Переглянути джерело

Merge pull request #672 from Saucistophe/master

Refactored Cylinder
empirephoenix 8 роки тому
батько
коміт
25570ba4b3

+ 196 - 170
jme3-core/src/main/java/com/jme3/scene/shape/Cylinder.java

@@ -40,11 +40,8 @@ import com.jme3.math.FastMath;
 import com.jme3.math.Vector3f;
 import com.jme3.scene.Mesh;
 import com.jme3.scene.VertexBuffer.Type;
-import com.jme3.scene.mesh.IndexBuffer;
 import com.jme3.util.BufferUtils;
-import static com.jme3.util.BufferUtils.*;
 import java.io.IOException;
-import java.nio.FloatBuffer;
 
 /**
  * A simple cylinder, defined by it's height and radius.
@@ -127,10 +124,10 @@ public class Cylinder extends Mesh {
      * mapped to texture coordinates (0.5, 1), bottom to (0.5, 0). Thus you need
      * a suited distorted texture.
      *
-     * @param axisSamples
-     *            Number of triangle samples along the axis.
-     * @param radialSamples
-     *            Number of triangle samples along the radial.
+     * @param axisSamples The number of vertices samples along the axis. It is equal to the number of segments + 1; so 
+     * that, for instance, 4 samples mean the cylinder will be made of 3 segments.
+     * @param radialSamples The number of triangle samples along the radius. For instance, 4 means that the sides of the
+     * cylinder are made of 4 rectangles, and the top and bottom are made of 4 triangles.
      * @param radius
      *            The radius of the cylinder.
      * @param height
@@ -201,194 +198,225 @@ public class Cylinder extends Mesh {
     /**
      * Rebuilds the cylinder based on a new set of parameters.
      *
-     * @param axisSamples the number of samples along the axis.
-     * @param radialSamples the number of samples around the radial.
-     * @param radius the radius of the bottom of the cylinder.
-     * @param radius2 the radius of the top of the cylinder.
+     * @param axisSamples The number of vertices samples along the axis. It is equal to the number of segments + 1; so 
+     * that, for instance, 4 samples mean the cylinder will be made of 3 segments.
+     * @param radialSamples The number of triangle samples along the radius. For instance, 4 means that the sides of the
+     * cylinder are made of 4 rectangles, and the top and bottom are made of 4 triangles.
+     * @param topRadius the radius of the top of the cylinder.
+     * @param bottomRadius the radius of the bottom of the cylinder.
      * @param height the cylinder's height.
      * @param closed should the cylinder have top and bottom surfaces.
      * @param inverted is the cylinder is meant to be viewed from the inside.
      */
     public void updateGeometry(int axisSamples, int radialSamples,
-            float radius, float radius2, float height, boolean closed, boolean inverted) {
+            float topRadius, float bottomRadius, float height, boolean closed, boolean inverted) {
+        // Ensure there's at least two axis samples and 3 radial samples, and positive dimensions.
+        if( axisSamples < 2
+            || radialSamples < 3
+            || topRadius <= 0
+            || bottomRadius <= 0
+            || height <= 0 ) {
+            throw new IllegalArgumentException("Cylinders must have at least 2 axis samples and 3 radial samples, and positive dimensions.");
+        }
+        
         this.axisSamples = axisSamples;
         this.radialSamples = radialSamples;
-        this.radius = radius;
-        this.radius2 = radius2;
+        this.radius = bottomRadius;
+        this.radius2 = topRadius;
         this.height = height;
         this.closed = closed;
         this.inverted = inverted;
 
-//        VertexBuffer pvb = getBuffer(Type.Position);
-//        VertexBuffer nvb = getBuffer(Type.Normal);
-//        VertexBuffer tvb = getBuffer(Type.TexCoord);
-        axisSamples += (closed ? 2 : 0);
-
-        // Vertices
-        int vertCount = axisSamples * (radialSamples + 1) + (closed ? 2 : 0);
-
-        setBuffer(Type.Position, 3, createVector3Buffer(getFloatBuffer(Type.Position), vertCount));
-
-        // Normals
-        setBuffer(Type.Normal, 3, createVector3Buffer(getFloatBuffer(Type.Normal), vertCount));
-
-        // Texture co-ordinates
-        setBuffer(Type.TexCoord, 2, createVector2Buffer(vertCount));
+        // Vertices : One per radial sample plus one duplicate for texture closing around the sides.
+        int verticesCount = axisSamples * (radialSamples +1);
+        // Triangles: Two per side rectangle, which is the product of numbers of samples.
+        int trianglesCount = axisSamples * radialSamples * 2 ;
+        if( closed ) {
+            // If there are caps, add two additional rims and two summits.
+            verticesCount += 2 + 2 * (radialSamples +1);
+            // Add one triangle per radial sample, twice, to form the caps.
+            trianglesCount += 2 * radialSamples ;
+        }
 
-        int triCount = ((closed ? 2 : 0) + 2 * (axisSamples - 1)) * radialSamples;
+        // Compute the points along a unit circle:
+        float[][] circlePoints = new float[radialSamples+1][2];
+        for (int circlePoint = 0; circlePoint < radialSamples; circlePoint++) {
+            float angle = FastMath.TWO_PI / radialSamples * circlePoint;
+            circlePoints[circlePoint][0] = FastMath.cos(angle);
+            circlePoints[circlePoint][1] = FastMath.sin(angle);
+        }
+        // Add an additional point for closing the texture around the side of the cylinder.
+        circlePoints[radialSamples][0] = circlePoints[0][0];
+        circlePoints[radialSamples][1] = circlePoints[0][1];
         
-        setBuffer(Type.Index, 3, createShortBuffer(getShortBuffer(Type.Index), 3 * triCount));
-
-        // generate geometry
-        float inverseRadial = 1.0f / radialSamples;
-        float inverseAxisLess = 1.0f / (closed ? axisSamples - 3 : axisSamples - 1);
-        float inverseAxisLessTexture = 1.0f / (axisSamples - 1);
-        float halfHeight = 0.5f * height;
-
-        // Generate points on the unit circle to be used in computing the mesh
-        // points on a cylinder slice.
-        float[] sin = new float[radialSamples + 1];
-        float[] cos = new float[radialSamples + 1];
-
-        for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
-            float angle = FastMath.TWO_PI * inverseRadial * radialCount;
-            cos[radialCount] = FastMath.cos(angle);
-            sin[radialCount] = FastMath.sin(angle);
+        // Calculate normals.
+        // 
+        // A---------B
+        //  \        |
+        //   \       |
+        //    \      |
+        //     D-----C
+        //
+        // Let be B and C the top and bottom points of the axis, and A and D the top and bottom edges.
+        // The normal in A and D is simply orthogonal to AD, which means we can get it once per sample.
+        //
+        Vector3f[] circleNormals = new Vector3f[radialSamples+1];
+        for (int circlePoint = 0; circlePoint < radialSamples+1; circlePoint++) {
+            // The normal is the orthogonal to the side, which can be got without trigonometry.
+            // The edge direction is oriented so that it goes up by Height, and out by the radius difference; let's use
+            // those values in reverse order.
+            Vector3f normal = new Vector3f(height * circlePoints[circlePoint][0], height * circlePoints[circlePoint][1], bottomRadius - topRadius );
+            circleNormals[circlePoint] = normal.normalizeLocal();
         }
-        sin[radialSamples] = sin[0];
-        cos[radialSamples] = cos[0];
-
-        // calculate normals
-        Vector3f[] vNormals = null;
-        Vector3f vNormal = Vector3f.UNIT_Z;
-
-        if ((height != 0.0f) && (radius != radius2)) {
-            vNormals = new Vector3f[radialSamples];
-            Vector3f vHeight = Vector3f.UNIT_Z.mult(height);
-            Vector3f vRadial = new Vector3f();
-
-            for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
-                vRadial.set(cos[radialCount], sin[radialCount], 0.0f);
-                Vector3f vRadius = vRadial.mult(radius);
-                Vector3f vRadius2 = vRadial.mult(radius2);
-                Vector3f vMantle = vHeight.subtract(vRadius2.subtract(vRadius));
-                Vector3f vTangent = vRadial.cross(Vector3f.UNIT_Z);
-                vNormals[radialCount] = vMantle.cross(vTangent).normalize();
+
+        float[] vertices = new float[verticesCount * 3];
+        float[] normals = new float[verticesCount * 3];
+        float[] textureCoords = new float[verticesCount * 2];
+        int currentIndex = 0;
+        
+        // Add a circle of points for each axis sample.
+        for(int axisSample = 0; axisSample < axisSamples; axisSample++ ) {
+            float currentHeight = -height / 2 + height * axisSample / (axisSamples-1);
+            float currentRadius = bottomRadius + (topRadius - bottomRadius) * axisSample / (axisSamples-1);
+            
+            for (int circlePoint = 0; circlePoint < radialSamples + 1; circlePoint++) {
+                // Position, by multipliying the position on a unit circle with the current radius.
+                vertices[currentIndex*3] = circlePoints[circlePoint][0] * currentRadius;
+                vertices[currentIndex*3 +1] = circlePoints[circlePoint][1] * currentRadius;
+                vertices[currentIndex*3 +2] = currentHeight;
+                
+                // Normal
+                Vector3f currentNormal = circleNormals[circlePoint];
+                normals[currentIndex*3] = currentNormal.x;
+                normals[currentIndex*3+1] = currentNormal.y;
+                normals[currentIndex*3+2] = currentNormal.z;
+                        
+                // Texture
+                // The X is the angular position of the point.
+                textureCoords[currentIndex *2] = (float) circlePoint / radialSamples;
+                // Depending on whether there is a cap, the Y is either the height scaled to [0,1], or the radii of 
+                // the cap count as well.
+                if (closed)
+                    textureCoords[currentIndex *2 +1] = (bottomRadius + height / 2 + currentHeight) / (bottomRadius + height + topRadius);
+                else
+                    textureCoords[currentIndex *2 +1] = height / 2 + currentHeight;
+                
+                currentIndex++;
             }
         }
+        
+        // If closed, add duplicate rims on top and bottom, with normals facing up and down.
+        if (closed) {
+            // Bottom
+            for (int circlePoint = 0; circlePoint < radialSamples + 1; circlePoint++) {
+                vertices[currentIndex*3] = circlePoints[circlePoint][0] * bottomRadius;
+                vertices[currentIndex*3 +1] = circlePoints[circlePoint][1] * bottomRadius;
+                vertices[currentIndex*3 +2] = -height/2;
 
-        FloatBuffer nb = getFloatBuffer(Type.Normal);
-        FloatBuffer pb = getFloatBuffer(Type.Position);
-        FloatBuffer tb = getFloatBuffer(Type.TexCoord);
-
-        // generate the cylinder itself
-        Vector3f tempNormal = new Vector3f();
-        for (int axisCount = 0, i = 0; axisCount < axisSamples; axisCount++, i++) {
-            float axisFraction;
-            float axisFractionTexture;
-            int topBottom = 0;
-            if (!closed) {
-                axisFraction = axisCount * inverseAxisLess; // in [0,1]
-                axisFractionTexture = axisFraction;
-            } else {
-                if (axisCount == 0) {
-                    topBottom = -1; // bottom
-                    axisFraction = 0;
-                    axisFractionTexture = inverseAxisLessTexture;
-                } else if (axisCount == axisSamples - 1) {
-                    topBottom = 1; // top
-                    axisFraction = 1;
-                    axisFractionTexture = 1 - inverseAxisLessTexture;
-                } else {
-                    axisFraction = (axisCount - 1) * inverseAxisLess;
-                    axisFractionTexture = axisCount * inverseAxisLessTexture;
-                }
-            }
+                normals[currentIndex*3] = 0;
+                normals[currentIndex*3+1] = 0;
+                normals[currentIndex*3+2] = -1;
 
-            // compute center of slice
-            float z = -halfHeight + height * axisFraction;
-            Vector3f sliceCenter = new Vector3f(0, 0, z);
-
-            // compute slice vertices with duplication at end point
-            int save = i;
-            for (int radialCount = 0; radialCount < radialSamples; radialCount++, i++) {
-                float radialFraction = radialCount * inverseRadial; // in [0,1)
-                tempNormal.set(cos[radialCount], sin[radialCount], 0.0f);
-
-                if (vNormals != null) {
-                    vNormal = vNormals[radialCount];
-                } else if (radius == radius2) {
-                    vNormal = tempNormal;
-                }
-
-                if (topBottom == 0) {
-                    if (!inverted)
-                        nb.put(vNormal.x).put(vNormal.y).put(vNormal.z);
-                    else
-                        nb.put(-vNormal.x).put(-vNormal.y).put(-vNormal.z);
-                } else {
-                    nb.put(0).put(0).put(topBottom * (inverted ? -1 : 1));
-                }
-
-                tempNormal.multLocal((radius - radius2) * axisFraction + radius2)
-                        .addLocal(sliceCenter);
-                pb.put(tempNormal.x).put(tempNormal.y).put(tempNormal.z);
-
-                tb.put((inverted ? 1 - radialFraction : radialFraction))
-                        .put(axisFractionTexture);
+                textureCoords[currentIndex *2] = (float) circlePoint / radialSamples;
+                textureCoords[currentIndex *2 +1] = bottomRadius / (bottomRadius + height + topRadius);
+
+                currentIndex++;
             }
+            // Top
+            for (int circlePoint = 0; circlePoint < radialSamples + 1; circlePoint++) {
+                vertices[currentIndex*3] = circlePoints[circlePoint][0] * topRadius;
+                vertices[currentIndex*3 +1] = circlePoints[circlePoint][1] * topRadius;
+                vertices[currentIndex*3 +2] = height/2;
 
-            BufferUtils.copyInternalVector3(pb, save, i);
-            BufferUtils.copyInternalVector3(nb, save, i);
+                normals[currentIndex*3] = 0;
+                normals[currentIndex*3+1] = 0;
+                normals[currentIndex*3+2] = 1;
 
-            tb.put((inverted ? 0.0f : 1.0f))
-                    .put(axisFractionTexture);
-        }
+                textureCoords[currentIndex *2] = (float) circlePoint / radialSamples;
+                textureCoords[currentIndex *2 +1] = (bottomRadius + height) / (bottomRadius + height + topRadius);
 
-        if (closed) {
-            pb.put(0).put(0).put(-halfHeight); // bottom center
-            nb.put(0).put(0).put(-1 * (inverted ? -1 : 1));
-            tb.put(0.5f).put(0);
-            pb.put(0).put(0).put(halfHeight); // top center
-            nb.put(0).put(0).put(1 * (inverted ? -1 : 1));
-            tb.put(0.5f).put(1);
+                currentIndex++;
+            }
+            
+            // Add the centers of the caps.
+            vertices[currentIndex*3] = 0;
+            vertices[currentIndex*3 +1] = 0;
+            vertices[currentIndex*3 +2] = -height/2;
+            
+            normals[currentIndex*3] = 0;
+            normals[currentIndex*3+1] = 0;
+            normals[currentIndex*3+2] = -1;
+            
+            textureCoords[currentIndex *2] = 0.5f;
+            textureCoords[currentIndex *2+1] = 0f;
+            
+            currentIndex++;
+            
+            vertices[currentIndex*3] = 0;
+            vertices[currentIndex*3 +1] = 0;
+            vertices[currentIndex*3 +2] = height/2;
+            
+            normals[currentIndex*3] = 0;
+            normals[currentIndex*3+1] = 0;
+            normals[currentIndex*3+2] = 1;
+            
+            textureCoords[currentIndex *2] = 0.5f;
+            textureCoords[currentIndex *2+1] = 1f;
         }
 
-        IndexBuffer ib = getIndexBuffer();
-        int index = 0;
-        // Connectivity
-        for (int axisCount = 0, axisStart = 0; axisCount < axisSamples - 1; axisCount++) {
-            int i0 = axisStart;
-            int i1 = i0 + 1;
-            axisStart += radialSamples + 1;
-            int i2 = axisStart;
-            int i3 = i2 + 1;
-            for (int i = 0; i < radialSamples; i++) {
-                if (closed && axisCount == 0) {
-                    if (!inverted) {
-                        ib.put(index++, i0++);
-                        ib.put(index++, vertCount - 2);
-                        ib.put(index++, i1++);
-                    } else {
-                        ib.put(index++, i0++);
-                        ib.put(index++, i1++);
-                        ib.put(index++, vertCount - 2);
-                    }
-                } else if (closed && axisCount == axisSamples - 2) {
-                    ib.put(index++, i2++);
-                    ib.put(index++, inverted ? vertCount - 1 : i3++);
-                    ib.put(index++, inverted ? i3++ : vertCount - 1);
-                } else {
-                    ib.put(index++, i0++);
-                    ib.put(index++, inverted ? i2 : i1);
-                    ib.put(index++, inverted ? i1 : i2);
-                    ib.put(index++, i1++);
-                    ib.put(index++, inverted ? i2++ : i3++);
-                    ib.put(index++, inverted ? i3++ : i2++);
-                }
+        // Add the triangles indexes.
+        short[] indices = new short[trianglesCount * 3];
+        currentIndex = 0;
+        for (short axisSample = 0; axisSample < axisSamples - 1; axisSample++) {
+            for (int circlePoint = 0; circlePoint < radialSamples; circlePoint++) {
+                indices[currentIndex++] = (short) (axisSample * (radialSamples + 1) + circlePoint);
+                indices[currentIndex++] =  (short) (axisSample * (radialSamples + 1) + circlePoint + 1);
+                indices[currentIndex++] =  (short) ((axisSample + 1) * (radialSamples + 1) + circlePoint);
+
+                indices[currentIndex++] =  (short) ((axisSample + 1) * (radialSamples + 1) + circlePoint);
+                indices[currentIndex++] =  (short) (axisSample * (radialSamples + 1) + circlePoint + 1);
+                indices[currentIndex++] =  (short) ((axisSample + 1) * (radialSamples + 1) + circlePoint + 1);
+            }
+        }
+        // Add caps if needed.
+        if(closed) {
+            short bottomCapIndex = (short) (verticesCount - 2);
+            short topCapIndex = (short) (verticesCount - 1);
+            
+            int bottomRowOffset = (axisSamples) * (radialSamples +1 );
+            int topRowOffset = (axisSamples+1) * (radialSamples +1 );
+            
+            for (int circlePoint = 0; circlePoint < radialSamples; circlePoint++) {
+                indices[currentIndex++] =  (short) (bottomRowOffset + circlePoint +1);
+                indices[currentIndex++] = (short) (bottomRowOffset + circlePoint);
+                indices[currentIndex++] =  bottomCapIndex;
+
+                
+                indices[currentIndex++] = (short) (topRowOffset + circlePoint);
+                indices[currentIndex++] =  (short) (topRowOffset + circlePoint +1);
+                indices[currentIndex++] =  topCapIndex;
             }
         }
 
+        // If inverted, the triangles and normals are all reverted.
+        if (inverted) {
+            for (int i = 0; i < indices.length / 2; i++) {
+                short temp = indices[i];
+                indices[i] = indices[indices.length - 1 - i];
+                indices[indices.length - 1 - i] = temp;
+            }
+            
+            for(int i = 0; i< normals.length; i++) {
+                normals[i] = -normals[i];
+            }
+        }
+        
+        // Fill in the buffers.
+        setBuffer(Type.Position, 3, BufferUtils.createFloatBuffer(vertices));
+        setBuffer(Type.Normal, 3, BufferUtils.createFloatBuffer(normals));
+        setBuffer(Type.TexCoord, 2, BufferUtils.createFloatBuffer(textureCoords));
+        setBuffer(Type.Index, 3, BufferUtils.createShortBuffer(indices));
+        
         updateBound();
         setStatic();
     }
@@ -418,6 +446,4 @@ public class Cylinder extends Mesh {
         capsule.write(closed, "closed", false);
         capsule.write(inverted, "inverted", false);
     }
-
-
 }

+ 78 - 0
jme3-core/src/test/java/com/jme3/scene/ShapeGeometryTest.java

@@ -0,0 +1,78 @@
+/*
+ * Copyright (c) 2009-2017 jMonkeyEngine
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ *   notice, this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ *   notice, this list of conditions and the following disclaimer in the
+ *   documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
+ *   may be used to endorse or promote products derived from this software
+ *   without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+package com.jme3.scene;
+
+import com.jme3.collision.CollisionResults;
+import com.jme3.math.FastMath;
+import com.jme3.math.Ray;
+import com.jme3.math.Vector3f;
+import com.jme3.scene.shape.Cylinder;
+import java.util.Random;
+import org.junit.Test;
+
+/**
+ * Ensures that geometries behave correctly, by casting rays and ensure they don't break.
+ *
+ * @author Christophe Carpentier
+ */
+public class ShapeGeometryTest {
+
+    protected static final int NUMBER_OF_TRIES = 1000;
+    
+    @Test
+    public void testCylinders() {
+        Random random = new Random();
+        
+        // Create a cylinder, cast a random ray, and ensure everything goes well.
+        Node scene = new Node("Scene Node");
+
+        for (int i = 0; i < NUMBER_OF_TRIES; i++) {
+            scene.detachAllChildren();
+
+            Cylinder cylinder = new Cylinder(2, 8, 1, 1, true);
+            Geometry geometry = new Geometry("cylinder", cylinder);
+            geometry.rotate(FastMath.HALF_PI, 0, 0);
+            scene.attachChild(geometry);
+
+            // Cast a random ray, and count successes and IndexOutOfBoundsExceptions.
+            Vector3f randomPoint = new Vector3f(random.nextFloat(), random.nextFloat(), random.nextFloat());
+            Vector3f randomDirection = new Vector3f(random.nextFloat(), random.nextFloat(), random.nextFloat());
+            randomDirection.normalizeLocal();
+
+            Ray ray = new Ray(randomPoint, randomDirection);
+            CollisionResults collisionResults = new CollisionResults();
+
+            // If the geometry is invalid, this should throw various exceptions.
+            scene.collideWith(ray, collisionResults);
+        }
+    }
+}