> ()
  794. | _ -> Type.iter loop e
  795. in
  796. let has_super_constr() =
  797. match ctx.curclass.cl_super with
  798. | None -> false
  799. | Some (csup,_) ->
  800. try ignore(get_constructor (fun f->f.cf_type) csup); true with Not_found -> false
  801. in
  802. if fmode = FConstructor && has_super_constr() then
  803. (try
  804. loop e;
  805. display_error ctx "Missing super constructor call" p
  806. with
  807. Exit -> ());
  808. locals();
  809. let e = match ctx.curfun, ctx.vthis with
  810. | (FMember|FConstructor), Some v ->
  811. let ev = mk (TVars [v,Some (mk (TConst TThis) ctx.tthis p)]) ctx.t.tvoid p in
  812. (match e.eexpr with
  813. | TBlock l -> { e with eexpr = TBlock (ev::l) }
  814. | _ -> mk (TBlock [ev;e]) e.etype p)
  815. | _ -> e
  816. in
  817. List.iter (fun r -> r := Closed) ctx.opened;
  818. ctx.ret <- old_ret;
  819. ctx.curfun <- old_fun;
  820. ctx.opened <- old_opened;
  821. e , fargs
  822. let init_core_api ctx c =
  823. let ctx2 = (match ctx.g.core_api with
  824. | None ->
  825. let com2 = Common.clone ctx.com in
  826. com2.defines <- PMap.empty;
  827. Common.define com2 Define.CoreApi;
  828. Common.define com2 Define.Sys;
  829. if ctx.in_macro then Common.define com2 Define.Macro;
  830. if Common.defined ctx.com Define.Haxe3 then Common.define com2 Define.Haxe3;
  831. com2.class_path <- ctx.com.std_path;
  832. let ctx2 = ctx.g.do_create com2 in
  833. ctx.g.core_api <- Some ctx2;
  834. ctx2
  835. | Some c ->
  836. c
  837. ) in
  838. let t = load_instance ctx2 { tpackage = fst c.cl_path; tname = snd c.cl_path; tparams = []; tsub = None; } c.cl_pos true in
  839. flush_pass ctx2 PFinal "core_final";
  840. match t with
  841. | TInst (ccore,_) ->
  842. (match c.cl_doc with
  843. | None -> c.cl_doc <- ccore.cl_doc
  844. | Some _ -> ());
  845. let compare_fields f f2 =
  846. let p = (match f2.cf_expr with None -> c.cl_pos | Some e -> e.epos) in
  847. (try
  848. type_eq EqCoreType (apply_params ccore.cl_types (List.map snd c.cl_types) f.cf_type) f2.cf_type
  849. with Unify_error l ->
  850. display_error ctx ("Field " ^ f.cf_name ^ " has different type than in core type") p;
  851. display_error ctx (error_msg (Unify l)) p);
  852. if f2.cf_public <> f.cf_public then error ("Field " ^ f.cf_name ^ " has different visibility than core type") p;
  853. (match f2.cf_doc with
  854. | None -> f2.cf_doc <- f.cf_doc
  855. | Some _ -> ());
  856. if f2.cf_kind <> f.cf_kind then begin
  857. match f2.cf_kind, f.cf_kind with
  858. | Method MethInline, Method MethNormal -> () (* allow to add 'inline' *)
  859. | Method MethNormal, Method MethInline -> () (* allow to disable 'inline' *)
  860. | _ ->
  861. error ("Field " ^ f.cf_name ^ " has different property access than core type") p;
  862. end;
  863. (match follow f.cf_type, follow f2.cf_type with
  864. | TFun (pl1,_), TFun (pl2,_) ->
  865. if List.length pl1 != List.length pl2 then assert false;
  866. List.iter2 (fun (n1,_,_) (n2,_,_) ->
  867. if n1 <> n2 then error ("Method parameter name '" ^ n2 ^ "' should be '" ^ n1 ^ "'") p;
  868. ) pl1 pl2;
  869. | _ -> ());
  870. in
  871. let check_fields fcore fl =
  872. PMap.iter (fun i f ->
  873. if not f.cf_public then () else
  874. let f2 = try PMap.find f.cf_name fl with Not_found -> error ("Missing field " ^ i ^ " required by core type") c.cl_pos in
  875. compare_fields f f2;
  876. ) fcore;
  877. PMap.iter (fun i f ->
  878. let p = (match f.cf_expr with None -> c.cl_pos | Some e -> e.epos) in
  879. if f.cf_public && not (has_meta ":hack" f.cf_meta) && not (PMap.mem f.cf_name fcore) && not (List.mem f.cf_name c.cl_overrides) then error ("Public field " ^ i ^ " is not part of core type") p;
  880. ) fl;
  881. in
  882. check_fields ccore.cl_fields c.cl_fields;
  883. check_fields ccore.cl_statics c.cl_statics;
  884. (match ccore.cl_constructor, c.cl_constructor with
  885. | None, None -> ()
  886. | Some { cf_public = false }, _ -> ()
  887. | Some f, Some f2 -> compare_fields f f2
  888. | None, Some { cf_public = false } -> ()
  889. | _ -> error "Constructor differs from core type" c.cl_pos)
  890. | _ -> assert false
  891. let patch_class ctx c fields =
  892. let h = (try Some (Hashtbl.find ctx.g.type_patches c.cl_path) with Not_found -> None) in
  893. match h with
  894. | None -> fields
  895. | Some (h,hcl) ->
  896. c.cl_meta <- c.cl_meta @ hcl.tp_meta;
  897. let rec loop acc = function
  898. | [] -> acc
  899. | f :: l ->
  900. (* patch arguments types *)
  901. (match f.cff_kind with
  902. | FFun ff ->
  903. let param ((n,opt,t,e) as p) =
  904. try
  905. let t2 = (try Hashtbl.find h (("$" ^ f.cff_name ^ "__" ^ n),false) with Not_found -> Hashtbl.find h (("$" ^ n),false)) in
  906. n, opt, t2.tp_type, e
  907. with Not_found ->
  908. p
  909. in
  910. f.cff_kind <- FFun { ff with f_args = List.map param ff.f_args }
  911. | _ -> ());
  912. (* other patches *)
  913. match (try Some (Hashtbl.find h (f.cff_name,List.mem AStatic f.cff_access)) with Not_found -> None) with
  914. | None -> loop (f :: acc) l
  915. | Some { tp_remove = true } -> loop acc l
  916. | Some p ->
  917. f.cff_meta <- f.cff_meta @ p.tp_meta;
  918. (match p.tp_type with
  919. | None -> ()
  920. | Some t ->
  921. f.cff_kind <- match f.cff_kind with
  922. | FVar (_,e) -> FVar (Some t,e)
  923. | FProp (get,set,_,eo) -> FProp (get,set,Some t,eo)
  924. | FFun f -> FFun { f with f_type = Some t });
  925. loop (f :: acc) l
  926. in
  927. List.rev (loop [] fields)
  928. let rec string_list_of_expr_path (e,p) =
  929. match e with
  930. | EConst (Ident i) -> [i]
  931. | EField (e,f) -> f :: string_list_of_expr_path e
  932. | _ -> error "Invalid path" p
  933. let build_module_def ctx mt meta fvars fbuild =
  934. let rec loop = function
  935. | (":build",args,p) :: l ->
  936. let epath, el = (match args with
  937. | [ECall (epath,el),p] -> epath, el
  938. | _ -> error "Invalid build parameters" p
  939. ) in
  940. let s = try String.concat "." (List.rev (string_list_of_expr_path epath)) with Error (_,p) -> error "Build call parameter must be a class path" p in
  941. if ctx.in_macro then error "You cannot used :build inside a macro : make sure that your enum is not used in macro" p;
  942. let old = ctx.g.get_build_infos in
  943. ctx.g.get_build_infos <- (fun() -> Some (mt, fvars()));
  944. let r = try apply_macro ctx MBuild s el p with e -> ctx.g.get_build_infos <- old; raise e in
  945. ctx.g.get_build_infos <- old;
  946. (match r with
  947. | None -> error "Build failure" p
  948. | Some e -> fbuild e; loop l)
  949. | _ :: l -> loop l
  950. | [] -> ()
  951. in
  952. try
  953. loop meta
  954. with Error (Custom msg,p) ->
  955. display_error ctx msg p
  956. let init_class ctx c p context_init herits fields =
  957. let ctx = {
  958. ctx with
  959. curclass = c;
  960. type_params = c.cl_types;
  961. pass = PBuildClass;
  962. tthis = TInst (c,List.map snd c.cl_types);
  963. on_error = (fun ctx msg ep ->
  964. ctx.com.error msg ep;
  965. (* macros expressions might reference other code, let's recall which class we are actually compiling *)
  966. if ep.pfile <> c.cl_pos.pfile then ctx.com.error "Defined in this class" c.cl_pos
  967. );
  968. } in
  969. incr stats.s_classes_built;
  970. let fields = patch_class ctx c fields in
  971. let fields = ref fields in
  972. let get_fields() = !fields in
  973. build_module_def ctx (TClassDecl c) c.cl_meta get_fields (fun (e,p) ->
  974. match e with
  975. | EVars [_,Some (CTAnonymous f),None] -> fields := f
  976. | _ -> error "Class build macro must return a single variable with anonymous fields" p
  977. );
  978. let fields = !fields in
  979. let core_api = has_meta ":coreApi" c.cl_meta in
  980. let is_macro = has_meta ":macro" c.cl_meta in
  981. let fields, herits = if is_macro && not ctx.in_macro then begin
  982. c.cl_extern <- true;
  983. List.filter (fun f -> List.mem AStatic f.cff_access) fields, []
  984. end else fields, herits in
  985. if core_api && not ctx.com.display then delay ctx PForce (fun() -> init_core_api ctx c);
  986. let rec extends_public c =
  987. List.exists (fun (c,_) -> c.cl_path = (["haxe"],"Public") || extends_public c) c.cl_implements ||
  988. match c.cl_super with
  989. | None -> false
  990. | Some (c,_) -> extends_public c
  991. in
  992. let extends_public = extends_public c in
  993. let is_public access parent =
  994. if List.mem APrivate access then
  995. false
  996. else if List.mem APublic access then
  997. true
  998. else match parent with
  999. | Some { cf_public = p } -> p
  1000. | _ -> c.cl_extern || c.cl_interface || extends_public
  1001. in
  1002. let rec get_parent c name =
  1003. match c.cl_super with
  1004. | None -> None
  1005. | Some (csup,_) ->
  1006. try
  1007. Some (PMap.find name csup.cl_fields)
  1008. with
  1009. Not_found -> get_parent csup name
  1010. in
  1011. let type_opt ctx p t =
  1012. match t with
  1013. | None when c.cl_extern || c.cl_interface ->
  1014. display_error ctx "Type required for extern classes and interfaces" p;
  1015. t_dynamic
  1016. | None when core_api ->
  1017. display_error ctx "Type required for core api classes" p;
  1018. t_dynamic
  1019. | _ ->
  1020. load_type_opt ctx p t
  1021. in
  1022. let rec has_field f = function
  1023. | None -> false
  1024. | Some (c,_) ->
  1025. PMap.exists f c.cl_fields || has_field f c.cl_super || List.exists (fun i -> has_field f (Some i)) c.cl_implements
  1026. in
  1027. (match c.cl_super with None -> () | Some _ -> delay ctx PForce (fun() -> check_overriding ctx c));
  1028. (* ----------------------- COMPLETION ----------------------------- *)
  1029. let display_file = if ctx.com.display then Common.unique_full_path p.pfile = (!Parser.resume_display).pfile else false in
  1030. let fields = if not display_file || Common.defined ctx.com Define.NoCOpt then fields else Optimizer.optimize_completion c fields in
  1031. let delayed_expr = ref [] in
  1032. let rec is_full_type t =
  1033. match t with
  1034. | TFun (args,ret) -> is_full_type ret && List.for_all (fun (_,_,t) -> is_full_type t) args
  1035. | TMono r -> (match !r with None -> false | Some t -> is_full_type t)
  1036. | TAbstract _ | TInst _ | TEnum _ | TLazy _ | TDynamic _ | TAnon _ | TType _ -> true
  1037. in
  1038. let bind_type ctx cf r p macro =
  1039. if ctx.com.display then begin
  1040. let cp = !Parser.resume_display in
  1041. if display_file && (cp.pmin = 0 || (p.pmin <= cp.pmin && p.pmax >= cp.pmax)) then begin
  1042. if macro && not ctx.in_macro then
  1043. (* force macro system loading of this class in order to get completion *)
  1044. delay ctx PTypeField (fun() -> ignore(ctx.g.do_macro ctx MExpr c.cl_path cf.cf_name [] p))
  1045. else begin
  1046. cf.cf_type <- TLazy r;
  1047. delayed_expr := (ctx,r) :: !delayed_expr;
  1048. end
  1049. end else begin
  1050. if not (is_full_type cf.cf_type) then cf.cf_type <- TLazy r;
  1051. end
  1052. end else if macro && not ctx.in_macro then
  1053. ()
  1054. else begin
  1055. cf.cf_type <- TLazy r;
  1056. delayed_expr := (ctx,r) :: !delayed_expr;
  1057. end
  1058. in
  1059. let bind_var ctx cf e stat inline =
  1060. let p = cf.cf_pos in
  1061. if not stat && has_field cf.cf_name c.cl_super then error ("Redefinition of variable " ^ cf.cf_name ^ " in subclass is not allowed") p;
  1062. let t = cf.cf_type in
  1063. let rec make_const e =
  1064. let e = ctx.g.do_optimize ctx e in
  1065. match e.eexpr with
  1066. | TConst _ -> Some e
  1067. | TBinop ((OpAdd|OpSub|OpMult|OpDiv|OpMod) as op,e1,e2) -> (match make_const e1,make_const e2 with
  1068. | Some e1, Some e2 -> Some (mk (TBinop(op, e1, e2)) e.etype e.epos)
  1069. | _ -> None)
  1070. | TParenthesis e -> Some e
  1071. | TTypeExpr _ -> Some e
  1072. (* try to inline static function calls *)
  1073. | TCall ({ etype = TFun(_,ret); eexpr = TField ({ eexpr = TTypeExpr (TClassDecl c) },n) },el) ->
  1074. (try
  1075. let cf = PMap.find n c.cl_statics in
  1076. let func = match cf.cf_expr with Some ({eexpr = TFunction func}) -> func | _ -> raise Not_found in
  1077. let ethis = mk (TConst TThis) t_dynamic e.epos in
  1078. let inl = (try Optimizer.type_inline ctx cf func ethis el ret e.epos false with Error (Custom _,_) -> None) in
  1079. (match inl with
  1080. | None -> None
  1081. | Some e -> make_const e)
  1082. with Not_found -> None)
  1083. | _ -> None
  1084. in
  1085. match e with
  1086. | None -> ()
  1087. | Some e ->
  1088. let r = exc_protect ctx (fun r ->
  1089. if not !return_partial_type then begin
  1090. r := (fun() -> t);
  1091. context_init();
  1092. if ctx.com.verbose then Common.log ctx.com ("Typing " ^ (if ctx.in_macro then "macro " else "") ^ s_type_path c.cl_path ^ "." ^ cf.cf_name);
  1093. let e = type_var_field ctx t e stat p in
  1094. let e = (match cf.cf_kind with
  1095. | Var v when c.cl_extern || has_meta ":extern" cf.cf_meta ->
  1096. if not stat then begin
  1097. display_error ctx "Extern non-static variables may not be initialized" p;
  1098. e
  1099. end else begin
  1100. match make_const e with
  1101. | Some e -> e
  1102. | None -> display_error ctx "Extern variable initialization must be a constant value" p; e
  1103. end
  1104. | Var v when not stat || (v.v_read = AccInline && Common.defined ctx.com Define.Haxe3) ->
  1105. let e = match make_const e with Some e -> e | None -> display_error ctx "Variable initialization must be a constant value" p; e in
  1106. e
  1107. | _ ->
  1108. e
  1109. ) in
  1110. cf.cf_expr <- Some e;
  1111. cf.cf_type <- t;
  1112. end;
  1113. t
  1114. ) "bind_var" in
  1115. bind_type ctx cf r (snd e) false
  1116. in
  1117. (* ----------------------- FIELD INIT ----------------------------- *)
  1118. let loop_cf f =
  1119. let name = f.cff_name in
  1120. let p = f.cff_pos in
  1121. let stat = List.mem AStatic f.cff_access in
  1122. let extern = has_meta ":extern" f.cff_meta || c.cl_extern in
  1123. let inline = List.mem AInline f.cff_access && (match f.cff_kind with FFun _ -> not ctx.com.display && (ctx.g.doinline || extern) | _ -> true) in
  1124. let override = List.mem AOverride f.cff_access in
  1125. if override then (match c.cl_super with None -> error "Invalid override: class has no super class" p | _ -> ());
  1126. (* build the per-field context *)
  1127. let ctx = {
  1128. ctx with
  1129. pass = PBuildClass; (* will be set later to PTypeExpr *)
  1130. } in
  1131. match f.cff_kind with
  1132. | FVar (t,e) ->
  1133. if inline && not stat then error "Inline variable must be static" p;
  1134. if inline && e = None then error "Inline variable must be initialized" p;
  1135. if override then error "You cannot override variables" p;
  1136. let t = (match t with
  1137. | None when not stat && e = None ->
  1138. error ("Type required for member variable " ^ name) p;
  1139. | None ->
  1140. mk_mono()
  1141. | Some t ->
  1142. let old = ctx.type_params in
  1143. if stat then ctx.type_params <- [];
  1144. let t = load_complex_type ctx p t in
  1145. if stat then ctx.type_params <- old;
  1146. t
  1147. ) in
  1148. let cf = {
  1149. cf_name = name;
  1150. cf_doc = f.cff_doc;
  1151. cf_meta = f.cff_meta;
  1152. cf_type = t;
  1153. cf_pos = f.cff_pos;
  1154. cf_kind = Var (if inline then { v_read = AccInline ; v_write = AccNever } else { v_read = AccNormal; v_write = AccNormal });
  1155. cf_expr = None;
  1156. cf_public = is_public f.cff_access None;
  1157. cf_params = [];
  1158. cf_overloads = [];
  1159. } in
  1160. ctx.curfield <- cf;
  1161. bind_var ctx cf e stat inline;
  1162. f, false, cf
  1163. | FFun fd ->
  1164. let params = type_function_params ctx fd f.cff_name p in
  1165. if inline && c.cl_interface then error "You can't declare inline methods in interfaces" p;
  1166. let is_macro = (is_macro && stat) || has_meta ":macro" f.cff_meta in
  1167. let f, stat, fd = if not is_macro || stat then
  1168. f, stat, fd
  1169. else if ctx.in_macro then
  1170. (* non-static macros methods are turned into static when we are running the macro *)
  1171. { f with cff_access = AStatic :: f.cff_access }, true, fd
  1172. else
  1173. (* remove display of first argument which will contain the "this" expression *)
  1174. f, stat, { fd with f_args = match fd.f_args with [] -> [] | _ :: l -> l }
  1175. in
  1176. let fd = if not is_macro then
  1177. fd
  1178. else if ctx.in_macro then
  1179. let texpr = CTPath { tpackage = ["haxe";"macro"]; tname = "Expr"; tparams = []; tsub = None } in
  1180. {
  1181. f_params = fd.f_params;
  1182. f_type = (match fd.f_type with None -> Some texpr | t -> t);
  1183. f_args = List.map (fun (a,o,t,e) -> a,o,(match t with None -> Some texpr | _ -> t),e) fd.f_args;
  1184. f_expr = fd.f_expr;
  1185. }
  1186. else
  1187. let tdyn = Some (CTPath { tpackage = []; tname = "Dynamic"; tparams = []; tsub = None }) in
  1188. let to_dyn = function
  1189. | { tpackage = ["haxe";"macro"]; tname = "Expr"; tsub = Some ("ExprRequire"|"ExprOf"); tparams = [TPType t] } -> Some t
  1190. | { tpackage = []; tname = ("ExprRequire"|"ExprOf"); tsub = None; tparams = [TPType t] } -> Some t
  1191. | { tpackage = ["haxe"]; tname = ("PosInfos"); tsub = None; tparams = [] } -> error "haxe.PosInfos is not allowed on macro functions, use Context.currentPos() instead" p
  1192. | _ -> tdyn
  1193. in
  1194. {
  1195. f_params = fd.f_params;
  1196. f_type = (match fd.f_type with Some (CTPath t) -> to_dyn t | _ -> tdyn);
  1197. f_args = List.map (fun (a,o,t,_) -> a,o,(match t with Some (CTPath t) -> to_dyn t | _ -> tdyn),None) fd.f_args;
  1198. f_expr = None;
  1199. }
  1200. in
  1201. let parent = (if not stat then get_parent c name else None) in
  1202. let dynamic = List.mem ADynamic f.cff_access || (match parent with Some { cf_kind = Method MethDynamic } -> true | _ -> false) in
  1203. if inline && dynamic then error "You can't have both 'inline' and 'dynamic'" p;
  1204. ctx.type_params <- if stat then params else params @ ctx.type_params;
  1205. let constr = (name = "new") in
  1206. let ret = if constr then ctx.t.tvoid else type_opt ctx p fd.f_type in
  1207. let args = List.map (fun (name,opt,t,c) ->
  1208. let t, c = type_function_param ctx (type_opt ctx p t) c opt p in
  1209. name, c, t
  1210. ) fd.f_args in
  1211. let t = TFun (fun_args args,ret) in
  1212. if constr && c.cl_interface then error "An interface cannot have a constructor" p;
  1213. if c.cl_interface && not stat && fd.f_expr <> None then error "An interface method cannot have a body" p;
  1214. if constr then (match fd.f_type with
  1215. | None | Some (CTPath { tpackage = []; tname = "Void" }) -> ()
  1216. | _ -> error "A class constructor can't have a return value" p
  1217. );
  1218. let cf = {
  1219. cf_name = name;
  1220. cf_doc = f.cff_doc;
  1221. cf_meta = f.cff_meta;
  1222. cf_type = t;
  1223. cf_pos = f.cff_pos;
  1224. cf_kind = Method (if is_macro then MethMacro else if inline then MethInline else if dynamic then MethDynamic else MethNormal);
  1225. cf_expr = None;
  1226. cf_public = is_public f.cff_access parent;
  1227. cf_params = params;
  1228. cf_overloads = [];
  1229. } in
  1230. init_meta_overloads ctx cf;
  1231. ctx.curfield <- cf;
  1232. let r = exc_protect ctx (fun r ->
  1233. if not !return_partial_type then begin
  1234. r := (fun() -> t);
  1235. context_init();
  1236. incr stats.s_methods_typed;
  1237. if ctx.com.verbose then Common.log ctx.com ("Typing " ^ (if ctx.in_macro then "macro " else "") ^ s_type_path c.cl_path ^ "." ^ name);
  1238. let e , fargs = type_function ctx args ret (if constr then FConstructor else if stat then FStatic else FMember) fd p in
  1239. let f = {
  1240. tf_args = fargs;
  1241. tf_type = ret;
  1242. tf_expr = e;
  1243. } in
  1244. if stat && name = "__init__" then
  1245. (match e.eexpr with
  1246. | TBlock [] | TBlock [{ eexpr = TConst _ }] | TConst _ | TObjectDecl [] -> ()
  1247. | _ -> c.cl_init <- Some e);
  1248. if has_meta ":defineFeature" cf.cf_meta then add_feature ctx.com (s_type_path c.cl_path ^ "." ^ cf.cf_name);
  1249. cf.cf_expr <- Some (mk (TFunction f) t p);
  1250. cf.cf_type <- t;
  1251. end;
  1252. t
  1253. ) "type_fun" in
  1254. if not (((c.cl_extern && not inline) || c.cl_interface) && cf.cf_name <> "__init__") then bind_type ctx cf r (match fd.f_expr with Some e -> snd e | None -> f.cff_pos) is_macro;
  1255. f, constr, cf
  1256. | FProp (get,set,t,eo) ->
  1257. if override then error "You cannot override properties" p;
  1258. let ret = (match t, eo with
  1259. | None, None -> error "Property must either define a type or a default value" p;
  1260. | None, _ -> mk_mono()
  1261. | Some t, _ -> load_complex_type ctx p t
  1262. ) in
  1263. let check_method m t req_name =
  1264. if ctx.com.display then () else
  1265. try
  1266. let t2, f = (if stat then let f = PMap.find m c.cl_statics in f.cf_type, f else class_field c m) in
  1267. unify_raise ctx t2 t f.cf_pos;
  1268. (match req_name with None -> () | Some n -> display_error ctx ("Please use " ^ n ^ " to name your property access method") f.cf_pos);
  1269. with
  1270. | Error (Unify l,p) -> raise (Error (Stack (Custom ("In method " ^ m ^ " required by property " ^ name),Unify l),p))
  1271. | Not_found ->
  1272. if req_name <> None then display_error ctx "Custom property accessor is no longer supported, please use get/set" p else
  1273. if not (c.cl_interface || c.cl_extern) then display_error ctx ("Method " ^ m ^ " required by property " ^ name ^ " is missing") p
  1274. in
  1275. let get = (match get with
  1276. | "null" -> AccNo
  1277. | "dynamic" -> AccCall ("get_" ^ name)
  1278. | "never" -> AccNever
  1279. | "default" -> AccNormal
  1280. | _ ->
  1281. let get = if get = "get" then "get_" ^ name else get in
  1282. delay ctx PForce (fun() -> check_method get (TFun ([],ret)) (if get <> "get" && get <> "get_" ^ name && Common.defined ctx.com Define.Haxe3 then Some ("get_" ^ name) else None));
  1283. AccCall get
  1284. ) in
  1285. let set = (match set with
  1286. | "null" ->
  1287. (* standard flash library read-only variables can't be accessed for writing, even in subclasses *)
  1288. if c.cl_extern && (match c.cl_path with "flash" :: _ , _ -> true | _ -> false) && ctx.com.platform = Flash then
  1289. AccNever
  1290. else
  1291. AccNo
  1292. | "never" -> AccNever
  1293. | "dynamic" -> AccCall ("set_" ^ name)
  1294. | "default" -> AccNormal
  1295. | _ ->
  1296. let set = if set = "set" then "set_" ^ name else set in
  1297. delay ctx PForce (fun() -> check_method set (TFun (["",false,ret],ret)) (if set <> "set" && set <> "set_" ^ name && Common.defined ctx.com Define.Haxe3 then Some ("set_" ^ name) else None));
  1298. AccCall set
  1299. ) in
  1300. if set = AccNormal && (match get with AccCall _ -> true | _ -> false) then error "Unsupported property combination" p;
  1301. let cf = {
  1302. cf_name = name;
  1303. cf_doc = f.cff_doc;
  1304. cf_meta = f.cff_meta;
  1305. cf_pos = f.cff_pos;
  1306. cf_kind = Var { v_read = get; v_write = set };
  1307. cf_expr = None;
  1308. cf_type = ret;
  1309. cf_public = is_public f.cff_access None;
  1310. cf_params = [];
  1311. cf_overloads = [];
  1312. } in
  1313. ctx.curfield <- cf;
  1314. bind_var ctx cf eo stat inline;
  1315. f, false, cf
  1316. in
  1317. let rec check_require = function
  1318. | [] -> None
  1319. | (":require",conds,_) :: l ->
  1320. let rec loop = function
  1321. | [] -> check_require l
  1322. | [EConst (String _),_] -> check_require l
  1323. | (EConst (Ident i),_) :: l ->
  1324. if not (Common.raw_defined ctx.com i) then
  1325. Some (i,(match List.rev l with (EConst (String msg),_) :: _ -> Some msg | _ -> None))
  1326. else
  1327. loop l
  1328. | _ -> error "Invalid require identifier" p
  1329. in
  1330. loop conds
  1331. | _ :: l ->
  1332. check_require l
  1333. in
  1334. let cl_req = check_require c.cl_meta in
  1335. List.iter (fun f ->
  1336. try
  1337. let p = f.cff_pos in
  1338. let fd , constr, f = loop_cf f in
  1339. let is_static = List.mem AStatic fd.cff_access in
  1340. if (is_static || constr) && c.cl_interface && f.cf_name <> "__init__" then error "You can't declare static fields in interfaces" p;
  1341. let req = check_require fd.cff_meta in
  1342. let req = (match req with None -> if is_static || constr then cl_req else None | _ -> req) in
  1343. (match req with
  1344. | None -> ()
  1345. | Some r -> f.cf_kind <- Var { v_read = AccRequire (fst r, snd r); v_write = AccRequire (fst r, snd r) });
  1346. if constr then begin
  1347. if c.cl_constructor <> None then error "Duplicate constructor" p;
  1348. c.cl_constructor <- Some f;
  1349. end else if not is_static || f.cf_name <> "__init__" then begin
  1350. if PMap.mem f.cf_name (if is_static then c.cl_statics else c.cl_fields) then error ("Duplicate class field declaration : " ^ f.cf_name) p;
  1351. let dup = if is_static then PMap.exists f.cf_name c.cl_fields || has_field f.cf_name c.cl_super else PMap.exists f.cf_name c.cl_statics in
  1352. if dup then error ("Same field name can't be use for both static and instance : " ^ f.cf_name) p;
  1353. if is_static then begin
  1354. c.cl_statics <- PMap.add f.cf_name f c.cl_statics;
  1355. c.cl_ordered_statics <- f :: c.cl_ordered_statics;
  1356. end else begin
  1357. c.cl_fields <- PMap.add f.cf_name f c.cl_fields;
  1358. c.cl_ordered_fields <- f :: c.cl_ordered_fields;
  1359. if List.mem AOverride fd.cff_access then c.cl_overrides <- f.cf_name :: c.cl_overrides;
  1360. end;
  1361. end
  1362. with Error (Custom str,p) ->
  1363. display_error ctx str p
  1364. ) fields;
  1365. c.cl_ordered_statics <- List.rev c.cl_ordered_statics;
  1366. c.cl_ordered_fields <- List.rev c.cl_ordered_fields;
  1367. (*
  1368. make sure a default contructor with same access as super one will be added to the class structure at some point.
  1369. *)
  1370. let rec add_constructor c =
  1371. match c.cl_constructor, c.cl_super with
  1372. | None, Some ({ cl_constructor = Some cfsup } as csup,cparams) when not c.cl_extern ->
  1373. let cf = {
  1374. cfsup with
  1375. cf_pos = p;
  1376. cf_meta = [];
  1377. cf_doc = None;
  1378. cf_expr = None;
  1379. } in
  1380. let r = exc_protect ctx (fun r ->
  1381. let t = mk_mono() in
  1382. r := (fun() -> t);
  1383. let ctx = { ctx with
  1384. curfield = cf;
  1385. pass = PTypeField;
  1386. } in
  1387. ignore (follow cfsup.cf_type); (* make sure it's typed *)
  1388. let args = (match cfsup.cf_expr with
  1389. | Some { eexpr = TFunction f } ->
  1390. List.map (fun (v,def) ->
  1391. (*
  1392. let's optimize a bit the output by not always copying the default value
  1393. into the inherited constructor when it's not necessary for the platform
  1394. *)
  1395. match ctx.com.platform, def with
  1396. | _, Some _ when not ctx.com.config.pf_static -> v, (Some TNull)
  1397. | Flash, Some (TString _) -> v, (Some TNull)
  1398. | Cpp, Some (TString _) -> v, def
  1399. | Cpp, Some _ -> { v with v_type = ctx.t.tnull v.v_type }, (Some TNull)
  1400. | _ -> v, def
  1401. ) f.tf_args
  1402. | _ ->
  1403. match follow cfsup.cf_type with
  1404. | TFun (args,_) -> List.map (fun (n,o,t) -> alloc_var n (if o then ctx.t.tnull t else t), if o then Some TNull else None) args
  1405. | _ -> assert false
  1406. ) in
  1407. let p = c.cl_pos in
  1408. let vars = List.map (fun (v,def) -> alloc_var v.v_name (apply_params csup.cl_types cparams v.v_type), def) args in
  1409. let super_call = mk (TCall (mk (TConst TSuper) (TInst (csup,cparams)) p,List.map (fun (v,_) -> mk (TLocal v) v.v_type p) vars)) ctx.t.tvoid p in
  1410. let constr = mk (TFunction {
  1411. tf_args = vars;
  1412. tf_type = ctx.t.tvoid;
  1413. tf_expr = super_call;
  1414. }) (TFun (List.map (fun (v,c) -> v.v_name, c <> None, v.v_type) vars,ctx.t.tvoid)) p in
  1415. cf.cf_expr <- Some constr;
  1416. cf.cf_type <- t;
  1417. unify ctx t constr.etype p;
  1418. t
  1419. ) "add_constructor" in
  1420. cf.cf_type <- TLazy r;
  1421. c.cl_constructor <- Some cf;
  1422. delay ctx PForce (fun() -> ignore((!r)()));
  1423. | _ ->
  1424. (* nothing to do *)
  1425. ()
  1426. in
  1427. add_constructor c;
  1428. (* push delays in reverse order so they will be run in correct order *)
  1429. List.iter (fun (ctx,r) ->
  1430. ctx.pass <- PTypeField;
  1431. delay ctx PTypeField (fun() -> ignore((!r)()))
  1432. ) !delayed_expr
  1433. let resolve_typedef t =
  1434. match t with
  1435. | TClassDecl _ | TEnumDecl _ | TAbstractDecl _ -> t
  1436. | TTypeDecl td ->
  1437. match follow td.t_type with
  1438. | TEnum (e,_) -> TEnumDecl e
  1439. | TInst (c,_) -> TClassDecl c
  1440. | TAbstract (a,_) -> TAbstractDecl a
  1441. | _ -> t
  1442. let add_module ctx m p =
  1443. let decl_type t =
  1444. let t = t_infos t in
  1445. try
  1446. let m2 = Hashtbl.find ctx.g.types_module t.mt_path in
  1447. if m.m_path <> m2 && String.lowercase (s_type_path m2) = String.lowercase (s_type_path m.m_path) then error ("Module " ^ s_type_path m2 ^ " is loaded with a different case than " ^ s_type_path m.m_path) p;
  1448. error ("Type name " ^ s_type_path t.mt_path ^ " is redefined from module " ^ s_type_path m2) p
  1449. with
  1450. Not_found ->
  1451. Hashtbl.add ctx.g.types_module t.mt_path m.m_path
  1452. in
  1453. List.iter decl_type m.m_types;
  1454. Hashtbl.add ctx.g.modules m.m_path m
  1455. (*
  1456. In this pass, we can access load and access other modules types, but we cannot follow them or access their structure
  1457. since they have not been setup. We also build a context_init list that will be evaluated the first time we evaluate
  1458. an expression into the context
  1459. *)
  1460. let init_module_type ctx context_init do_init (decl,p) =
  1461. let get_type name =
  1462. try List.find (fun t -> snd (t_infos t).mt_path = name) ctx.m.curmod.m_types with Not_found -> assert false
  1463. in
  1464. match decl with
  1465. | EImport (path,mode) ->
  1466. let rec loop acc = function
  1467. | x :: l when is_lower_ident (fst x) -> loop (x::acc) l
  1468. | rest -> List.rev acc, rest
  1469. in
  1470. let pack, rest = loop [] path in
  1471. (match rest with
  1472. | [] ->
  1473. (match mode with
  1474. | IAll ->
  1475. ctx.m.wildcard_packages <- List.map fst pack :: ctx.m.wildcard_packages
  1476. | _ ->
  1477. (match List.rev path with
  1478. | [] -> assert false
  1479. | (_,p) :: _ -> error "Module name must start with an uppercase letter" p))
  1480. | (tname,p2) :: rest ->
  1481. let p1 = (match pack with [] -> p2 | (_,p1) :: _ -> p1) in
  1482. let p = punion p1 p2 in
  1483. let md = ctx.g.do_load_module ctx (List.map fst pack,tname) p in
  1484. let types = md.m_types in
  1485. let no_private t = not (t_infos t).mt_private in
  1486. let chk_private t p = if (t_infos t).mt_private then error "You can't import a private type" p in
  1487. let has_name name t = snd (t_infos t).mt_path = name in
  1488. let get_type tname =
  1489. let t = (try List.find (has_name tname) types with Not_found -> error ("Module " ^ s_type_path md.m_path ^ " does not define type " ^ tname) p) in
  1490. chk_private t p;
  1491. t
  1492. in
  1493. let rebind t name =
  1494. let _, _, f = ctx.g.do_build_instance ctx t p in
  1495. (* create a temp private typedef, does not register it in module *)
  1496. TTypeDecl {
  1497. t_path = (fst md.m_path @ ["_" ^ snd md.m_path],name);
  1498. t_module = md;
  1499. t_pos = p;
  1500. t_private = true;
  1501. t_doc = None;
  1502. t_meta = [];
  1503. t_types = (t_infos t).mt_types;
  1504. t_type = f (List.map snd (t_infos t).mt_types);
  1505. }
  1506. in
  1507. let add_static_init t name s =
  1508. let name = (match name with None -> s | Some n -> n) in
  1509. match resolve_typedef t with
  1510. | TClassDecl c ->
  1511. c.cl_build();
  1512. ignore(PMap.find s c.cl_statics);
  1513. ctx.m.module_globals <- PMap.add name (TClassDecl c,s) ctx.m.module_globals
  1514. | TEnumDecl e ->
  1515. ignore(PMap.find s e.e_constrs);
  1516. ctx.m.module_globals <- PMap.add name (TEnumDecl e,s) ctx.m.module_globals
  1517. | _ ->
  1518. raise Not_found
  1519. in
  1520. (match mode with
  1521. | INormal | IAsName _ ->
  1522. let name = (match mode with IAsName n -> Some n | _ -> None) in
  1523. (match rest with
  1524. | [] ->
  1525. (match name with
  1526. | None ->
  1527. ctx.m.module_types <- List.filter no_private types @ ctx.m.module_types
  1528. | Some newname ->
  1529. ctx.m.module_types <- rebind (get_type tname) newname :: ctx.m.module_types);
  1530. | [tsub,p2] ->
  1531. let p = punion p1 p2 in
  1532. (try
  1533. let tsub = List.find (has_name tsub) types in
  1534. chk_private tsub p;
  1535. ctx.m.module_types <- (match name with None -> tsub | Some n -> rebind tsub n) :: ctx.m.module_types
  1536. with Not_found ->
  1537. (* this might be a static property, wait later to check *)
  1538. let tmain = get_type tname in
  1539. context_init := (fun() ->
  1540. try
  1541. add_static_init tmain name tsub
  1542. with Not_found ->
  1543. error (s_type_path (t_infos tmain).mt_path ^ " has no field or subtype " ^ tsub) p
  1544. ) :: !context_init)
  1545. | (tsub,p2) :: (fname,p3) :: rest ->
  1546. (match rest with
  1547. | [] -> ()
  1548. | (n,p) :: _ -> error ("Unexpected " ^ n) p);
  1549. let tsub = get_type tsub in
  1550. context_init := (fun() ->
  1551. try
  1552. add_static_init tsub name fname
  1553. with Not_found ->
  1554. error (s_type_path (t_infos tsub).mt_path ^ " has no field " ^ fname) (punion p p3)
  1555. ) :: !context_init;
  1556. )
  1557. | IAll ->
  1558. let t = (match rest with
  1559. | [] -> get_type tname
  1560. | [tsub,_] -> get_type tsub
  1561. | _ :: (n,p) :: _ -> error ("Unexpected " ^ n) p
  1562. ) in
  1563. context_init := (fun() ->
  1564. match resolve_typedef t with
  1565. | TClassDecl c ->
  1566. c.cl_build();
  1567. PMap.iter (fun _ cf -> ctx.m.module_globals <- PMap.add cf.cf_name (TClassDecl c,cf.cf_name) ctx.m.module_globals) c.cl_statics
  1568. | TEnumDecl e ->
  1569. PMap.iter (fun _ c -> ctx.m.module_globals <- PMap.add c.ef_name (TEnumDecl e,c.ef_name) ctx.m.module_globals) e.e_constrs
  1570. | _ ->
  1571. error "No statics to import from this type" p
  1572. ) :: !context_init
  1573. ))
  1574. | EUsing t ->
  1575. (* do the import first *)
  1576. let types = (match t.tsub with
  1577. | None ->
  1578. let md = ctx.g.do_load_module ctx (t.tpackage,t.tname) p in
  1579. let types = List.filter (fun t -> not (t_infos t).mt_private) md.m_types in
  1580. ctx.m.module_types <- types @ ctx.m.module_types;
  1581. types
  1582. | Some _ ->
  1583. let t = load_type_def ctx p t in
  1584. ctx.m.module_types <- t :: ctx.m.module_types;
  1585. [t]
  1586. ) in
  1587. (* delay the using since we need to resolve typedefs *)
  1588. let filter_classes types =
  1589. let rec loop acc types = match types with
  1590. | td :: l ->
  1591. (match resolve_typedef td with
  1592. | TClassDecl c ->
  1593. loop (c :: acc) l
  1594. | td ->
  1595. loop acc l)
  1596. | [] ->
  1597. acc
  1598. in
  1599. loop [] types
  1600. in
  1601. context_init := (fun() -> ctx.m.module_using <- filter_classes types @ ctx.m.module_using) :: !context_init
  1602. | EClass d ->
  1603. let c = (match get_type d.d_name with TClassDecl c -> c | _ -> assert false) in
  1604. let herits = d.d_flags in
  1605. (*
  1606. we need to check rtti has early as class declaration, but we can't resolve imports,
  1607. so let's have a quick heuristic for backward compatibility
  1608. *)
  1609. let implements_rtti() =
  1610. let rtti = List.exists (function
  1611. | HImplements { tpackage = ["haxe";"rtti"]; tname = "Generic" } -> true
  1612. | HImplements { tpackage = []; tname = "Generic" } -> List.exists (fun t -> t_path t = (["haxe";"rtti"],"Generic")) ctx.m.module_types
  1613. | _ -> false
  1614. ) herits in
  1615. if rtti && Common.defined ctx.com Define.Haxe3 then error ("Implementing haxe.rtti.Generic is deprecated in haxe 3, please use @:generic instead") c.cl_pos;
  1616. has_meta ":generic" c.cl_meta || rtti
  1617. in
  1618. if implements_rtti() && c.cl_types <> [] then c.cl_kind <- KGeneric;
  1619. if c.cl_path = (["haxe";"macro"],"MacroType") then c.cl_kind <- KMacroType;
  1620. c.cl_extern <- List.mem HExtern herits;
  1621. c.cl_interface <- List.mem HInterface herits;
  1622. let build() =
  1623. c.cl_build <- (fun()->());
  1624. set_heritance ctx c herits p;
  1625. init_class ctx c p do_init d.d_flags d.d_data
  1626. in
  1627. ctx.pass <- PBuildClass;
  1628. ctx.curclass <- c;
  1629. c.cl_build <- make_pass ctx build;
  1630. ctx.pass <- PBuildModule;
  1631. ctx.curclass <- null_class;
  1632. delay ctx PBuildClass (fun() -> c.cl_build());
  1633. | EEnum d ->
  1634. let e = (match get_type d.d_name with TEnumDecl e -> e | _ -> assert false) in
  1635. let ctx = { ctx with type_params = e.e_types } in
  1636. let h = (try Some (Hashtbl.find ctx.g.type_patches e.e_path) with Not_found -> None) in
  1637. (match h with
  1638. | None -> ()
  1639. | Some (h,hcl) ->
  1640. Hashtbl.iter (fun _ _ -> error "Field type patch not supported for enums" e.e_pos) h;
  1641. e.e_meta <- e.e_meta @ hcl.tp_meta);
  1642. let constructs = ref d.d_data in
  1643. let get_constructs() =
  1644. List.map (fun c ->
  1645. {
  1646. cff_name = c.ec_name;
  1647. cff_doc = c.ec_doc;
  1648. cff_meta = c.ec_meta;
  1649. cff_pos = c.ec_pos;
  1650. cff_access = [];
  1651. cff_kind = (match c.ec_args, c.ec_params with
  1652. | [], [] -> FVar (c.ec_type,None)
  1653. | _ -> FFun { f_params = c.ec_params; f_type = c.ec_type; f_expr = None; f_args = List.map (fun (n,o,t) -> n,o,Some t,None) c.ec_args });
  1654. }
  1655. ) (!constructs)
  1656. in
  1657. build_module_def ctx (TEnumDecl e) e.e_meta get_constructs (fun (e,p) ->
  1658. match e with
  1659. | EVars [_,Some (CTAnonymous fields),None] ->
  1660. constructs := List.map (fun f ->
  1661. let args, params, t = (match f.cff_kind with
  1662. | FVar (t,None) -> [], [], t
  1663. | FFun { f_params = pl; f_type = t; f_expr = (None|Some (EBlock [],_)); f_args = al } ->
  1664. let al = List.map (fun (n,o,t,_) -> match t with None -> error "Missing function parameter type" f.cff_pos | Some t -> n,o,t) al in
  1665. al, pl, t
  1666. | _ ->
  1667. error "Invalid enum constructor in @:build result" p
  1668. ) in
  1669. {
  1670. ec_name = f.cff_name;
  1671. ec_doc = f.cff_doc;
  1672. ec_meta = f.cff_meta;
  1673. ec_pos = f.cff_pos;
  1674. ec_args = args;
  1675. ec_params = params;
  1676. ec_type = t;
  1677. }
  1678. ) fields
  1679. | _ -> error "Enum build macro must return a single variable with anonymous object fields" p
  1680. );
  1681. let et = TEnum (e,List.map snd e.e_types) in
  1682. let names = ref [] in
  1683. let index = ref 0 in
  1684. List.iter (fun c ->
  1685. let p = c.ec_pos in
  1686. let params = ref [] in
  1687. params := List.map (fun tp -> type_type_params ctx ([],c.ec_name) (fun() -> !params) c.ec_pos tp) c.ec_params;
  1688. let params = !params in
  1689. let ctx = { ctx with type_params = params @ ctx.type_params } in
  1690. let rt = (match c.ec_type with
  1691. | None -> et
  1692. | Some t ->
  1693. let t = load_complex_type ctx p t in
  1694. (match follow t with
  1695. | TEnum (te,_) when te == e ->
  1696. ()
  1697. | _ ->
  1698. error "Explicit enum type must be of the same enum type" p);
  1699. t
  1700. ) in
  1701. let t = (match c.ec_args with
  1702. | [] -> rt
  1703. | l ->
  1704. let pnames = ref PMap.empty in
  1705. TFun (List.map (fun (s,opt,t) ->
  1706. (match t with CTPath({tpackage=[];tname="Void"}) -> error "Arguments of type Void are not allowed in enum constructors" c.ec_pos | _ -> ());
  1707. if PMap.mem s (!pnames) then error ("Duplicate parameter '" ^ s ^ "' in enum constructor " ^ c.ec_name) p;
  1708. pnames := PMap.add s () (!pnames);
  1709. s, opt, load_type_opt ~opt ctx p (Some t)
  1710. ) l, rt)
  1711. ) in
  1712. if PMap.mem c.ec_name e.e_constrs then error ("Duplicate constructor " ^ c.ec_name) p;
  1713. e.e_constrs <- PMap.add c.ec_name {
  1714. ef_name = c.ec_name;
  1715. ef_type = t;
  1716. ef_pos = p;
  1717. ef_doc = c.ec_doc;
  1718. ef_index = !index;
  1719. ef_params = params;
  1720. ef_meta = c.ec_meta;
  1721. } e.e_constrs;
  1722. incr index;
  1723. names := c.ec_name :: !names;
  1724. ) (!constructs);
  1725. e.e_names <- List.rev !names;
  1726. e.e_extern <- e.e_extern
  1727. | ETypedef d ->
  1728. let t = (match get_type d.d_name with TTypeDecl t -> t | _ -> assert false) in
  1729. let ctx = { ctx with type_params = t.t_types } in
  1730. let tt = load_complex_type ctx p d.d_data in
  1731. (*
  1732. we exceptionnaly allow follow here because we don't care the type we get as long as it's not our own
  1733. *)
  1734. if t.t_type == follow tt then error "Recursive typedef is not allowed" p;
  1735. (match t.t_type with
  1736. | TMono r ->
  1737. (match !r with
  1738. | None -> r := Some tt;
  1739. | Some _ -> assert false);
  1740. | _ -> assert false);
  1741. | EAbstract d ->
  1742. let a = (match get_type d.d_name with TAbstractDecl a -> a | _ -> assert false) in
  1743. let ctx = { ctx with type_params = a.a_types } in
  1744. List.iter (function
  1745. | APrivAbstract -> ()
  1746. | ASubType t -> a.a_sub <- load_complex_type ctx p t :: a.a_sub
  1747. | ASuperType t -> a.a_super <- load_complex_type ctx p t :: a.a_super
  1748. ) d.d_flags
  1749. let type_module ctx m file tdecls p =
  1750. let m, decls = make_module ctx m file tdecls p in
  1751. add_module ctx m p;
  1752. (* define the per-module context for the next pass *)
  1753. let ctx = {
  1754. com = ctx.com;
  1755. g = ctx.g;
  1756. t = ctx.t;
  1757. m = {
  1758. curmod = m;
  1759. module_types = ctx.g.std.m_types;
  1760. module_using = [];
  1761. module_globals = PMap.empty;
  1762. wildcard_packages = [];
  1763. };
  1764. meta = [];
  1765. pass = PBuildModule;
  1766. on_error = (fun ctx msg p -> ctx.com.error msg p);
  1767. macro_depth = ctx.macro_depth;
  1768. curclass = null_class;
  1769. curfield = null_field;
  1770. tthis = ctx.tthis;
  1771. ret = ctx.ret;
  1772. locals = PMap.empty;
  1773. type_params = [];
  1774. curfun = FStatic;
  1775. untyped = false;
  1776. in_super_call = false;
  1777. in_macro = ctx.in_macro;
  1778. in_display = false;
  1779. in_loop = false;
  1780. opened = [];
  1781. param_type = None;
  1782. vthis = None;
  1783. } in
  1784. (* here is an additional PASS 1 phase, which define the type parameters for all module types.
  1785. Constraints are handled lazily (no other type is loaded) because they might be recursive anyway *)
  1786. List.iter (fun d ->
  1787. match d with
  1788. | (TClassDecl c, (EClass d, p)) ->
  1789. c.cl_types <- List.map (type_type_params ctx c.cl_path (fun() -> c.cl_types) p) d.d_params;
  1790. | (TEnumDecl e, (EEnum d, p)) ->
  1791. e.e_types <- List.map (type_type_params ctx e.e_path (fun() -> e.e_types) p) d.d_params;
  1792. | (TTypeDecl t, (ETypedef d, p)) ->
  1793. t.t_types <- List.map (type_type_params ctx t.t_path (fun() -> t.t_types) p) d.d_params;
  1794. | (TAbstractDecl a, (EAbstract d, p)) ->
  1795. a.a_types <- List.map (type_type_params ctx a.a_path (fun() -> a.a_types) p) d.d_params;
  1796. | _ ->
  1797. assert false
  1798. ) decls;
  1799. (* setup module types *)
  1800. let context_init = ref [] in
  1801. let do_init() =
  1802. match !context_init with
  1803. | [] -> ()
  1804. | l -> context_init := []; List.iter (fun f -> f()) (List.rev l)
  1805. in
  1806. List.iter (init_module_type ctx context_init do_init) tdecls;
  1807. m
  1808. let resolve_module_file com m remap p =
  1809. let file = (match m with
  1810. | [] , name -> name
  1811. | x :: l , name ->
  1812. let x = (try
  1813. match PMap.find x com.package_rules with
  1814. | Forbidden -> raise (Forbid_package ((x,m,p),[],if Common.defined com Define.Macro then "macro" else platform_name com.platform));
  1815. | Directory d -> d
  1816. | Remap d -> remap := d :: l; d
  1817. with Not_found -> x
  1818. ) in
  1819. String.concat "/" (x :: l) ^ "/" ^ name
  1820. ) ^ ".hx" in
  1821. let file = Common.find_file com file in
  1822. match String.lowercase (snd m) with
  1823. | "con" | "aux" | "prn" | "nul" | "com1" | "com2" | "com3" | "lpt1" | "lpt2" | "lpt3" when Sys.os_type = "Win32" ->
  1824. (* these names are reserved by the OS - old DOS legacy, such files cannot be easily created but are reported as visible *)
  1825. if (try (Unix.stat file).Unix.st_size with _ -> 0) > 0 then file else raise Not_found
  1826. | _ -> file
  1827. let parse_module ctx m p =
  1828. let remap = ref (fst m) in
  1829. let file = resolve_module_file ctx.com m remap p in
  1830. let pack, decls = (!parse_hook) ctx.com file p in
  1831. if pack <> !remap then begin
  1832. let spack m = if m = [] then "<empty>" else String.concat "." m in
  1833. if p == Ast.null_pos then
  1834. display_error ctx ("Invalid commandline class : " ^ s_type_path m ^ " should be " ^ s_type_path (pack,snd m)) p
  1835. else
  1836. display_error ctx ("Invalid package : " ^ spack (fst m) ^ " should be " ^ spack pack) p
  1837. end;
  1838. file, if !remap <> fst m then
  1839. (* build typedefs to redirect to real package *)
  1840. List.rev (List.fold_left (fun acc (t,p) ->
  1841. let build f d =
  1842. let priv = List.mem f d.d_flags in
  1843. (ETypedef {
  1844. d_name = d.d_name;
  1845. d_doc = None;
  1846. d_meta = [];
  1847. d_params = d.d_params;
  1848. d_flags = if priv then [EPrivate] else [];
  1849. d_data = CTPath (if priv then { tpackage = []; tname = "Dynamic"; tparams = []; tsub = None; } else
  1850. {
  1851. tpackage = !remap;
  1852. tname = d.d_name;
  1853. tparams = List.map (fun tp ->
  1854. TPType (CTPath { tpackage = []; tname = tp.tp_name; tparams = []; tsub = None; })
  1855. ) d.d_params;
  1856. tsub = None;
  1857. });
  1858. },p) :: acc
  1859. in
  1860. match t with
  1861. | EClass d -> build HPrivate d
  1862. | EEnum d -> build EPrivate d
  1863. | ETypedef d -> build EPrivate d
  1864. | EAbstract d -> build APrivAbstract d
  1865. | EImport _ | EUsing _ -> acc
  1866. ) [(EImport (List.map (fun s -> s,null_pos) (!remap @ [snd m]),INormal),null_pos)] decls)
  1867. else
  1868. decls
  1869. let load_module ctx m p =
  1870. let m2 = (try
  1871. Hashtbl.find ctx.g.modules m
  1872. with
  1873. Not_found ->
  1874. match !type_module_hook ctx m p with
  1875. | Some m -> m
  1876. | None ->
  1877. let file, decls = (try
  1878. parse_module ctx m p
  1879. with Not_found ->
  1880. let rec loop = function
  1881. | [] ->
  1882. raise (Error (Module_not_found m,p))
  1883. | load :: l ->
  1884. match load m p with
  1885. | None -> loop l
  1886. | Some (file,(_,a)) -> file, a
  1887. in
  1888. loop ctx.com.load_extern_type
  1889. ) in
  1890. try
  1891. type_module ctx m file decls p
  1892. with Forbid_package (inf,pl,pf) when p <> Ast.null_pos ->
  1893. raise (Forbid_package (inf,p::pl,pf))
  1894. ) in
  1895. add_dependency ctx.m.curmod m2;
  1896. if ctx.pass = PTypeField then flush_pass ctx PBuildClass "load_module";
  1897. m2
  1898. ;;
  1899. type_function_params_rec := type_function_params