Просмотр исходного кода

* asin -> atan

git-svn-id: https://jmonkeyengine.googlecode.com/svn/trunk@7905 75d07b2b-3a1a-0410-a2c5-0572b91ccdca
Sha..om 14 лет назад
Родитель
Сommit
66d78be974
1 измененных файлов с 931 добавлено и 931 удалено
  1. 931 931
      engine/src/core/com/jme3/math/FastMath.java

+ 931 - 931
engine/src/core/com/jme3/math/FastMath.java

@@ -1,931 +1,931 @@
-/*
- * Copyright (c) 2009-2010 jMonkeyEngine
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- *   notice, this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright
- *   notice, this list of conditions and the following disclaimer in the
- *   documentation and/or other materials provided with the distribution.
- *
- * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
- *   may be used to endorse or promote products derived from this software
- *   without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-package com.jme3.math;
-
-import java.util.Random;
-
-/**
- * <code>FastMath</code> provides 'fast' math approximations and float equivalents of Math
- * functions.  These are all used as static values and functions.
- *
- * @author Various
- * @version $Id: FastMath.java,v 1.45 2007/08/26 08:44:20 irrisor Exp $
- */
-final public class FastMath {
-
-    private FastMath() {
-    }
-    /** A "close to zero" double epsilon value for use*/
-    public static final double DBL_EPSILON = 2.220446049250313E-16d;
-    /** A "close to zero" float epsilon value for use*/
-    public static final float FLT_EPSILON = 1.1920928955078125E-7f;
-    /** A "close to zero" float epsilon value for use*/
-    public static final float ZERO_TOLERANCE = 0.0001f;
-    public static final float ONE_THIRD = 1f / 3f;
-    /** The value PI as a float. (180 degrees) */
-    public static final float PI = (float) Math.PI;
-    /** The value 2PI as a float. (360 degrees) */
-    public static final float TWO_PI = 2.0f * PI;
-    /** The value PI/2 as a float. (90 degrees) */
-    public static final float HALF_PI = 0.5f * PI;
-    /** The value PI/4 as a float. (45 degrees) */
-    public static final float QUARTER_PI = 0.25f * PI;
-    /** The value 1/PI as a float. */
-    public static final float INV_PI = 1.0f / PI;
-    /** The value 1/(2PI) as a float. */
-    public static final float INV_TWO_PI = 1.0f / TWO_PI;
-    /** A value to multiply a degree value by, to convert it to radians. */
-    public static final float DEG_TO_RAD = PI / 180.0f;
-    /** A value to multiply a radian value by, to convert it to degrees. */
-    public static final float RAD_TO_DEG = 180.0f / PI;
-    /** A precreated random object for random numbers. */
-    public static final Random rand = new Random(System.currentTimeMillis());
-
-    /**
-     * Returns true if the number is a power of 2 (2,4,8,16...)
-     * 
-     * A good implementation found on the Java boards. note: a number is a power
-     * of two if and only if it is the smallest number with that number of
-     * significant bits. Therefore, if you subtract 1, you know that the new
-     * number will have fewer bits, so ANDing the original number with anything
-     * less than it will give 0.
-     * 
-     * @param number
-     *            The number to test.
-     * @return True if it is a power of two.
-     */
-    public static boolean isPowerOfTwo(int number) {
-        return (number > 0) && (number & (number - 1)) == 0;
-    }
-
-    public static int nearestPowerOfTwo(int number) {
-        return (int) Math.pow(2, Math.ceil(Math.log(number) / Math.log(2)));
-    }
-
-    /**
-     * Linear interpolation from startValue to endValue by the given percent.
-     * Basically: ((1 - percent) * startValue) + (percent * endValue)
-     * 
-     * @param scale
-     *            scale value to use. if 1, use endValue, if 0, use startValue.
-     * @param startValue
-     *            Begining value. 0% of f
-     * @param endValue
-     *            ending value. 100% of f
-     * @return The interpolated value between startValue and endValue.
-     */
-    public static float interpolateLinear(float scale, float startValue, float endValue) {
-        if (startValue == endValue) {
-            return startValue;
-        }
-        if (scale <= 0f) {
-            return startValue;
-        }
-        if (scale >= 1f) {
-            return endValue;
-        }
-        return ((1f - scale) * startValue) + (scale * endValue);
-    }
-
-    /**
-     * Linear interpolation from startValue to endValue by the given percent.
-     * Basically: ((1 - percent) * startValue) + (percent * endValue)
-     *
-     * @param scale
-     *            scale value to use. if 1, use endValue, if 0, use startValue.
-     * @param startValue
-     *            Begining value. 0% of f
-     * @param endValue
-     *            ending value. 100% of f
-     * @param store a vector3f to store the result
-     * @return The interpolated value between startValue and endValue.
-     */
-    public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue, Vector3f store) {
-        if (store == null) {
-            store = new Vector3f();
-        }
-        store.x = interpolateLinear(scale, startValue.x, endValue.x);
-        store.y = interpolateLinear(scale, startValue.y, endValue.y);
-        store.z = interpolateLinear(scale, startValue.z, endValue.z);
-        return store;
-    }
-
-    /**
-     * Linear interpolation from startValue to endValue by the given percent.
-     * Basically: ((1 - percent) * startValue) + (percent * endValue)
-     *
-     * @param scale
-     *            scale value to use. if 1, use endValue, if 0, use startValue.
-     * @param startValue
-     *            Begining value. 0% of f
-     * @param endValue
-     *            ending value. 100% of f
-     * @return The interpolated value between startValue and endValue.
-     */
-    public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue) {
-        return interpolateLinear(scale, startValue, endValue, null);
-    }
-
-    /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
-     * here is the interpolation matrix
-     * m = [ 0.0  1.0  0.0   0.0 ]
-     *     [-T    0.0  T     0.0 ]
-     *     [ 2T   T-3  3-2T  -T  ]
-     *     [-T    2-T  T-2   T   ]
-     * where T is the curve tension
-     * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
-     * @param u value from 0 to 1
-     * @param T The tension of the curve
-     * @param p0 control point 0
-     * @param p1 control point 1
-     * @param p2 control point 2
-     * @param p3 control point 3
-     * @return catmull-Rom interpolation
-     */
-    public static float interpolateCatmullRom(float u, float T, float p0, float p1, float p2, float p3) {
-        double c1, c2, c3, c4;
-        c1 = p1;
-        c2 = -1.0 * T * p0 + T * p2;
-        c3 = 2 * T * p0 + (T - 3) * p1 + (3 - 2 * T) * p2 + -T * p3;
-        c4 = -T * p0 + (2 - T) * p1 + (T - 2) * p2 + T * p3;
-
-        return (float) (((c4 * u + c3) * u + c2) * u + c1);
-    }
-
-    /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
-     * here is the interpolation matrix
-     * m = [ 0.0  1.0  0.0   0.0 ]
-     *     [-T    0.0  T     0.0 ]
-     *     [ 2T   T-3  3-2T  -T  ]
-     *     [-T    2-T  T-2   T   ]
-     * where T is the tension of the curve
-     * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
-     * @param u value from 0 to 1
-     * @param T The tension of the curve
-     * @param p0 control point 0
-     * @param p1 control point 1
-     * @param p2 control point 2
-     * @param p3 control point 3
-     * @param store a Vector3f to store the result
-     * @return catmull-Rom interpolation
-     */
-    public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
-        if (store == null) {
-            store = new Vector3f();
-        }
-        store.x = interpolateCatmullRom(u, T, p0.x, p1.x, p2.x, p3.x);
-        store.y = interpolateCatmullRom(u, T, p0.y, p1.y, p2.y, p3.y);
-        store.z = interpolateCatmullRom(u, T, p0.z, p1.z, p2.z, p3.z);
-        return store;
-    }
-
-    /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
-     * here is the interpolation matrix
-     * m = [ 0.0  1.0  0.0   0.0 ]
-     *     [-T    0.0  T     0.0 ]
-     *     [ 2T   T-3  3-2T  -T  ]
-     *     [-T    2-T  T-2   T   ]
-     * where T is the tension of the curve
-     * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
-     * @param u value from 0 to 1
-     * @param T The tension of the curve
-     * @param p0 control point 0
-     * @param p1 control point 1
-     * @param p2 control point 2
-     * @param p3 control point 3
-     * @return catmull-Rom interpolation
-     */
-    public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
-        return interpolateCatmullRom(u, T, p0, p1, p2, p3, null);
-    }
-
-    /**Interpolate a spline between at least 4 control points following the Bezier equation.
-     * here is the interpolation matrix
-     * m = [ -1.0   3.0  -3.0    1.0 ]
-     *     [  3.0  -6.0   3.0    0.0 ]
-     *     [ -3.0   3.0   0.0    0.0 ]
-     *     [  1.0   0.0   0.0    0.0 ]
-     * where T is the curve tension
-     * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
-     * @param u value from 0 to 1
-     * @param p0 control point 0
-     * @param p1 control point 1
-     * @param p2 control point 2
-     * @param p3 control point 3
-     * @return Bezier interpolation
-     */
-    public static float interpolateBezier(float u, float p0, float p1, float p2, float p3) {
-    	float oneMinusU = 1.0f - u;
-		float oneMinusU2 = oneMinusU * oneMinusU;
-		float u2 = u * u;
-		return p0 * oneMinusU2 * oneMinusU + 
-			   3.0f * p1 * u * oneMinusU2 + 
-			   3.0f * p2 * u2 * oneMinusU + 
-			   p3 * u2 * u;
-    }
-
-    /**Interpolate a spline between at least 4 control points following the Bezier equation.
-     * here is the interpolation matrix
-     * m = [ -1.0   3.0  -3.0    1.0 ]
-     *     [  3.0  -6.0   3.0    0.0 ]
-     *     [ -3.0   3.0   0.0    0.0 ]
-     *     [  1.0   0.0   0.0    0.0 ]
-     * where T is the tension of the curve
-     * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
-     * @param u value from 0 to 1
-     * @param p0 control point 0
-     * @param p1 control point 1
-     * @param p2 control point 2
-     * @param p3 control point 3
-     * @param store a Vector3f to store the result
-     * @return Bezier interpolation
-     */
-    public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
-        if (store == null) {
-            store = new Vector3f();
-        }
-        store.x = interpolateBezier(u, p0.x, p1.x, p2.x, p3.x);
-        store.y = interpolateBezier(u, p0.y, p1.y, p2.y, p3.y);
-        store.z = interpolateBezier(u, p0.z, p1.z, p2.z, p3.z);
-        return store;
-    }
-
-    /**Interpolate a spline between at least 4 control points following the Bezier equation.
-     * here is the interpolation matrix
-     * m = [ -1.0   3.0  -3.0    1.0 ]
-     *     [  3.0  -6.0   3.0    0.0 ]
-     *     [ -3.0   3.0   0.0    0.0 ]
-     *     [  1.0   0.0   0.0    0.0 ]
-     * where T is the tension of the curve
-     * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
-     * @param u value from 0 to 1
-     * @param p0 control point 0
-     * @param p1 control point 1
-     * @param p2 control point 2
-     * @param p3 control point 3
-     * @return Bezier interpolation
-     */
-    public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
-        return interpolateBezier(u, p0, p1, p2, p3, null);
-    }
-    
-    /**
-     * Compute the lenght on a catmull rom spline between control point 1 and 2
-     * @param p0 control point 0
-     * @param p1 control point 1
-     * @param p2 control point 2
-     * @param p3 control point 3
-     * @param startRange the starting range on the segment (use 0)
-     * @param endRange the end range on the segment (use 1)
-     * @param curveTension the curve tension
-     * @return the length of the segment
-     */
-    public static float getCatmullRomP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, float startRange, float endRange, float curveTension) {
-
-        float epsilon = 0.001f;
-        float middleValue = (startRange + endRange) * 0.5f;
-        Vector3f start = p1.clone();
-        if (startRange != 0) {
-            FastMath.interpolateCatmullRom(startRange, curveTension, p0, p1, p2, p3, start);
-        }
-        Vector3f end = p2.clone();
-        if (endRange != 1) {
-            FastMath.interpolateCatmullRom(endRange, curveTension, p0, p1, p2, p3, end);
-        }
-        Vector3f middle = FastMath.interpolateCatmullRom(middleValue, curveTension, p0, p1, p2, p3);
-        float l = end.subtract(start).length();
-        float l1 = middle.subtract(start).length();
-        float l2 = end.subtract(middle).length();
-        float len = l1 + l2;
-        if (l + epsilon < len) {
-            l1 = getCatmullRomP1toP2Length(p0, p1, p2, p3, startRange, middleValue, curveTension);
-            l2 = getCatmullRomP1toP2Length(p0, p1, p2, p3, middleValue, endRange, curveTension);
-        }
-        l = l1 + l2;
-        return l;
-    }
-
-    /**
-     * Compute the lenght on a bezier spline between control point 1 and 2
-     * @param p0 control point 0
-     * @param p1 control point 1
-     * @param p2 control point 2
-     * @param p3 control point 3
-     * @return the length of the segment
-     */
-    public static float getBezierP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
-        float delta = 0.02f, t = 0.0f, result = 0.0f;
-        Vector3f v1 = p0.clone(), v2 = new Vector3f();
-        while(t<=1.0f) {
-        	FastMath.interpolateBezier(t, p0, p1, p2, p3, v2);
-        	result += v1.subtractLocal(v2).length();
-        	v1.set(v2);
-        	t += delta;
-        }
-        return result;
-    }
-
-    /**
-     * Returns the arc cosine of an angle given in radians.<br>
-     * Special cases:
-     * <ul><li>If fValue is smaller than -1, then the result is PI.
-     * <li>If the argument is greater than 1, then the result is 0.</ul>
-     * @param fValue The angle, in radians.
-     * @return fValue's acos
-     * @see java.lang.Math#acos(double)
-     */
-    public static float acos(float fValue) {
-        if (-1.0f < fValue) {
-            if (fValue < 1.0f) {
-                return (float) Math.acos(fValue);
-            }
-
-            return 0.0f;
-        }
-
-        return PI;
-    }
-
-    /**
-     * Returns the arc sine of an angle given in radians.<br>
-     * Special cases:
-     * <ul><li>If fValue is smaller than -1, then the result is -HALF_PI.
-     * <li>If the argument is greater than 1, then the result is HALF_PI.</ul>
-     * @param fValue The angle, in radians.
-     * @return fValue's asin
-     * @see java.lang.Math#asin(double)
-     */
-    public static float asin(float fValue) {
-        if (-1.0f < fValue) {
-            if (fValue < 1.0f) {
-                return (float) Math.asin(fValue);
-            }
-
-            return HALF_PI;
-        }
-
-        return -HALF_PI;
-    }
-
-    /**
-     * Returns the arc tangent of an angle given in radians.<br>
-     * @param fValue The angle, in radians.
-     * @return fValue's asin
-     * @see java.lang.Math#atan(double)
-     */
-    public static float atan(float fValue) {
-        return (float) Math.atan(fValue);
-    }
-
-    /**
-     * A direct call to Math.atan2.
-     * @param fY
-     * @param fX
-     * @return Math.atan2(fY,fX)
-     * @see java.lang.Math#atan2(double, double)
-     */
-    public static float atan2(float fY, float fX) {
-        return (float) Math.atan2(fY, fX);
-    }
-
-    /**
-     * Rounds a fValue up.  A call to Math.ceil
-     * @param fValue The value.
-     * @return The fValue rounded up
-     * @see java.lang.Math#ceil(double)
-     */
-    public static float ceil(float fValue) {
-        return (float) Math.ceil(fValue);
-    }
-
-    /**
-     * Fast Trig functions for x86. This forces the trig functiosn to stay
-     * within the safe area on the x86 processor (-45 degrees to +45 degrees)
-     * The results may be very slightly off from what the Math and StrictMath
-     * trig functions give due to rounding in the angle reduction but it will be
-     * very very close. 
-     * 
-     * note: code from wiki posting on java.net by jeffpk
-     */
-    public static float reduceSinAngle(float radians) {
-        radians %= TWO_PI; // put us in -2PI to +2PI space
-        if (Math.abs(radians) > PI) { // put us in -PI to +PI space
-            radians = radians - (TWO_PI);
-        }
-        if (Math.abs(radians) > HALF_PI) {// put us in -PI/2 to +PI/2 space
-            radians = PI - radians;
-        }
-
-        return radians;
-    }
-
-    /**
-     * Returns sine of a value. 
-     * 
-     * note: code from wiki posting on java.net by jeffpk
-     * 
-     * @param fValue
-     *            The value to sine, in radians.
-     * @return The sine of fValue.
-     * @see java.lang.Math#sin(double)
-     */
-    public static float sin2(float fValue) {
-        fValue = reduceSinAngle(fValue); // limits angle to between -PI/2 and +PI/2
-        if (Math.abs(fValue) <= Math.PI / 4) {
-            return (float) Math.sin(fValue);
-        }
-
-        return (float) Math.cos(Math.PI / 2 - fValue);
-    }
-
-    /**
-     * Returns cos of a value.
-     * 
-     * @param fValue
-     *            The value to cosine, in radians.
-     * @return The cosine of fValue.
-     * @see java.lang.Math#cos(double)
-     */
-    public static float cos2(float fValue) {
-        return sin2(fValue + HALF_PI);
-    }
-
-    public static float cos(float v) {
-        return (float) Math.cos(v);
-    }
-
-    public static float sin(float v) {
-        return (float) Math.sin(v);
-    }
-
-    /**
-     * Returns E^fValue
-     * @param fValue Value to raise to a power.
-     * @return The value E^fValue
-     * @see java.lang.Math#exp(double)
-     */
-    public static float exp(float fValue) {
-        return (float) Math.exp(fValue);
-    }
-
-    /**
-     * Returns Absolute value of a float.
-     * @param fValue The value to abs.
-     * @return The abs of the value.
-     * @see java.lang.Math#abs(float)
-     */
-    public static float abs(float fValue) {
-        if (fValue < 0) {
-            return -fValue;
-        }
-        return fValue;
-    }
-
-    /**
-     * Returns a number rounded down.
-     * @param fValue The value to round
-     * @return The given number rounded down
-     * @see java.lang.Math#floor(double)
-     */
-    public static float floor(float fValue) {
-        return (float) Math.floor(fValue);
-    }
-
-    /**
-     * Returns 1/sqrt(fValue)
-     * @param fValue The value to process.
-     * @return 1/sqrt(fValue)
-     * @see java.lang.Math#sqrt(double)
-     */
-    public static float invSqrt(float fValue) {
-        return (float) (1.0f / Math.sqrt(fValue));
-    }
-
-    public static float fastInvSqrt(float x) {
-        float xhalf = 0.5f * x;
-        int i = Float.floatToIntBits(x); // get bits for floating value
-        i = 0x5f375a86 - (i >> 1); // gives initial guess y0
-        x = Float.intBitsToFloat(i); // convert bits back to float
-        x = x * (1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
-        return x;
-    }
-
-    /**
-     * Returns the log base E of a value.
-     * @param fValue The value to log.
-     * @return The log of fValue base E
-     * @see java.lang.Math#log(double)
-     */
-    public static float log(float fValue) {
-        return (float) Math.log(fValue);
-    }
-
-    /**
-     * Returns the logarithm of value with given base, calculated as log(value)/log(base), 
-     * so that pow(base, return)==value (contributed by vear)
-     * @param value The value to log.
-     * @param base Base of logarithm.
-     * @return The logarithm of value with given base
-     */
-    public static float log(float value, float base) {
-        return (float) (Math.log(value) / Math.log(base));
-    }
-
-    /**
-     * Returns a number raised to an exponent power.  fBase^fExponent
-     * @param fBase The base value (IE 2)
-     * @param fExponent The exponent value (IE 3)
-     * @return base raised to exponent (IE 8)
-     * @see java.lang.Math#pow(double, double)
-     */
-    public static float pow(float fBase, float fExponent) {
-        return (float) Math.pow(fBase, fExponent);
-    }
-
-    /**
-     * Returns the value squared.  fValue ^ 2
-     * @param fValue The vaule to square.
-     * @return The square of the given value.
-     */
-    public static float sqr(float fValue) {
-        return fValue * fValue;
-    }
-
-    /**
-     * Returns the square root of a given value.
-     * @param fValue The value to sqrt.
-     * @return The square root of the given value.
-     * @see java.lang.Math#sqrt(double)
-     */
-    public static float sqrt(float fValue) {
-        return (float) Math.sqrt(fValue);
-    }
-
-    /**
-     * Returns the tangent of a value.  If USE_FAST_TRIG is enabled, an approximate value
-     * is returned.  Otherwise, a direct value is used.
-     * @param fValue The value to tangent, in radians.
-     * @return The tangent of fValue.
-     * @see java.lang.Math#tan(double)
-     */
-    public static float tan(float fValue) {
-        return (float) Math.tan(fValue);
-    }
-
-    /**
-     * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
-     * @param iValue The integer to examine.
-     * @return The integer's sign.
-     */
-    public static int sign(int iValue) {
-        if (iValue > 0) {
-            return 1;
-        }
-        if (iValue < 0) {
-            return -1;
-        }
-        return 0;
-    }
-
-    /**
-     * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
-     * @param fValue The float to examine.
-     * @return The float's sign.
-     */
-    public static float sign(float fValue) {
-        return Math.signum(fValue);
-    }
-
-    /**
-     * Given 3 points in a 2d plane, this function computes if the points going from A-B-C
-     * are moving counter clock wise.
-     * @param p0 Point 0.
-     * @param p1 Point 1.
-     * @param p2 Point 2.
-     * @return 1 If they are CCW, -1 if they are not CCW, 0 if p2 is between p0 and p1.
-     */
-    public static int counterClockwise(Vector2f p0, Vector2f p1, Vector2f p2) {
-        float dx1, dx2, dy1, dy2;
-        dx1 = p1.x - p0.x;
-        dy1 = p1.y - p0.y;
-        dx2 = p2.x - p0.x;
-        dy2 = p2.y - p0.y;
-        if (dx1 * dy2 > dy1 * dx2) {
-            return 1;
-        }
-        if (dx1 * dy2 < dy1 * dx2) {
-            return -1;
-        }
-        if ((dx1 * dx2 < 0) || (dy1 * dy2 < 0)) {
-            return -1;
-        }
-        if ((dx1 * dx1 + dy1 * dy1) < (dx2 * dx2 + dy2 * dy2)) {
-            return 1;
-        }
-        return 0;
-    }
-
-    /**
-     * Test if a point is inside a triangle.  1 if the point is on the ccw side,
-     * -1 if the point is on the cw side, and 0 if it is on neither.
-     * @param t0 First point of the triangle.
-     * @param t1 Second point of the triangle.
-     * @param t2 Third point of the triangle.
-     * @param p The point to test.
-     * @return Value 1 or -1 if inside triangle, 0 otherwise.
-     */
-    public static int pointInsideTriangle(Vector2f t0, Vector2f t1, Vector2f t2, Vector2f p) {
-        int val1 = counterClockwise(t0, t1, p);
-        if (val1 == 0) {
-            return 1;
-        }
-        int val2 = counterClockwise(t1, t2, p);
-        if (val2 == 0) {
-            return 1;
-        }
-        if (val2 != val1) {
-            return 0;
-        }
-        int val3 = counterClockwise(t2, t0, p);
-        if (val3 == 0) {
-            return 1;
-        }
-        if (val3 != val1) {
-            return 0;
-        }
-        return val3;
-    }
-    
-    /**
-     * A method that computes normal for a triangle defined by three vertices.
-     * @param v1 first vertex
-     * @param v2 second vertex
-     * @param v3 third vertex
-     * @return a normal for the face
-     */
-    public static Vector3f computeNormal(Vector3f v1, Vector3f v2, Vector3f v3) {
-    	Vector3f a1 = v1.subtract(v2);
-		Vector3f a2 = v3.subtract(v2);
-		return a2.crossLocal(a1).normalizeLocal();
-    }
-
-    /**
-     * Returns the determinant of a 4x4 matrix.
-     */
-    public static float determinant(double m00, double m01, double m02,
-            double m03, double m10, double m11, double m12, double m13,
-            double m20, double m21, double m22, double m23, double m30,
-            double m31, double m32, double m33) {
-
-        double det01 = m20 * m31 - m21 * m30;
-        double det02 = m20 * m32 - m22 * m30;
-        double det03 = m20 * m33 - m23 * m30;
-        double det12 = m21 * m32 - m22 * m31;
-        double det13 = m21 * m33 - m23 * m31;
-        double det23 = m22 * m33 - m23 * m32;
-        return (float) (m00 * (m11 * det23 - m12 * det13 + m13 * det12) - m01
-                * (m10 * det23 - m12 * det03 + m13 * det02) + m02
-                * (m10 * det13 - m11 * det03 + m13 * det01) - m03
-                * (m10 * det12 - m11 * det02 + m12 * det01));
-    }
-
-    /**
-     * Returns a random float between 0 and 1.
-     * 
-     * @return A random float between <tt>0.0f</tt> (inclusive) to
-     *         <tt>1.0f</tt> (exclusive).
-     */
-    public static float nextRandomFloat() {
-        return rand.nextFloat();
-    }
-
-    /**
-     * Returns a random float between min and max.
-     * 
-     * @return A random int between <tt>min</tt> (inclusive) to
-     *         <tt>max</tt> (inclusive).
-     */
-    public static int nextRandomInt(int min, int max) {
-        return (int) (nextRandomFloat() * (max - min + 1)) + min;
-    }
-
-    public static int nextRandomInt() {
-        return rand.nextInt();
-    }
-
-    /**
-     * Converts a point from Spherical coordinates to Cartesian (using positive
-     * Y as up) and stores the results in the store var.
-     */
-    public static Vector3f sphericalToCartesian(Vector3f sphereCoords,
-            Vector3f store) {
-        store.y = sphereCoords.x * FastMath.sin(sphereCoords.z);
-        float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
-        store.x = a * FastMath.cos(sphereCoords.y);
-        store.z = a * FastMath.sin(sphereCoords.y);
-
-        return store;
-    }
-
-    /**
-     * Converts a point from Cartesian coordinates (using positive Y as up) to
-     * Spherical and stores the results in the store var. (Radius, Azimuth,
-     * Polar)
-     */
-    public static Vector3f cartesianToSpherical(Vector3f cartCoords,
-            Vector3f store) {
-        float x = cartCoords.x;
-        if (x == 0) {
-            x = FastMath.FLT_EPSILON;
-        }
-        store.x = FastMath.sqrt((x * x)
-                + (cartCoords.y * cartCoords.y)
-                + (cartCoords.z * cartCoords.z));
-        store.y = FastMath.atan(cartCoords.z / x);
-        if (x < 0) {
-            store.y += FastMath.PI;
-        }
-        store.z = FastMath.asin(cartCoords.y / store.x);
-        return store;
-    }
-
-    /**
-     * Converts a point from Spherical coordinates to Cartesian (using positive
-     * Z as up) and stores the results in the store var.
-     */
-    public static Vector3f sphericalToCartesianZ(Vector3f sphereCoords,
-            Vector3f store) {
-        store.z = sphereCoords.x * FastMath.sin(sphereCoords.z);
-        float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
-        store.x = a * FastMath.cos(sphereCoords.y);
-        store.y = a * FastMath.sin(sphereCoords.y);
-
-        return store;
-    }
-
-    /**
-     * Converts a point from Cartesian coordinates (using positive Z as up) to
-     * Spherical and stores the results in the store var. (Radius, Azimuth,
-     * Polar)
-     */
-    public static Vector3f cartesianZToSpherical(Vector3f cartCoords,
-            Vector3f store) {
-        float x = cartCoords.x;
-        if (x == 0) {
-            x = FastMath.FLT_EPSILON;
-        }
-        store.x = FastMath.sqrt((x * x)
-                + (cartCoords.y * cartCoords.y)
-                + (cartCoords.z * cartCoords.z));
-        store.z = FastMath.atan(cartCoords.z / x);
-        if (x < 0) {
-            store.z += FastMath.PI;
-        }
-        store.y = FastMath.asin(cartCoords.y / store.x);
-        return store;
-    }
-
-    /**
-     * Takes an value and expresses it in terms of min to max.
-     * 
-     * @param val -
-     *            the angle to normalize (in radians)
-     * @return the normalized angle (also in radians)
-     */
-    public static float normalize(float val, float min, float max) {
-        if (Float.isInfinite(val) || Float.isNaN(val)) {
-            return 0f;
-        }
-        float range = max - min;
-        while (val > max) {
-            val -= range;
-        }
-        while (val < min) {
-            val += range;
-        }
-        return val;
-    }
-
-    /**
-     * @param x
-     *            the value whose sign is to be adjusted.
-     * @param y
-     *            the value whose sign is to be used.
-     * @return x with its sign changed to match the sign of y.
-     */
-    public static float copysign(float x, float y) {
-        if (y >= 0 && x <= -0) {
-            return -x;
-        } else if (y < 0 && x >= 0) {
-            return -x;
-        } else {
-            return x;
-        }
-    }
-
-    /**
-     * Take a float input and clamp it between min and max.
-     * 
-     * @param input
-     * @param min
-     * @param max
-     * @return clamped input
-     */
-    public static float clamp(float input, float min, float max) {
-        return (input < min) ? min : (input > max) ? max : input;
-    }
-
-    /**
-     * Clamps the given float to be between 0 and 1.
-     *
-     * @param input
-     * @return input clamped between 0 and 1.
-     */
-    public static float saturate(float input) {
-        return clamp(input, 0f, 1f);
-    }
-
-    /**
-     * Converts a single precision (32 bit) floating point value
-     * into half precision (16 bit).
-     *
-     * Source: http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf
-     *
-     * @param half The half floating point value as a short.
-     * @return floating point value of the half.
-     */
-    public static float convertHalfToFloat(short half) {
-        switch ((int) half) {
-            case 0x0000:
-                return 0f;
-            case 0x8000:
-                return -0f;
-            case 0x7c00:
-                return Float.POSITIVE_INFINITY;
-            case 0xfc00:
-                return Float.NEGATIVE_INFINITY;
-            // TODO: Support for NaN?
-            default:
-                return Float.intBitsToFloat(((half & 0x8000) << 16)
-                        | (((half & 0x7c00) + 0x1C000) << 13)
-                        | ((half & 0x03FF) << 13));
-        }
-    }
-
-    public static short convertFloatToHalf(float flt) {
-        if (Float.isNaN(flt)) {
-            throw new UnsupportedOperationException("NaN to half conversion not supported!");
-        } else if (flt == Float.POSITIVE_INFINITY) {
-            return (short) 0x7c00;
-        } else if (flt == Float.NEGATIVE_INFINITY) {
-            return (short) 0xfc00;
-        } else if (flt == 0f) {
-            return (short) 0x0000;
-        } else if (flt == -0f) {
-            return (short) 0x8000;
-        } else if (flt > 65504f) {
-            // max value supported by half float
-            return 0x7bff;
-        } else if (flt < -65504f) {
-            return (short) (0x7bff | 0x8000);
-        } else if (flt > 0f && flt < 5.96046E-8f) {
-            return 0x0001;
-        } else if (flt < 0f && flt > -5.96046E-8f) {
-            return (short) 0x8001;
-        }
-
-        int f = Float.floatToIntBits(flt);
-        return (short) (((f >> 16) & 0x8000)
-                | ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00)
-                | ((f >> 13) & 0x03ff));
-    }
-}
+/*
+ * Copyright (c) 2009-2010 jMonkeyEngine
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ *   notice, this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ *   notice, this list of conditions and the following disclaimer in the
+ *   documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
+ *   may be used to endorse or promote products derived from this software
+ *   without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+package com.jme3.math;
+
+import java.util.Random;
+
+/**
+ * <code>FastMath</code> provides 'fast' math approximations and float equivalents of Math
+ * functions.  These are all used as static values and functions.
+ *
+ * @author Various
+ * @version $Id: FastMath.java,v 1.45 2007/08/26 08:44:20 irrisor Exp $
+ */
+final public class FastMath {
+
+    private FastMath() {
+    }
+    /** A "close to zero" double epsilon value for use*/
+    public static final double DBL_EPSILON = 2.220446049250313E-16d;
+    /** A "close to zero" float epsilon value for use*/
+    public static final float FLT_EPSILON = 1.1920928955078125E-7f;
+    /** A "close to zero" float epsilon value for use*/
+    public static final float ZERO_TOLERANCE = 0.0001f;
+    public static final float ONE_THIRD = 1f / 3f;
+    /** The value PI as a float. (180 degrees) */
+    public static final float PI = (float) Math.PI;
+    /** The value 2PI as a float. (360 degrees) */
+    public static final float TWO_PI = 2.0f * PI;
+    /** The value PI/2 as a float. (90 degrees) */
+    public static final float HALF_PI = 0.5f * PI;
+    /** The value PI/4 as a float. (45 degrees) */
+    public static final float QUARTER_PI = 0.25f * PI;
+    /** The value 1/PI as a float. */
+    public static final float INV_PI = 1.0f / PI;
+    /** The value 1/(2PI) as a float. */
+    public static final float INV_TWO_PI = 1.0f / TWO_PI;
+    /** A value to multiply a degree value by, to convert it to radians. */
+    public static final float DEG_TO_RAD = PI / 180.0f;
+    /** A value to multiply a radian value by, to convert it to degrees. */
+    public static final float RAD_TO_DEG = 180.0f / PI;
+    /** A precreated random object for random numbers. */
+    public static final Random rand = new Random(System.currentTimeMillis());
+
+    /**
+     * Returns true if the number is a power of 2 (2,4,8,16...)
+     * 
+     * A good implementation found on the Java boards. note: a number is a power
+     * of two if and only if it is the smallest number with that number of
+     * significant bits. Therefore, if you subtract 1, you know that the new
+     * number will have fewer bits, so ANDing the original number with anything
+     * less than it will give 0.
+     * 
+     * @param number
+     *            The number to test.
+     * @return True if it is a power of two.
+     */
+    public static boolean isPowerOfTwo(int number) {
+        return (number > 0) && (number & (number - 1)) == 0;
+    }
+
+    public static int nearestPowerOfTwo(int number) {
+        return (int) Math.pow(2, Math.ceil(Math.log(number) / Math.log(2)));
+    }
+
+    /**
+     * Linear interpolation from startValue to endValue by the given percent.
+     * Basically: ((1 - percent) * startValue) + (percent * endValue)
+     * 
+     * @param scale
+     *            scale value to use. if 1, use endValue, if 0, use startValue.
+     * @param startValue
+     *            Begining value. 0% of f
+     * @param endValue
+     *            ending value. 100% of f
+     * @return The interpolated value between startValue and endValue.
+     */
+    public static float interpolateLinear(float scale, float startValue, float endValue) {
+        if (startValue == endValue) {
+            return startValue;
+        }
+        if (scale <= 0f) {
+            return startValue;
+        }
+        if (scale >= 1f) {
+            return endValue;
+        }
+        return ((1f - scale) * startValue) + (scale * endValue);
+    }
+
+    /**
+     * Linear interpolation from startValue to endValue by the given percent.
+     * Basically: ((1 - percent) * startValue) + (percent * endValue)
+     *
+     * @param scale
+     *            scale value to use. if 1, use endValue, if 0, use startValue.
+     * @param startValue
+     *            Begining value. 0% of f
+     * @param endValue
+     *            ending value. 100% of f
+     * @param store a vector3f to store the result
+     * @return The interpolated value between startValue and endValue.
+     */
+    public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue, Vector3f store) {
+        if (store == null) {
+            store = new Vector3f();
+        }
+        store.x = interpolateLinear(scale, startValue.x, endValue.x);
+        store.y = interpolateLinear(scale, startValue.y, endValue.y);
+        store.z = interpolateLinear(scale, startValue.z, endValue.z);
+        return store;
+    }
+
+    /**
+     * Linear interpolation from startValue to endValue by the given percent.
+     * Basically: ((1 - percent) * startValue) + (percent * endValue)
+     *
+     * @param scale
+     *            scale value to use. if 1, use endValue, if 0, use startValue.
+     * @param startValue
+     *            Begining value. 0% of f
+     * @param endValue
+     *            ending value. 100% of f
+     * @return The interpolated value between startValue and endValue.
+     */
+    public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue) {
+        return interpolateLinear(scale, startValue, endValue, null);
+    }
+
+    /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
+     * here is the interpolation matrix
+     * m = [ 0.0  1.0  0.0   0.0 ]
+     *     [-T    0.0  T     0.0 ]
+     *     [ 2T   T-3  3-2T  -T  ]
+     *     [-T    2-T  T-2   T   ]
+     * where T is the curve tension
+     * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
+     * @param u value from 0 to 1
+     * @param T The tension of the curve
+     * @param p0 control point 0
+     * @param p1 control point 1
+     * @param p2 control point 2
+     * @param p3 control point 3
+     * @return catmull-Rom interpolation
+     */
+    public static float interpolateCatmullRom(float u, float T, float p0, float p1, float p2, float p3) {
+        double c1, c2, c3, c4;
+        c1 = p1;
+        c2 = -1.0 * T * p0 + T * p2;
+        c3 = 2 * T * p0 + (T - 3) * p1 + (3 - 2 * T) * p2 + -T * p3;
+        c4 = -T * p0 + (2 - T) * p1 + (T - 2) * p2 + T * p3;
+
+        return (float) (((c4 * u + c3) * u + c2) * u + c1);
+    }
+
+    /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
+     * here is the interpolation matrix
+     * m = [ 0.0  1.0  0.0   0.0 ]
+     *     [-T    0.0  T     0.0 ]
+     *     [ 2T   T-3  3-2T  -T  ]
+     *     [-T    2-T  T-2   T   ]
+     * where T is the tension of the curve
+     * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
+     * @param u value from 0 to 1
+     * @param T The tension of the curve
+     * @param p0 control point 0
+     * @param p1 control point 1
+     * @param p2 control point 2
+     * @param p3 control point 3
+     * @param store a Vector3f to store the result
+     * @return catmull-Rom interpolation
+     */
+    public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
+        if (store == null) {
+            store = new Vector3f();
+        }
+        store.x = interpolateCatmullRom(u, T, p0.x, p1.x, p2.x, p3.x);
+        store.y = interpolateCatmullRom(u, T, p0.y, p1.y, p2.y, p3.y);
+        store.z = interpolateCatmullRom(u, T, p0.z, p1.z, p2.z, p3.z);
+        return store;
+    }
+
+    /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
+     * here is the interpolation matrix
+     * m = [ 0.0  1.0  0.0   0.0 ]
+     *     [-T    0.0  T     0.0 ]
+     *     [ 2T   T-3  3-2T  -T  ]
+     *     [-T    2-T  T-2   T   ]
+     * where T is the tension of the curve
+     * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
+     * @param u value from 0 to 1
+     * @param T The tension of the curve
+     * @param p0 control point 0
+     * @param p1 control point 1
+     * @param p2 control point 2
+     * @param p3 control point 3
+     * @return catmull-Rom interpolation
+     */
+    public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
+        return interpolateCatmullRom(u, T, p0, p1, p2, p3, null);
+    }
+
+    /**Interpolate a spline between at least 4 control points following the Bezier equation.
+     * here is the interpolation matrix
+     * m = [ -1.0   3.0  -3.0    1.0 ]
+     *     [  3.0  -6.0   3.0    0.0 ]
+     *     [ -3.0   3.0   0.0    0.0 ]
+     *     [  1.0   0.0   0.0    0.0 ]
+     * where T is the curve tension
+     * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
+     * @param u value from 0 to 1
+     * @param p0 control point 0
+     * @param p1 control point 1
+     * @param p2 control point 2
+     * @param p3 control point 3
+     * @return Bezier interpolation
+     */
+    public static float interpolateBezier(float u, float p0, float p1, float p2, float p3) {
+    	float oneMinusU = 1.0f - u;
+		float oneMinusU2 = oneMinusU * oneMinusU;
+		float u2 = u * u;
+		return p0 * oneMinusU2 * oneMinusU + 
+			   3.0f * p1 * u * oneMinusU2 + 
+			   3.0f * p2 * u2 * oneMinusU + 
+			   p3 * u2 * u;
+    }
+
+    /**Interpolate a spline between at least 4 control points following the Bezier equation.
+     * here is the interpolation matrix
+     * m = [ -1.0   3.0  -3.0    1.0 ]
+     *     [  3.0  -6.0   3.0    0.0 ]
+     *     [ -3.0   3.0   0.0    0.0 ]
+     *     [  1.0   0.0   0.0    0.0 ]
+     * where T is the tension of the curve
+     * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
+     * @param u value from 0 to 1
+     * @param p0 control point 0
+     * @param p1 control point 1
+     * @param p2 control point 2
+     * @param p3 control point 3
+     * @param store a Vector3f to store the result
+     * @return Bezier interpolation
+     */
+    public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
+        if (store == null) {
+            store = new Vector3f();
+        }
+        store.x = interpolateBezier(u, p0.x, p1.x, p2.x, p3.x);
+        store.y = interpolateBezier(u, p0.y, p1.y, p2.y, p3.y);
+        store.z = interpolateBezier(u, p0.z, p1.z, p2.z, p3.z);
+        return store;
+    }
+
+    /**Interpolate a spline between at least 4 control points following the Bezier equation.
+     * here is the interpolation matrix
+     * m = [ -1.0   3.0  -3.0    1.0 ]
+     *     [  3.0  -6.0   3.0    0.0 ]
+     *     [ -3.0   3.0   0.0    0.0 ]
+     *     [  1.0   0.0   0.0    0.0 ]
+     * where T is the tension of the curve
+     * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
+     * @param u value from 0 to 1
+     * @param p0 control point 0
+     * @param p1 control point 1
+     * @param p2 control point 2
+     * @param p3 control point 3
+     * @return Bezier interpolation
+     */
+    public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
+        return interpolateBezier(u, p0, p1, p2, p3, null);
+    }
+    
+    /**
+     * Compute the lenght on a catmull rom spline between control point 1 and 2
+     * @param p0 control point 0
+     * @param p1 control point 1
+     * @param p2 control point 2
+     * @param p3 control point 3
+     * @param startRange the starting range on the segment (use 0)
+     * @param endRange the end range on the segment (use 1)
+     * @param curveTension the curve tension
+     * @return the length of the segment
+     */
+    public static float getCatmullRomP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, float startRange, float endRange, float curveTension) {
+
+        float epsilon = 0.001f;
+        float middleValue = (startRange + endRange) * 0.5f;
+        Vector3f start = p1.clone();
+        if (startRange != 0) {
+            FastMath.interpolateCatmullRom(startRange, curveTension, p0, p1, p2, p3, start);
+        }
+        Vector3f end = p2.clone();
+        if (endRange != 1) {
+            FastMath.interpolateCatmullRom(endRange, curveTension, p0, p1, p2, p3, end);
+        }
+        Vector3f middle = FastMath.interpolateCatmullRom(middleValue, curveTension, p0, p1, p2, p3);
+        float l = end.subtract(start).length();
+        float l1 = middle.subtract(start).length();
+        float l2 = end.subtract(middle).length();
+        float len = l1 + l2;
+        if (l + epsilon < len) {
+            l1 = getCatmullRomP1toP2Length(p0, p1, p2, p3, startRange, middleValue, curveTension);
+            l2 = getCatmullRomP1toP2Length(p0, p1, p2, p3, middleValue, endRange, curveTension);
+        }
+        l = l1 + l2;
+        return l;
+    }
+
+    /**
+     * Compute the lenght on a bezier spline between control point 1 and 2
+     * @param p0 control point 0
+     * @param p1 control point 1
+     * @param p2 control point 2
+     * @param p3 control point 3
+     * @return the length of the segment
+     */
+    public static float getBezierP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
+        float delta = 0.02f, t = 0.0f, result = 0.0f;
+        Vector3f v1 = p0.clone(), v2 = new Vector3f();
+        while(t<=1.0f) {
+        	FastMath.interpolateBezier(t, p0, p1, p2, p3, v2);
+        	result += v1.subtractLocal(v2).length();
+        	v1.set(v2);
+        	t += delta;
+        }
+        return result;
+    }
+
+    /**
+     * Returns the arc cosine of an angle given in radians.<br>
+     * Special cases:
+     * <ul><li>If fValue is smaller than -1, then the result is PI.
+     * <li>If the argument is greater than 1, then the result is 0.</ul>
+     * @param fValue The angle, in radians.
+     * @return fValue's acos
+     * @see java.lang.Math#acos(double)
+     */
+    public static float acos(float fValue) {
+        if (-1.0f < fValue) {
+            if (fValue < 1.0f) {
+                return (float) Math.acos(fValue);
+            }
+
+            return 0.0f;
+        }
+
+        return PI;
+    }
+
+    /**
+     * Returns the arc sine of an angle given in radians.<br>
+     * Special cases:
+     * <ul><li>If fValue is smaller than -1, then the result is -HALF_PI.
+     * <li>If the argument is greater than 1, then the result is HALF_PI.</ul>
+     * @param fValue The angle, in radians.
+     * @return fValue's asin
+     * @see java.lang.Math#asin(double)
+     */
+    public static float asin(float fValue) {
+        if (-1.0f < fValue) {
+            if (fValue < 1.0f) {
+                return (float) Math.asin(fValue);
+            }
+
+            return HALF_PI;
+        }
+
+        return -HALF_PI;
+    }
+
+    /**
+     * Returns the arc tangent of an angle given in radians.<br>
+     * @param fValue The angle, in radians.
+     * @return fValue's atan
+     * @see java.lang.Math#atan(double)
+     */
+    public static float atan(float fValue) {
+        return (float) Math.atan(fValue);
+    }
+
+    /**
+     * A direct call to Math.atan2.
+     * @param fY
+     * @param fX
+     * @return Math.atan2(fY,fX)
+     * @see java.lang.Math#atan2(double, double)
+     */
+    public static float atan2(float fY, float fX) {
+        return (float) Math.atan2(fY, fX);
+    }
+
+    /**
+     * Rounds a fValue up.  A call to Math.ceil
+     * @param fValue The value.
+     * @return The fValue rounded up
+     * @see java.lang.Math#ceil(double)
+     */
+    public static float ceil(float fValue) {
+        return (float) Math.ceil(fValue);
+    }
+
+    /**
+     * Fast Trig functions for x86. This forces the trig functiosn to stay
+     * within the safe area on the x86 processor (-45 degrees to +45 degrees)
+     * The results may be very slightly off from what the Math and StrictMath
+     * trig functions give due to rounding in the angle reduction but it will be
+     * very very close. 
+     * 
+     * note: code from wiki posting on java.net by jeffpk
+     */
+    public static float reduceSinAngle(float radians) {
+        radians %= TWO_PI; // put us in -2PI to +2PI space
+        if (Math.abs(radians) > PI) { // put us in -PI to +PI space
+            radians = radians - (TWO_PI);
+        }
+        if (Math.abs(radians) > HALF_PI) {// put us in -PI/2 to +PI/2 space
+            radians = PI - radians;
+        }
+
+        return radians;
+    }
+
+    /**
+     * Returns sine of a value. 
+     * 
+     * note: code from wiki posting on java.net by jeffpk
+     * 
+     * @param fValue
+     *            The value to sine, in radians.
+     * @return The sine of fValue.
+     * @see java.lang.Math#sin(double)
+     */
+    public static float sin2(float fValue) {
+        fValue = reduceSinAngle(fValue); // limits angle to between -PI/2 and +PI/2
+        if (Math.abs(fValue) <= Math.PI / 4) {
+            return (float) Math.sin(fValue);
+        }
+
+        return (float) Math.cos(Math.PI / 2 - fValue);
+    }
+
+    /**
+     * Returns cos of a value.
+     * 
+     * @param fValue
+     *            The value to cosine, in radians.
+     * @return The cosine of fValue.
+     * @see java.lang.Math#cos(double)
+     */
+    public static float cos2(float fValue) {
+        return sin2(fValue + HALF_PI);
+    }
+
+    public static float cos(float v) {
+        return (float) Math.cos(v);
+    }
+
+    public static float sin(float v) {
+        return (float) Math.sin(v);
+    }
+
+    /**
+     * Returns E^fValue
+     * @param fValue Value to raise to a power.
+     * @return The value E^fValue
+     * @see java.lang.Math#exp(double)
+     */
+    public static float exp(float fValue) {
+        return (float) Math.exp(fValue);
+    }
+
+    /**
+     * Returns Absolute value of a float.
+     * @param fValue The value to abs.
+     * @return The abs of the value.
+     * @see java.lang.Math#abs(float)
+     */
+    public static float abs(float fValue) {
+        if (fValue < 0) {
+            return -fValue;
+        }
+        return fValue;
+    }
+
+    /**
+     * Returns a number rounded down.
+     * @param fValue The value to round
+     * @return The given number rounded down
+     * @see java.lang.Math#floor(double)
+     */
+    public static float floor(float fValue) {
+        return (float) Math.floor(fValue);
+    }
+
+    /**
+     * Returns 1/sqrt(fValue)
+     * @param fValue The value to process.
+     * @return 1/sqrt(fValue)
+     * @see java.lang.Math#sqrt(double)
+     */
+    public static float invSqrt(float fValue) {
+        return (float) (1.0f / Math.sqrt(fValue));
+    }
+
+    public static float fastInvSqrt(float x) {
+        float xhalf = 0.5f * x;
+        int i = Float.floatToIntBits(x); // get bits for floating value
+        i = 0x5f375a86 - (i >> 1); // gives initial guess y0
+        x = Float.intBitsToFloat(i); // convert bits back to float
+        x = x * (1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
+        return x;
+    }
+
+    /**
+     * Returns the log base E of a value.
+     * @param fValue The value to log.
+     * @return The log of fValue base E
+     * @see java.lang.Math#log(double)
+     */
+    public static float log(float fValue) {
+        return (float) Math.log(fValue);
+    }
+
+    /**
+     * Returns the logarithm of value with given base, calculated as log(value)/log(base), 
+     * so that pow(base, return)==value (contributed by vear)
+     * @param value The value to log.
+     * @param base Base of logarithm.
+     * @return The logarithm of value with given base
+     */
+    public static float log(float value, float base) {
+        return (float) (Math.log(value) / Math.log(base));
+    }
+
+    /**
+     * Returns a number raised to an exponent power.  fBase^fExponent
+     * @param fBase The base value (IE 2)
+     * @param fExponent The exponent value (IE 3)
+     * @return base raised to exponent (IE 8)
+     * @see java.lang.Math#pow(double, double)
+     */
+    public static float pow(float fBase, float fExponent) {
+        return (float) Math.pow(fBase, fExponent);
+    }
+
+    /**
+     * Returns the value squared.  fValue ^ 2
+     * @param fValue The vaule to square.
+     * @return The square of the given value.
+     */
+    public static float sqr(float fValue) {
+        return fValue * fValue;
+    }
+
+    /**
+     * Returns the square root of a given value.
+     * @param fValue The value to sqrt.
+     * @return The square root of the given value.
+     * @see java.lang.Math#sqrt(double)
+     */
+    public static float sqrt(float fValue) {
+        return (float) Math.sqrt(fValue);
+    }
+
+    /**
+     * Returns the tangent of a value.  If USE_FAST_TRIG is enabled, an approximate value
+     * is returned.  Otherwise, a direct value is used.
+     * @param fValue The value to tangent, in radians.
+     * @return The tangent of fValue.
+     * @see java.lang.Math#tan(double)
+     */
+    public static float tan(float fValue) {
+        return (float) Math.tan(fValue);
+    }
+
+    /**
+     * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
+     * @param iValue The integer to examine.
+     * @return The integer's sign.
+     */
+    public static int sign(int iValue) {
+        if (iValue > 0) {
+            return 1;
+        }
+        if (iValue < 0) {
+            return -1;
+        }
+        return 0;
+    }
+
+    /**
+     * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
+     * @param fValue The float to examine.
+     * @return The float's sign.
+     */
+    public static float sign(float fValue) {
+        return Math.signum(fValue);
+    }
+
+    /**
+     * Given 3 points in a 2d plane, this function computes if the points going from A-B-C
+     * are moving counter clock wise.
+     * @param p0 Point 0.
+     * @param p1 Point 1.
+     * @param p2 Point 2.
+     * @return 1 If they are CCW, -1 if they are not CCW, 0 if p2 is between p0 and p1.
+     */
+    public static int counterClockwise(Vector2f p0, Vector2f p1, Vector2f p2) {
+        float dx1, dx2, dy1, dy2;
+        dx1 = p1.x - p0.x;
+        dy1 = p1.y - p0.y;
+        dx2 = p2.x - p0.x;
+        dy2 = p2.y - p0.y;
+        if (dx1 * dy2 > dy1 * dx2) {
+            return 1;
+        }
+        if (dx1 * dy2 < dy1 * dx2) {
+            return -1;
+        }
+        if ((dx1 * dx2 < 0) || (dy1 * dy2 < 0)) {
+            return -1;
+        }
+        if ((dx1 * dx1 + dy1 * dy1) < (dx2 * dx2 + dy2 * dy2)) {
+            return 1;
+        }
+        return 0;
+    }
+
+    /**
+     * Test if a point is inside a triangle.  1 if the point is on the ccw side,
+     * -1 if the point is on the cw side, and 0 if it is on neither.
+     * @param t0 First point of the triangle.
+     * @param t1 Second point of the triangle.
+     * @param t2 Third point of the triangle.
+     * @param p The point to test.
+     * @return Value 1 or -1 if inside triangle, 0 otherwise.
+     */
+    public static int pointInsideTriangle(Vector2f t0, Vector2f t1, Vector2f t2, Vector2f p) {
+        int val1 = counterClockwise(t0, t1, p);
+        if (val1 == 0) {
+            return 1;
+        }
+        int val2 = counterClockwise(t1, t2, p);
+        if (val2 == 0) {
+            return 1;
+        }
+        if (val2 != val1) {
+            return 0;
+        }
+        int val3 = counterClockwise(t2, t0, p);
+        if (val3 == 0) {
+            return 1;
+        }
+        if (val3 != val1) {
+            return 0;
+        }
+        return val3;
+    }
+    
+    /**
+     * A method that computes normal for a triangle defined by three vertices.
+     * @param v1 first vertex
+     * @param v2 second vertex
+     * @param v3 third vertex
+     * @return a normal for the face
+     */
+    public static Vector3f computeNormal(Vector3f v1, Vector3f v2, Vector3f v3) {
+    	Vector3f a1 = v1.subtract(v2);
+		Vector3f a2 = v3.subtract(v2);
+		return a2.crossLocal(a1).normalizeLocal();
+    }
+
+    /**
+     * Returns the determinant of a 4x4 matrix.
+     */
+    public static float determinant(double m00, double m01, double m02,
+            double m03, double m10, double m11, double m12, double m13,
+            double m20, double m21, double m22, double m23, double m30,
+            double m31, double m32, double m33) {
+
+        double det01 = m20 * m31 - m21 * m30;
+        double det02 = m20 * m32 - m22 * m30;
+        double det03 = m20 * m33 - m23 * m30;
+        double det12 = m21 * m32 - m22 * m31;
+        double det13 = m21 * m33 - m23 * m31;
+        double det23 = m22 * m33 - m23 * m32;
+        return (float) (m00 * (m11 * det23 - m12 * det13 + m13 * det12) - m01
+                * (m10 * det23 - m12 * det03 + m13 * det02) + m02
+                * (m10 * det13 - m11 * det03 + m13 * det01) - m03
+                * (m10 * det12 - m11 * det02 + m12 * det01));
+    }
+
+    /**
+     * Returns a random float between 0 and 1.
+     * 
+     * @return A random float between <tt>0.0f</tt> (inclusive) to
+     *         <tt>1.0f</tt> (exclusive).
+     */
+    public static float nextRandomFloat() {
+        return rand.nextFloat();
+    }
+
+    /**
+     * Returns a random float between min and max.
+     * 
+     * @return A random int between <tt>min</tt> (inclusive) to
+     *         <tt>max</tt> (inclusive).
+     */
+    public static int nextRandomInt(int min, int max) {
+        return (int) (nextRandomFloat() * (max - min + 1)) + min;
+    }
+
+    public static int nextRandomInt() {
+        return rand.nextInt();
+    }
+
+    /**
+     * Converts a point from Spherical coordinates to Cartesian (using positive
+     * Y as up) and stores the results in the store var.
+     */
+    public static Vector3f sphericalToCartesian(Vector3f sphereCoords,
+            Vector3f store) {
+        store.y = sphereCoords.x * FastMath.sin(sphereCoords.z);
+        float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
+        store.x = a * FastMath.cos(sphereCoords.y);
+        store.z = a * FastMath.sin(sphereCoords.y);
+
+        return store;
+    }
+
+    /**
+     * Converts a point from Cartesian coordinates (using positive Y as up) to
+     * Spherical and stores the results in the store var. (Radius, Azimuth,
+     * Polar)
+     */
+    public static Vector3f cartesianToSpherical(Vector3f cartCoords,
+            Vector3f store) {
+        float x = cartCoords.x;
+        if (x == 0) {
+            x = FastMath.FLT_EPSILON;
+        }
+        store.x = FastMath.sqrt((x * x)
+                + (cartCoords.y * cartCoords.y)
+                + (cartCoords.z * cartCoords.z));
+        store.y = FastMath.atan(cartCoords.z / x);
+        if (x < 0) {
+            store.y += FastMath.PI;
+        }
+        store.z = FastMath.asin(cartCoords.y / store.x);
+        return store;
+    }
+
+    /**
+     * Converts a point from Spherical coordinates to Cartesian (using positive
+     * Z as up) and stores the results in the store var.
+     */
+    public static Vector3f sphericalToCartesianZ(Vector3f sphereCoords,
+            Vector3f store) {
+        store.z = sphereCoords.x * FastMath.sin(sphereCoords.z);
+        float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
+        store.x = a * FastMath.cos(sphereCoords.y);
+        store.y = a * FastMath.sin(sphereCoords.y);
+
+        return store;
+    }
+
+    /**
+     * Converts a point from Cartesian coordinates (using positive Z as up) to
+     * Spherical and stores the results in the store var. (Radius, Azimuth,
+     * Polar)
+     */
+    public static Vector3f cartesianZToSpherical(Vector3f cartCoords,
+            Vector3f store) {
+        float x = cartCoords.x;
+        if (x == 0) {
+            x = FastMath.FLT_EPSILON;
+        }
+        store.x = FastMath.sqrt((x * x)
+                + (cartCoords.y * cartCoords.y)
+                + (cartCoords.z * cartCoords.z));
+        store.z = FastMath.atan(cartCoords.z / x);
+        if (x < 0) {
+            store.z += FastMath.PI;
+        }
+        store.y = FastMath.asin(cartCoords.y / store.x);
+        return store;
+    }
+
+    /**
+     * Takes an value and expresses it in terms of min to max.
+     * 
+     * @param val -
+     *            the angle to normalize (in radians)
+     * @return the normalized angle (also in radians)
+     */
+    public static float normalize(float val, float min, float max) {
+        if (Float.isInfinite(val) || Float.isNaN(val)) {
+            return 0f;
+        }
+        float range = max - min;
+        while (val > max) {
+            val -= range;
+        }
+        while (val < min) {
+            val += range;
+        }
+        return val;
+    }
+
+    /**
+     * @param x
+     *            the value whose sign is to be adjusted.
+     * @param y
+     *            the value whose sign is to be used.
+     * @return x with its sign changed to match the sign of y.
+     */
+    public static float copysign(float x, float y) {
+        if (y >= 0 && x <= -0) {
+            return -x;
+        } else if (y < 0 && x >= 0) {
+            return -x;
+        } else {
+            return x;
+        }
+    }
+
+    /**
+     * Take a float input and clamp it between min and max.
+     * 
+     * @param input
+     * @param min
+     * @param max
+     * @return clamped input
+     */
+    public static float clamp(float input, float min, float max) {
+        return (input < min) ? min : (input > max) ? max : input;
+    }
+
+    /**
+     * Clamps the given float to be between 0 and 1.
+     *
+     * @param input
+     * @return input clamped between 0 and 1.
+     */
+    public static float saturate(float input) {
+        return clamp(input, 0f, 1f);
+    }
+
+    /**
+     * Converts a single precision (32 bit) floating point value
+     * into half precision (16 bit).
+     *
+     * Source: http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf
+     *
+     * @param half The half floating point value as a short.
+     * @return floating point value of the half.
+     */
+    public static float convertHalfToFloat(short half) {
+        switch ((int) half) {
+            case 0x0000:
+                return 0f;
+            case 0x8000:
+                return -0f;
+            case 0x7c00:
+                return Float.POSITIVE_INFINITY;
+            case 0xfc00:
+                return Float.NEGATIVE_INFINITY;
+            // TODO: Support for NaN?
+            default:
+                return Float.intBitsToFloat(((half & 0x8000) << 16)
+                        | (((half & 0x7c00) + 0x1C000) << 13)
+                        | ((half & 0x03FF) << 13));
+        }
+    }
+
+    public static short convertFloatToHalf(float flt) {
+        if (Float.isNaN(flt)) {
+            throw new UnsupportedOperationException("NaN to half conversion not supported!");
+        } else if (flt == Float.POSITIVE_INFINITY) {
+            return (short) 0x7c00;
+        } else if (flt == Float.NEGATIVE_INFINITY) {
+            return (short) 0xfc00;
+        } else if (flt == 0f) {
+            return (short) 0x0000;
+        } else if (flt == -0f) {
+            return (short) 0x8000;
+        } else if (flt > 65504f) {
+            // max value supported by half float
+            return 0x7bff;
+        } else if (flt < -65504f) {
+            return (short) (0x7bff | 0x8000);
+        } else if (flt > 0f && flt < 5.96046E-8f) {
+            return 0x0001;
+        } else if (flt < 0f && flt > -5.96046E-8f) {
+            return (short) 0x8001;
+        }
+
+        int f = Float.floatToIntBits(flt);
+        return (short) (((f >> 16) & 0x8000)
+                | ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00)
+                | ((f >> 13) & 0x03ff));
+    }
+}