| 12345678910111213141516171819202122232425262728293031 |
- // http://www.thetenthplanet.de/archives/1180
- mat3 cotangentFrame(const vec3 n, const vec3 p, const vec2 duv1, const vec2 duv2) {
- // Get edge vectors of the pixel triangle
- vec3 dp1 = dFdx(p);
- vec3 dp2 = dFdy(p);
-
- // Solve the linear system
- vec3 dp2perp = cross(dp2, n);
- vec3 dp1perp = cross(n, dp1);
- vec3 t = dp2perp * duv1.x + dp1perp * duv2.x;
- vec3 b = dp2perp * duv1.y + dp1perp * duv2.y;
-
- // Construct a scale-invariant frame
- float invmax = inversesqrt(max(dot(t, t), dot(b, b)));
- return mat3(t * invmax, b * invmax, n);
- }
- mat3 cotangentFrame(const vec3 n, const vec3 p, const vec2 texCoord) {
- return cotangentFrame(n, p, dFdx(texCoord), dFdy(texCoord));
- }
- // vec3 perturbNormal(vec3 n, vec3 v, vec2 texCoord) {
- // Assume N, the interpolated vertex normal and V, the view vector (vertex to eye)
- // vec3 map = texture(snormal, texCoord).xyz * (255.0 / 127.0) - (128.0 / 127.0);
- // WITH_NORMALMAP_2CHANNEL
- // map.z = sqrt(1.0 - dot(map.xy, map.xy));
- // WITH_NORMALMAP_GREEN_UP
- // map.y = -map.y;
- // mat3 TBN = cotangentFrame(n, -v, texCoord);
- // return normalize(TBN * map);
- // }
|