|
@@ -1,959 +1,960 @@
|
|
|
-/*
|
|
|
- * Copyright (c) 2009-2012 jMonkeyEngine
|
|
|
- * All rights reserved.
|
|
|
- *
|
|
|
- * Redistribution and use in source and binary forms, with or without
|
|
|
- * modification, are permitted provided that the following conditions are
|
|
|
- * met:
|
|
|
- *
|
|
|
- * * Redistributions of source code must retain the above copyright
|
|
|
- * notice, this list of conditions and the following disclaimer.
|
|
|
- *
|
|
|
- * * Redistributions in binary form must reproduce the above copyright
|
|
|
- * notice, this list of conditions and the following disclaimer in the
|
|
|
- * documentation and/or other materials provided with the distribution.
|
|
|
- *
|
|
|
- * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
|
|
|
- * may be used to endorse or promote products derived from this software
|
|
|
- * without specific prior written permission.
|
|
|
- *
|
|
|
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
- */
|
|
|
-package com.jme3.math;
|
|
|
-
|
|
|
-import java.util.Random;
|
|
|
-
|
|
|
-/**
|
|
|
- * <code>FastMath</code> provides 'fast' math approximations and float equivalents of Math
|
|
|
- * functions. These are all used as static values and functions.
|
|
|
- *
|
|
|
- * @author Various
|
|
|
- * @version $Id: FastMath.java,v 1.45 2007/08/26 08:44:20 irrisor Exp $
|
|
|
- */
|
|
|
-final public class FastMath {
|
|
|
-
|
|
|
- private FastMath() {
|
|
|
- }
|
|
|
- /** A "close to zero" double epsilon value for use*/
|
|
|
- public static final double DBL_EPSILON = 2.220446049250313E-16d;
|
|
|
- /** A "close to zero" float epsilon value for use*/
|
|
|
- public static final float FLT_EPSILON = 1.1920928955078125E-7f;
|
|
|
- /** A "close to zero" float epsilon value for use*/
|
|
|
- public static final float ZERO_TOLERANCE = 0.0001f;
|
|
|
- public static final float ONE_THIRD = 1f / 3f;
|
|
|
- /** The value PI as a float. (180 degrees) */
|
|
|
- public static final float PI = (float) Math.PI;
|
|
|
- /** The value 2PI as a float. (360 degrees) */
|
|
|
- public static final float TWO_PI = 2.0f * PI;
|
|
|
- /** The value PI/2 as a float. (90 degrees) */
|
|
|
- public static final float HALF_PI = 0.5f * PI;
|
|
|
- /** The value PI/4 as a float. (45 degrees) */
|
|
|
- public static final float QUARTER_PI = 0.25f * PI;
|
|
|
- /** The value 1/PI as a float. */
|
|
|
- public static final float INV_PI = 1.0f / PI;
|
|
|
- /** The value 1/(2PI) as a float. */
|
|
|
- public static final float INV_TWO_PI = 1.0f / TWO_PI;
|
|
|
- /** A value to multiply a degree value by, to convert it to radians. */
|
|
|
- public static final float DEG_TO_RAD = PI / 180.0f;
|
|
|
- /** A value to multiply a radian value by, to convert it to degrees. */
|
|
|
- public static final float RAD_TO_DEG = 180.0f / PI;
|
|
|
- /** A precreated random object for random numbers. */
|
|
|
- public static final Random rand = new Random(System.currentTimeMillis());
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns true if the number is a power of 2 (2,4,8,16...)
|
|
|
- *
|
|
|
- * A good implementation found on the Java boards. note: a number is a power
|
|
|
- * of two if and only if it is the smallest number with that number of
|
|
|
- * significant bits. Therefore, if you subtract 1, you know that the new
|
|
|
- * number will have fewer bits, so ANDing the original number with anything
|
|
|
- * less than it will give 0.
|
|
|
- *
|
|
|
- * @param number
|
|
|
- * The number to test.
|
|
|
- * @return True if it is a power of two.
|
|
|
- */
|
|
|
- public static boolean isPowerOfTwo(int number) {
|
|
|
- return (number > 0) && (number & (number - 1)) == 0;
|
|
|
- }
|
|
|
-
|
|
|
- public static int nearestPowerOfTwo(int number) {
|
|
|
- return (int) Math.pow(2, Math.ceil(Math.log(number) / Math.log(2)));
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Linear interpolation from startValue to endValue by the given percent.
|
|
|
- * Basically: ((1 - percent) * startValue) + (percent * endValue)
|
|
|
- *
|
|
|
- * @param scale
|
|
|
- * scale value to use. if 1, use endValue, if 0, use startValue.
|
|
|
- * @param startValue
|
|
|
- * Begining value. 0% of f
|
|
|
- * @param endValue
|
|
|
- * ending value. 100% of f
|
|
|
- * @return The interpolated value between startValue and endValue.
|
|
|
- */
|
|
|
- public static float interpolateLinear(float scale, float startValue, float endValue) {
|
|
|
- if (startValue == endValue) {
|
|
|
- return startValue;
|
|
|
- }
|
|
|
- if (scale <= 0f) {
|
|
|
- return startValue;
|
|
|
- }
|
|
|
- if (scale >= 1f) {
|
|
|
- return endValue;
|
|
|
- }
|
|
|
- return ((1f - scale) * startValue) + (scale * endValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Linear interpolation from startValue to endValue by the given percent.
|
|
|
- * Basically: ((1 - percent) * startValue) + (percent * endValue)
|
|
|
- *
|
|
|
- * @param scale
|
|
|
- * scale value to use. if 1, use endValue, if 0, use startValue.
|
|
|
- * @param startValue
|
|
|
- * Begining value. 0% of f
|
|
|
- * @param endValue
|
|
|
- * ending value. 100% of f
|
|
|
- * @param store a vector3f to store the result
|
|
|
- * @return The interpolated value between startValue and endValue.
|
|
|
- */
|
|
|
- public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue, Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
- store.x = interpolateLinear(scale, startValue.x, endValue.x);
|
|
|
- store.y = interpolateLinear(scale, startValue.y, endValue.y);
|
|
|
- store.z = interpolateLinear(scale, startValue.z, endValue.z);
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Linear interpolation from startValue to endValue by the given percent.
|
|
|
- * Basically: ((1 - percent) * startValue) + (percent * endValue)
|
|
|
- *
|
|
|
- * @param scale
|
|
|
- * scale value to use. if 1, use endValue, if 0, use startValue.
|
|
|
- * @param startValue
|
|
|
- * Begining value. 0% of f
|
|
|
- * @param endValue
|
|
|
- * ending value. 100% of f
|
|
|
- * @return The interpolated value between startValue and endValue.
|
|
|
- */
|
|
|
- public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue) {
|
|
|
- return interpolateLinear(scale, startValue, endValue, null);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Linear extrapolation from startValue to endValue by the given scale.
|
|
|
- * if scale is between 0 and 1 this method returns the same result as interpolateLinear
|
|
|
- * if the scale is over 1 the value is linearly extrapolated.
|
|
|
- * Note that the end value is the value for a scale of 1.
|
|
|
- * @param scale the scale for extrapolation
|
|
|
- * @param startValue the starting value (scale = 0)
|
|
|
- * @param endValue the end value (scale = 1)
|
|
|
- * @return an extrapolation for the given parameters
|
|
|
- */
|
|
|
- public static float extrapolateLinear(float scale, float startValue, float endValue) {
|
|
|
-// if (scale <= 0f) {
|
|
|
-// return startValue;
|
|
|
-// }
|
|
|
- return ((1f - scale) * startValue) + (scale * endValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Linear extrapolation from startValue to endValue by the given scale.
|
|
|
- * if scale is between 0 and 1 this method returns the same result as interpolateLinear
|
|
|
- * if the scale is over 1 the value is linearly extrapolated.
|
|
|
- * Note that the end value is the value for a scale of 1.
|
|
|
- * @param scale the scale for extrapolation
|
|
|
- * @param startValue the starting value (scale = 0)
|
|
|
- * @param endValue the end value (scale = 1)
|
|
|
- * @param store an initialized vector to store the return value
|
|
|
- * @return an extrapolation for the given parameters
|
|
|
- */
|
|
|
- public static Vector3f extrapolateLinear(float scale, Vector3f startValue, Vector3f endValue, Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
-// if (scale <= 1f) {
|
|
|
-// return interpolateLinear(scale, startValue, endValue, store);
|
|
|
-// }
|
|
|
- store.x = extrapolateLinear(scale, startValue.x, endValue.x);
|
|
|
- store.y = extrapolateLinear(scale, startValue.y, endValue.y);
|
|
|
- store.z = extrapolateLinear(scale, startValue.z, endValue.z);
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Linear extrapolation from startValue to endValue by the given scale.
|
|
|
- * if scale is between 0 and 1 this method returns the same result as interpolateLinear
|
|
|
- * if the scale is over 1 the value is linearly extrapolated.
|
|
|
- * Note that the end value is the value for a scale of 1.
|
|
|
- * @param scale the scale for extrapolation
|
|
|
- * @param startValue the starting value (scale = 0)
|
|
|
- * @param endValue the end value (scale = 1)
|
|
|
- * @return an extrapolation for the given parameters
|
|
|
- */
|
|
|
- public static Vector3f extrapolateLinear(float scale, Vector3f startValue, Vector3f endValue) {
|
|
|
- return extrapolateLinear(scale, startValue, endValue, null);
|
|
|
- }
|
|
|
-
|
|
|
- /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
|
|
|
- * here is the interpolation matrix
|
|
|
- * m = [ 0.0 1.0 0.0 0.0 ]
|
|
|
- * [-T 0.0 T 0.0 ]
|
|
|
- * [ 2T T-3 3-2T -T ]
|
|
|
- * [-T 2-T T-2 T ]
|
|
|
- * where T is the curve tension
|
|
|
- * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
|
|
|
- * @param u value from 0 to 1
|
|
|
- * @param T The tension of the curve
|
|
|
- * @param p0 control point 0
|
|
|
- * @param p1 control point 1
|
|
|
- * @param p2 control point 2
|
|
|
- * @param p3 control point 3
|
|
|
- * @return catmull-Rom interpolation
|
|
|
- */
|
|
|
- public static float interpolateCatmullRom(float u, float T, float p0, float p1, float p2, float p3) {
|
|
|
- float c1, c2, c3, c4;
|
|
|
- c1 = p1;
|
|
|
- c2 = -1.0f * T * p0 + T * p2;
|
|
|
- c3 = 2 * T * p0 + (T - 3) * p1 + (3 - 2 * T) * p2 + -T * p3;
|
|
|
- c4 = -T * p0 + (2 - T) * p1 + (T - 2) * p2 + T * p3;
|
|
|
-
|
|
|
- return (float) (((c4 * u + c3) * u + c2) * u + c1);
|
|
|
- }
|
|
|
-
|
|
|
- /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
|
|
|
- * here is the interpolation matrix
|
|
|
- * m = [ 0.0 1.0 0.0 0.0 ]
|
|
|
- * [-T 0.0 T 0.0 ]
|
|
|
- * [ 2T T-3 3-2T -T ]
|
|
|
- * [-T 2-T T-2 T ]
|
|
|
- * where T is the tension of the curve
|
|
|
- * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
|
|
|
- * @param u value from 0 to 1
|
|
|
- * @param T The tension of the curve
|
|
|
- * @param p0 control point 0
|
|
|
- * @param p1 control point 1
|
|
|
- * @param p2 control point 2
|
|
|
- * @param p3 control point 3
|
|
|
- * @param store a Vector3f to store the result
|
|
|
- * @return catmull-Rom interpolation
|
|
|
- */
|
|
|
- public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
- store.x = interpolateCatmullRom(u, T, p0.x, p1.x, p2.x, p3.x);
|
|
|
- store.y = interpolateCatmullRom(u, T, p0.y, p1.y, p2.y, p3.y);
|
|
|
- store.z = interpolateCatmullRom(u, T, p0.z, p1.z, p2.z, p3.z);
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
|
|
|
- * here is the interpolation matrix
|
|
|
- * m = [ 0.0 1.0 0.0 0.0 ]
|
|
|
- * [-T 0.0 T 0.0 ]
|
|
|
- * [ 2T T-3 3-2T -T ]
|
|
|
- * [-T 2-T T-2 T ]
|
|
|
- * where T is the tension of the curve
|
|
|
- * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
|
|
|
- * @param u value from 0 to 1
|
|
|
- * @param T The tension of the curve
|
|
|
- * @param p0 control point 0
|
|
|
- * @param p1 control point 1
|
|
|
- * @param p2 control point 2
|
|
|
- * @param p3 control point 3
|
|
|
- * @return catmull-Rom interpolation
|
|
|
- */
|
|
|
- public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
|
|
|
- return interpolateCatmullRom(u, T, p0, p1, p2, p3, null);
|
|
|
- }
|
|
|
-
|
|
|
- /**Interpolate a spline between at least 4 control points following the Bezier equation.
|
|
|
- * here is the interpolation matrix
|
|
|
- * m = [ -1.0 3.0 -3.0 1.0 ]
|
|
|
- * [ 3.0 -6.0 3.0 0.0 ]
|
|
|
- * [ -3.0 3.0 0.0 0.0 ]
|
|
|
- * [ 1.0 0.0 0.0 0.0 ]
|
|
|
- * where T is the curve tension
|
|
|
- * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
|
|
|
- * @param u value from 0 to 1
|
|
|
- * @param p0 control point 0
|
|
|
- * @param p1 control point 1
|
|
|
- * @param p2 control point 2
|
|
|
- * @param p3 control point 3
|
|
|
- * @return Bezier interpolation
|
|
|
- */
|
|
|
- public static float interpolateBezier(float u, float p0, float p1, float p2, float p3) {
|
|
|
- float oneMinusU = 1.0f - u;
|
|
|
- float oneMinusU2 = oneMinusU * oneMinusU;
|
|
|
- float u2 = u * u;
|
|
|
- return p0 * oneMinusU2 * oneMinusU
|
|
|
- + 3.0f * p1 * u * oneMinusU2
|
|
|
- + 3.0f * p2 * u2 * oneMinusU
|
|
|
- + p3 * u2 * u;
|
|
|
- }
|
|
|
-
|
|
|
- /**Interpolate a spline between at least 4 control points following the Bezier equation.
|
|
|
- * here is the interpolation matrix
|
|
|
- * m = [ -1.0 3.0 -3.0 1.0 ]
|
|
|
- * [ 3.0 -6.0 3.0 0.0 ]
|
|
|
- * [ -3.0 3.0 0.0 0.0 ]
|
|
|
- * [ 1.0 0.0 0.0 0.0 ]
|
|
|
- * where T is the tension of the curve
|
|
|
- * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
|
|
|
- * @param u value from 0 to 1
|
|
|
- * @param p0 control point 0
|
|
|
- * @param p1 control point 1
|
|
|
- * @param p2 control point 2
|
|
|
- * @param p3 control point 3
|
|
|
- * @param store a Vector3f to store the result
|
|
|
- * @return Bezier interpolation
|
|
|
- */
|
|
|
- public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
- store.x = interpolateBezier(u, p0.x, p1.x, p2.x, p3.x);
|
|
|
- store.y = interpolateBezier(u, p0.y, p1.y, p2.y, p3.y);
|
|
|
- store.z = interpolateBezier(u, p0.z, p1.z, p2.z, p3.z);
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**Interpolate a spline between at least 4 control points following the Bezier equation.
|
|
|
- * here is the interpolation matrix
|
|
|
- * m = [ -1.0 3.0 -3.0 1.0 ]
|
|
|
- * [ 3.0 -6.0 3.0 0.0 ]
|
|
|
- * [ -3.0 3.0 0.0 0.0 ]
|
|
|
- * [ 1.0 0.0 0.0 0.0 ]
|
|
|
- * where T is the tension of the curve
|
|
|
- * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
|
|
|
- * @param u value from 0 to 1
|
|
|
- * @param p0 control point 0
|
|
|
- * @param p1 control point 1
|
|
|
- * @param p2 control point 2
|
|
|
- * @param p3 control point 3
|
|
|
- * @return Bezier interpolation
|
|
|
- */
|
|
|
- public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
|
|
|
- return interpolateBezier(u, p0, p1, p2, p3, null);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Compute the lenght on a catmull rom spline between control point 1 and 2
|
|
|
- * @param p0 control point 0
|
|
|
- * @param p1 control point 1
|
|
|
- * @param p2 control point 2
|
|
|
- * @param p3 control point 3
|
|
|
- * @param startRange the starting range on the segment (use 0)
|
|
|
- * @param endRange the end range on the segment (use 1)
|
|
|
- * @param curveTension the curve tension
|
|
|
- * @return the length of the segment
|
|
|
- */
|
|
|
- public static float getCatmullRomP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, float startRange, float endRange, float curveTension) {
|
|
|
-
|
|
|
- float epsilon = 0.001f;
|
|
|
- float middleValue = (startRange + endRange) * 0.5f;
|
|
|
- Vector3f start = p1.clone();
|
|
|
- if (startRange != 0) {
|
|
|
- FastMath.interpolateCatmullRom(startRange, curveTension, p0, p1, p2, p3, start);
|
|
|
- }
|
|
|
- Vector3f end = p2.clone();
|
|
|
- if (endRange != 1) {
|
|
|
- FastMath.interpolateCatmullRom(endRange, curveTension, p0, p1, p2, p3, end);
|
|
|
- }
|
|
|
- Vector3f middle = FastMath.interpolateCatmullRom(middleValue, curveTension, p0, p1, p2, p3);
|
|
|
- float l = end.subtract(start).length();
|
|
|
- float l1 = middle.subtract(start).length();
|
|
|
- float l2 = end.subtract(middle).length();
|
|
|
- float len = l1 + l2;
|
|
|
- if (l + epsilon < len) {
|
|
|
- l1 = getCatmullRomP1toP2Length(p0, p1, p2, p3, startRange, middleValue, curveTension);
|
|
|
- l2 = getCatmullRomP1toP2Length(p0, p1, p2, p3, middleValue, endRange, curveTension);
|
|
|
- }
|
|
|
- l = l1 + l2;
|
|
|
- return l;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Compute the lenght on a bezier spline between control point 1 and 2
|
|
|
- * @param p0 control point 0
|
|
|
- * @param p1 control point 1
|
|
|
- * @param p2 control point 2
|
|
|
- * @param p3 control point 3
|
|
|
- * @return the length of the segment
|
|
|
- */
|
|
|
- public static float getBezierP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
|
|
|
- float delta = 0.02f, t = 0.0f, result = 0.0f;
|
|
|
- Vector3f v1 = p0.clone(), v2 = new Vector3f();
|
|
|
- while (t <= 1.0f) {
|
|
|
- FastMath.interpolateBezier(t, p0, p1, p2, p3, v2);
|
|
|
- result += v1.subtractLocal(v2).length();
|
|
|
- v1.set(v2);
|
|
|
- t += delta;
|
|
|
- }
|
|
|
- return result;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the arc cosine of a value.<br>
|
|
|
- * Special cases:
|
|
|
- * <ul><li>If fValue is smaller than -1, then the result is PI.
|
|
|
- * <li>If the argument is greater than 1, then the result is 0.</ul>
|
|
|
- * @param fValue The value to arc cosine.
|
|
|
- * @return The angle, in radians.
|
|
|
- * @see java.lang.Math#acos(double)
|
|
|
- */
|
|
|
- public static float acos(float fValue) {
|
|
|
- if (-1.0f < fValue) {
|
|
|
- if (fValue < 1.0f) {
|
|
|
- return (float) Math.acos(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- return 0.0f;
|
|
|
- }
|
|
|
-
|
|
|
- return PI;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the arc sine of a value.<br>
|
|
|
- * Special cases:
|
|
|
- * <ul><li>If fValue is smaller than -1, then the result is -HALF_PI.
|
|
|
- * <li>If the argument is greater than 1, then the result is HALF_PI.</ul>
|
|
|
- * @param fValue The value to arc sine.
|
|
|
- * @return the angle in radians.
|
|
|
- * @see java.lang.Math#asin(double)
|
|
|
- */
|
|
|
- public static float asin(float fValue) {
|
|
|
- if (-1.0f < fValue) {
|
|
|
- if (fValue < 1.0f) {
|
|
|
- return (float) Math.asin(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- return HALF_PI;
|
|
|
- }
|
|
|
-
|
|
|
- return -HALF_PI;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the arc tangent of an angle given in radians.<br>
|
|
|
- * @param fValue The angle, in radians.
|
|
|
- * @return fValue's atan
|
|
|
- * @see java.lang.Math#atan(double)
|
|
|
- */
|
|
|
- public static float atan(float fValue) {
|
|
|
- return (float) Math.atan(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * A direct call to Math.atan2.
|
|
|
- * @param fY
|
|
|
- * @param fX
|
|
|
- * @return Math.atan2(fY,fX)
|
|
|
- * @see java.lang.Math#atan2(double, double)
|
|
|
- */
|
|
|
- public static float atan2(float fY, float fX) {
|
|
|
- return (float) Math.atan2(fY, fX);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Rounds a fValue up. A call to Math.ceil
|
|
|
- * @param fValue The value.
|
|
|
- * @return The fValue rounded up
|
|
|
- * @see java.lang.Math#ceil(double)
|
|
|
- */
|
|
|
- public static float ceil(float fValue) {
|
|
|
- return (float) Math.ceil(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns cosine of an angle. Direct call to java.lang.Math
|
|
|
- * @see Math#cos(double)
|
|
|
- * @param v The angle to cosine.
|
|
|
- * @return the cosine of the angle.
|
|
|
- */
|
|
|
- public static float cos(float v) {
|
|
|
- return (float) Math.cos(v);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the sine of an angle. Direct call to java.lang.Math
|
|
|
- * @see Math#sin(double)
|
|
|
- * @param v The angle to sine.
|
|
|
- * @return the sine of the angle.
|
|
|
- */
|
|
|
- public static float sin(float v) {
|
|
|
- return (float) Math.sin(v);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns E^fValue
|
|
|
- * @param fValue Value to raise to a power.
|
|
|
- * @return The value E^fValue
|
|
|
- * @see java.lang.Math#exp(double)
|
|
|
- */
|
|
|
- public static float exp(float fValue) {
|
|
|
- return (float) Math.exp(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns Absolute value of a float.
|
|
|
- * @param fValue The value to abs.
|
|
|
- * @return The abs of the value.
|
|
|
- * @see java.lang.Math#abs(float)
|
|
|
- */
|
|
|
- public static float abs(float fValue) {
|
|
|
- if (fValue < 0) {
|
|
|
- return -fValue;
|
|
|
- }
|
|
|
- return fValue;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns a number rounded down.
|
|
|
- * @param fValue The value to round
|
|
|
- * @return The given number rounded down
|
|
|
- * @see java.lang.Math#floor(double)
|
|
|
- */
|
|
|
- public static float floor(float fValue) {
|
|
|
- return (float) Math.floor(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns 1/sqrt(fValue)
|
|
|
- * @param fValue The value to process.
|
|
|
- * @return 1/sqrt(fValue)
|
|
|
- * @see java.lang.Math#sqrt(double)
|
|
|
- */
|
|
|
- public static float invSqrt(float fValue) {
|
|
|
- return (float) (1.0f / Math.sqrt(fValue));
|
|
|
- }
|
|
|
-
|
|
|
- public static float fastInvSqrt(float x) {
|
|
|
- float xhalf = 0.5f * x;
|
|
|
- int i = Float.floatToIntBits(x); // get bits for floating value
|
|
|
- i = 0x5f375a86 - (i >> 1); // gives initial guess y0
|
|
|
- x = Float.intBitsToFloat(i); // convert bits back to float
|
|
|
- x = x * (1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
|
|
|
- return x;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the log base E of a value.
|
|
|
- * @param fValue The value to log.
|
|
|
- * @return The log of fValue base E
|
|
|
- * @see java.lang.Math#log(double)
|
|
|
- */
|
|
|
- public static float log(float fValue) {
|
|
|
- return (float) Math.log(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the logarithm of value with given base, calculated as log(value)/log(base),
|
|
|
- * so that pow(base, return)==value (contributed by vear)
|
|
|
- * @param value The value to log.
|
|
|
- * @param base Base of logarithm.
|
|
|
- * @return The logarithm of value with given base
|
|
|
- */
|
|
|
- public static float log(float value, float base) {
|
|
|
- return (float) (Math.log(value) / Math.log(base));
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns a number raised to an exponent power. fBase^fExponent
|
|
|
- * @param fBase The base value (IE 2)
|
|
|
- * @param fExponent The exponent value (IE 3)
|
|
|
- * @return base raised to exponent (IE 8)
|
|
|
- * @see java.lang.Math#pow(double, double)
|
|
|
- */
|
|
|
- public static float pow(float fBase, float fExponent) {
|
|
|
- return (float) Math.pow(fBase, fExponent);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the value squared. fValue ^ 2
|
|
|
- * @param fValue The vaule to square.
|
|
|
- * @return The square of the given value.
|
|
|
- */
|
|
|
- public static float sqr(float fValue) {
|
|
|
- return fValue * fValue;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the square root of a given value.
|
|
|
- * @param fValue The value to sqrt.
|
|
|
- * @return The square root of the given value.
|
|
|
- * @see java.lang.Math#sqrt(double)
|
|
|
- */
|
|
|
- public static float sqrt(float fValue) {
|
|
|
- return (float) Math.sqrt(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the tangent of a value. If USE_FAST_TRIG is enabled, an approximate value
|
|
|
- * is returned. Otherwise, a direct value is used.
|
|
|
- * @param fValue The value to tangent, in radians.
|
|
|
- * @return The tangent of fValue.
|
|
|
- * @see java.lang.Math#tan(double)
|
|
|
- */
|
|
|
- public static float tan(float fValue) {
|
|
|
- return (float) Math.tan(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
|
|
|
- * @param iValue The integer to examine.
|
|
|
- * @return The integer's sign.
|
|
|
- */
|
|
|
- public static int sign(int iValue) {
|
|
|
- if (iValue > 0) {
|
|
|
- return 1;
|
|
|
- }
|
|
|
- if (iValue < 0) {
|
|
|
- return -1;
|
|
|
- }
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
|
|
|
- * @param fValue The float to examine.
|
|
|
- * @return The float's sign.
|
|
|
- */
|
|
|
- public static float sign(float fValue) {
|
|
|
- return Math.signum(fValue);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Given 3 points in a 2d plane, this function computes if the points going from A-B-C
|
|
|
- * are moving counter clock wise.
|
|
|
- * @param p0 Point 0.
|
|
|
- * @param p1 Point 1.
|
|
|
- * @param p2 Point 2.
|
|
|
- * @return 1 If they are CCW, -1 if they are not CCW, 0 if p2 is between p0 and p1.
|
|
|
- */
|
|
|
- public static int counterClockwise(Vector2f p0, Vector2f p1, Vector2f p2) {
|
|
|
- float dx1, dx2, dy1, dy2;
|
|
|
- dx1 = p1.x - p0.x;
|
|
|
- dy1 = p1.y - p0.y;
|
|
|
- dx2 = p2.x - p0.x;
|
|
|
- dy2 = p2.y - p0.y;
|
|
|
- if (dx1 * dy2 > dy1 * dx2) {
|
|
|
- return 1;
|
|
|
- }
|
|
|
- if (dx1 * dy2 < dy1 * dx2) {
|
|
|
- return -1;
|
|
|
- }
|
|
|
- if ((dx1 * dx2 < 0) || (dy1 * dy2 < 0)) {
|
|
|
- return -1;
|
|
|
- }
|
|
|
- if ((dx1 * dx1 + dy1 * dy1) < (dx2 * dx2 + dy2 * dy2)) {
|
|
|
- return 1;
|
|
|
- }
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Test if a point is inside a triangle. 1 if the point is on the ccw side,
|
|
|
- * -1 if the point is on the cw side, and 0 if it is on neither.
|
|
|
- * @param t0 First point of the triangle.
|
|
|
- * @param t1 Second point of the triangle.
|
|
|
- * @param t2 Third point of the triangle.
|
|
|
- * @param p The point to test.
|
|
|
- * @return Value 1 or -1 if inside triangle, 0 otherwise.
|
|
|
- */
|
|
|
- public static int pointInsideTriangle(Vector2f t0, Vector2f t1, Vector2f t2, Vector2f p) {
|
|
|
- int val1 = counterClockwise(t0, t1, p);
|
|
|
- if (val1 == 0) {
|
|
|
- return 1;
|
|
|
- }
|
|
|
- int val2 = counterClockwise(t1, t2, p);
|
|
|
- if (val2 == 0) {
|
|
|
- return 1;
|
|
|
- }
|
|
|
- if (val2 != val1) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
- int val3 = counterClockwise(t2, t0, p);
|
|
|
- if (val3 == 0) {
|
|
|
- return 1;
|
|
|
- }
|
|
|
- if (val3 != val1) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
- return val3;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * A method that computes normal for a triangle defined by three vertices.
|
|
|
- * @param v1 first vertex
|
|
|
- * @param v2 second vertex
|
|
|
- * @param v3 third vertex
|
|
|
- * @return a normal for the face
|
|
|
- */
|
|
|
- public static Vector3f computeNormal(Vector3f v1, Vector3f v2, Vector3f v3) {
|
|
|
- Vector3f a1 = v1.subtract(v2);
|
|
|
- Vector3f a2 = v3.subtract(v2);
|
|
|
- return a2.crossLocal(a1).normalizeLocal();
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns the determinant of a 4x4 matrix.
|
|
|
- */
|
|
|
- public static float determinant(double m00, double m01, double m02,
|
|
|
- double m03, double m10, double m11, double m12, double m13,
|
|
|
- double m20, double m21, double m22, double m23, double m30,
|
|
|
- double m31, double m32, double m33) {
|
|
|
-
|
|
|
- double det01 = m20 * m31 - m21 * m30;
|
|
|
- double det02 = m20 * m32 - m22 * m30;
|
|
|
- double det03 = m20 * m33 - m23 * m30;
|
|
|
- double det12 = m21 * m32 - m22 * m31;
|
|
|
- double det13 = m21 * m33 - m23 * m31;
|
|
|
- double det23 = m22 * m33 - m23 * m32;
|
|
|
- return (float) (m00 * (m11 * det23 - m12 * det13 + m13 * det12) - m01
|
|
|
- * (m10 * det23 - m12 * det03 + m13 * det02) + m02
|
|
|
- * (m10 * det13 - m11 * det03 + m13 * det01) - m03
|
|
|
- * (m10 * det12 - m11 * det02 + m12 * det01));
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns a random float between 0 and 1.
|
|
|
- *
|
|
|
- * @return A random float between <tt>0.0f</tt> (inclusive) to
|
|
|
- * <tt>1.0f</tt> (exclusive).
|
|
|
- */
|
|
|
- public static float nextRandomFloat() {
|
|
|
- return rand.nextFloat();
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns a random integer between min and max.
|
|
|
- *
|
|
|
- * @return A random int between <tt>min</tt> (inclusive) to
|
|
|
- * <tt>max</tt> (inclusive).
|
|
|
- */
|
|
|
- public static int nextRandomInt(int min, int max) {
|
|
|
- return (int) (nextRandomFloat() * (max - min + 1)) + min;
|
|
|
- }
|
|
|
-
|
|
|
- public static int nextRandomInt() {
|
|
|
- return rand.nextInt();
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Converts a point from Spherical coordinates to Cartesian (using positive
|
|
|
- * Y as up) and stores the results in the store var.
|
|
|
- */
|
|
|
- public static Vector3f sphericalToCartesian(Vector3f sphereCoords,
|
|
|
- Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
- store.y = sphereCoords.x * FastMath.sin(sphereCoords.z);
|
|
|
- float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
|
|
|
- store.x = a * FastMath.cos(sphereCoords.y);
|
|
|
- store.z = a * FastMath.sin(sphereCoords.y);
|
|
|
-
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Converts a point from Cartesian coordinates (using positive Y as up) to
|
|
|
- * Spherical and stores the results in the store var. (Radius, Azimuth,
|
|
|
- * Polar)
|
|
|
- */
|
|
|
- public static Vector3f cartesianToSpherical(Vector3f cartCoords,
|
|
|
- Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
- float x = cartCoords.x;
|
|
|
- if (x == 0) {
|
|
|
- x = FastMath.FLT_EPSILON;
|
|
|
- }
|
|
|
- store.x = FastMath.sqrt((x * x)
|
|
|
- + (cartCoords.y * cartCoords.y)
|
|
|
- + (cartCoords.z * cartCoords.z));
|
|
|
- store.y = FastMath.atan(cartCoords.z / x);
|
|
|
- if (x < 0) {
|
|
|
- store.y += FastMath.PI;
|
|
|
- }
|
|
|
- store.z = FastMath.asin(cartCoords.y / store.x);
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Converts a point from Spherical coordinates to Cartesian (using positive
|
|
|
- * Z as up) and stores the results in the store var.
|
|
|
- */
|
|
|
- public static Vector3f sphericalToCartesianZ(Vector3f sphereCoords,
|
|
|
- Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
- store.z = sphereCoords.x * FastMath.sin(sphereCoords.z);
|
|
|
- float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
|
|
|
- store.x = a * FastMath.cos(sphereCoords.y);
|
|
|
- store.y = a * FastMath.sin(sphereCoords.y);
|
|
|
-
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Converts a point from Cartesian coordinates (using positive Z as up) to
|
|
|
- * Spherical and stores the results in the store var. (Radius, Azimuth,
|
|
|
- * Polar)
|
|
|
- */
|
|
|
- public static Vector3f cartesianZToSpherical(Vector3f cartCoords,
|
|
|
- Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
- float x = cartCoords.x;
|
|
|
- if (x == 0) {
|
|
|
- x = FastMath.FLT_EPSILON;
|
|
|
- }
|
|
|
- store.x = FastMath.sqrt((x * x)
|
|
|
- + (cartCoords.y * cartCoords.y)
|
|
|
- + (cartCoords.z * cartCoords.z));
|
|
|
- store.z = FastMath.atan(cartCoords.z / x);
|
|
|
- if (x < 0) {
|
|
|
- store.z += FastMath.PI;
|
|
|
- }
|
|
|
- store.y = FastMath.asin(cartCoords.y / store.x);
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Takes an value and expresses it in terms of min to max.
|
|
|
- *
|
|
|
- * @param val -
|
|
|
- * the angle to normalize (in radians)
|
|
|
- * @return the normalized angle (also in radians)
|
|
|
- */
|
|
|
- public static float normalize(float val, float min, float max) {
|
|
|
- if (Float.isInfinite(val) || Float.isNaN(val)) {
|
|
|
- return 0f;
|
|
|
- }
|
|
|
- float range = max - min;
|
|
|
- while (val > max) {
|
|
|
- val -= range;
|
|
|
- }
|
|
|
- while (val < min) {
|
|
|
- val += range;
|
|
|
- }
|
|
|
- return val;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * @param x
|
|
|
- * the value whose sign is to be adjusted.
|
|
|
- * @param y
|
|
|
- * the value whose sign is to be used.
|
|
|
- * @return x with its sign changed to match the sign of y.
|
|
|
- */
|
|
|
- public static float copysign(float x, float y) {
|
|
|
- if (y >= 0 && x <= -0) {
|
|
|
- return -x;
|
|
|
- } else if (y < 0 && x >= 0) {
|
|
|
- return -x;
|
|
|
- } else {
|
|
|
- return x;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Take a float input and clamp it between min and max.
|
|
|
- *
|
|
|
- * @param input
|
|
|
- * @param min
|
|
|
- * @param max
|
|
|
- * @return clamped input
|
|
|
- */
|
|
|
- public static float clamp(float input, float min, float max) {
|
|
|
- return (input < min) ? min : (input > max) ? max : input;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Clamps the given float to be between 0 and 1.
|
|
|
- *
|
|
|
- * @param input
|
|
|
- * @return input clamped between 0 and 1.
|
|
|
- */
|
|
|
- public static float saturate(float input) {
|
|
|
- return clamp(input, 0f, 1f);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Converts a single precision (32 bit) floating point value
|
|
|
- * into half precision (16 bit).
|
|
|
- *
|
|
|
- * <p>Source: <a href="http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf">
|
|
|
- * http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf</a><br><strong>broken link</strong>
|
|
|
- *
|
|
|
- * @param half The half floating point value as a short.
|
|
|
- * @return floating point value of the half.
|
|
|
- */
|
|
|
- public static float convertHalfToFloat(short half) {
|
|
|
- switch ((int) half) {
|
|
|
- case 0x0000:
|
|
|
- return 0f;
|
|
|
- case 0x8000:
|
|
|
- return -0f;
|
|
|
- case 0x7c00:
|
|
|
- return Float.POSITIVE_INFINITY;
|
|
|
- case 0xfc00:
|
|
|
- return Float.NEGATIVE_INFINITY;
|
|
|
- // TODO: Support for NaN?
|
|
|
- default:
|
|
|
- return Float.intBitsToFloat(((half & 0x8000) << 16)
|
|
|
- | (((half & 0x7c00) + 0x1C000) << 13)
|
|
|
- | ((half & 0x03FF) << 13));
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- public static short convertFloatToHalf(float flt) {
|
|
|
- if (Float.isNaN(flt)) {
|
|
|
- throw new UnsupportedOperationException("NaN to half conversion not supported!");
|
|
|
- } else if (flt == Float.POSITIVE_INFINITY) {
|
|
|
- return (short) 0x7c00;
|
|
|
- } else if (flt == Float.NEGATIVE_INFINITY) {
|
|
|
- return (short) 0xfc00;
|
|
|
- } else if (flt == 0f) {
|
|
|
- return (short) 0x0000;
|
|
|
- } else if (flt == -0f) {
|
|
|
- return (short) 0x8000;
|
|
|
- } else if (flt > 65504f) {
|
|
|
- // max value supported by half float
|
|
|
- return 0x7bff;
|
|
|
- } else if (flt < -65504f) {
|
|
|
- return (short) (0x7bff | 0x8000);
|
|
|
- } else if (flt > 0f && flt < 5.96046E-8f) {
|
|
|
- return 0x0001;
|
|
|
- } else if (flt < 0f && flt > -5.96046E-8f) {
|
|
|
- return (short) 0x8001;
|
|
|
- }
|
|
|
-
|
|
|
- int f = Float.floatToIntBits(flt);
|
|
|
- return (short) (((f >> 16) & 0x8000)
|
|
|
- | ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00)
|
|
|
- | ((f >> 13) & 0x03ff));
|
|
|
- }
|
|
|
-}
|
|
|
+/*
|
|
|
+ * Copyright (c) 2009-2012 jMonkeyEngine
|
|
|
+ * All rights reserved.
|
|
|
+ *
|
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
|
+ * modification, are permitted provided that the following conditions are
|
|
|
+ * met:
|
|
|
+ *
|
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
|
+ *
|
|
|
+ * * Redistributions in binary form must reproduce the above copyright
|
|
|
+ * notice, this list of conditions and the following disclaimer in the
|
|
|
+ * documentation and/or other materials provided with the distribution.
|
|
|
+ *
|
|
|
+ * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
|
|
|
+ * may be used to endorse or promote products derived from this software
|
|
|
+ * without specific prior written permission.
|
|
|
+ *
|
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
+ */
|
|
|
+package com.jme3.math;
|
|
|
+
|
|
|
+import java.util.Random;
|
|
|
+
|
|
|
+/**
|
|
|
+ * <code>FastMath</code> provides 'fast' math approximations and float equivalents of Math
|
|
|
+ * functions. These are all used as static values and functions.
|
|
|
+ *
|
|
|
+ * @author Various
|
|
|
+ * @version $Id: FastMath.java,v 1.45 2007/08/26 08:44:20 irrisor Exp $
|
|
|
+ */
|
|
|
+final public class FastMath {
|
|
|
+
|
|
|
+ private FastMath() {
|
|
|
+ }
|
|
|
+ /** A "close to zero" double epsilon value for use*/
|
|
|
+ public static final double DBL_EPSILON = 2.220446049250313E-16d;
|
|
|
+ /** A "close to zero" float epsilon value for use*/
|
|
|
+ public static final float FLT_EPSILON = 1.1920928955078125E-7f;
|
|
|
+ /** A "close to zero" float epsilon value for use*/
|
|
|
+ public static final float ZERO_TOLERANCE = 0.0001f;
|
|
|
+ public static final float ONE_THIRD = 1f / 3f;
|
|
|
+ /** The value PI as a float. (180 degrees) */
|
|
|
+ public static final float PI = (float) Math.PI;
|
|
|
+ /** The value 2PI as a float. (360 degrees) */
|
|
|
+ public static final float TWO_PI = 2.0f * PI;
|
|
|
+ /** The value PI/2 as a float. (90 degrees) */
|
|
|
+ public static final float HALF_PI = 0.5f * PI;
|
|
|
+ /** The value PI/4 as a float. (45 degrees) */
|
|
|
+ public static final float QUARTER_PI = 0.25f * PI;
|
|
|
+ /** The value 1/PI as a float. */
|
|
|
+ public static final float INV_PI = 1.0f / PI;
|
|
|
+ /** The value 1/(2PI) as a float. */
|
|
|
+ public static final float INV_TWO_PI = 1.0f / TWO_PI;
|
|
|
+ /** A value to multiply a degree value by, to convert it to radians. */
|
|
|
+ public static final float DEG_TO_RAD = PI / 180.0f;
|
|
|
+ /** A value to multiply a radian value by, to convert it to degrees. */
|
|
|
+ public static final float RAD_TO_DEG = 180.0f / PI;
|
|
|
+ /** A precreated random object for random numbers. */
|
|
|
+ public static final Random rand = new Random(System.currentTimeMillis());
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns true if the number is a power of 2 (2,4,8,16...)
|
|
|
+ *
|
|
|
+ * A good implementation found on the Java boards. note: a number is a power
|
|
|
+ * of two if and only if it is the smallest number with that number of
|
|
|
+ * significant bits. Therefore, if you subtract 1, you know that the new
|
|
|
+ * number will have fewer bits, so ANDing the original number with anything
|
|
|
+ * less than it will give 0.
|
|
|
+ *
|
|
|
+ * @param number
|
|
|
+ * The number to test.
|
|
|
+ * @return True if it is a power of two.
|
|
|
+ */
|
|
|
+ public static boolean isPowerOfTwo(int number) {
|
|
|
+ return (number > 0) && (number & (number - 1)) == 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ public static int nearestPowerOfTwo(int number) {
|
|
|
+ return (int) Math.pow(2, Math.ceil(Math.log(number) / Math.log(2)));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Linear interpolation from startValue to endValue by the given percent.
|
|
|
+ * Basically: ((1 - percent) * startValue) + (percent * endValue)
|
|
|
+ *
|
|
|
+ * @param scale
|
|
|
+ * scale value to use. if 1, use endValue, if 0, use startValue.
|
|
|
+ * @param startValue
|
|
|
+ * Beginning value. 0% of f
|
|
|
+ * @param endValue
|
|
|
+ * ending value. 100% of f
|
|
|
+ * @return The interpolated value between startValue and endValue.
|
|
|
+ */
|
|
|
+ public static float interpolateLinear(float scale, float startValue, float endValue) {
|
|
|
+ if (startValue == endValue) {
|
|
|
+ return startValue;
|
|
|
+ }
|
|
|
+ if (scale <= 0f) {
|
|
|
+ return startValue;
|
|
|
+ }
|
|
|
+ if (scale >= 1f) {
|
|
|
+ return endValue;
|
|
|
+ }
|
|
|
+ return ((1f - scale) * startValue) + (scale * endValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Linear interpolation from startValue to endValue by the given percent.
|
|
|
+ * Basically: ((1 - percent) * startValue) + (percent * endValue)
|
|
|
+ *
|
|
|
+ * @param scale
|
|
|
+ * scale value to use. if 1, use endValue, if 0, use startValue.
|
|
|
+ * @param startValue
|
|
|
+ * Beginning value. 0% of f
|
|
|
+ * @param endValue
|
|
|
+ * ending value. 100% of f
|
|
|
+ * @param store a vector3f to store the result
|
|
|
+ * @return The interpolated value between startValue and endValue.
|
|
|
+ */
|
|
|
+ public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue, Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+ store.x = interpolateLinear(scale, startValue.x, endValue.x);
|
|
|
+ store.y = interpolateLinear(scale, startValue.y, endValue.y);
|
|
|
+ store.z = interpolateLinear(scale, startValue.z, endValue.z);
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Linear interpolation from startValue to endValue by the given percent.
|
|
|
+ * Basically: ((1 - percent) * startValue) + (percent * endValue)
|
|
|
+ *
|
|
|
+ * @param scale
|
|
|
+ * scale value to use. if 1, use endValue, if 0, use startValue.
|
|
|
+ * @param startValue
|
|
|
+ * Beginning value. 0% of f
|
|
|
+ * @param endValue
|
|
|
+ * ending value. 100% of f
|
|
|
+ * @return The interpolated value between startValue and endValue.
|
|
|
+ */
|
|
|
+ public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue) {
|
|
|
+ return interpolateLinear(scale, startValue, endValue, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Linear extrapolation from startValue to endValue by the given scale.
|
|
|
+ * if scale is between 0 and 1 this method returns the same result as interpolateLinear
|
|
|
+ * if the scale is over 1 the value is linearly extrapolated.
|
|
|
+ * Note that the end value is the value for a scale of 1.
|
|
|
+ * @param scale the scale for extrapolation
|
|
|
+ * @param startValue the starting value (scale = 0)
|
|
|
+ * @param endValue the end value (scale = 1)
|
|
|
+ * @return an extrapolation for the given parameters
|
|
|
+ */
|
|
|
+ public static float extrapolateLinear(float scale, float startValue, float endValue) {
|
|
|
+// if (scale <= 0f) {
|
|
|
+// return startValue;
|
|
|
+// }
|
|
|
+ return ((1f - scale) * startValue) + (scale * endValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Linear extrapolation from startValue to endValue by the given scale.
|
|
|
+ * if scale is between 0 and 1 this method returns the same result as interpolateLinear
|
|
|
+ * if the scale is over 1 the value is linearly extrapolated.
|
|
|
+ * Note that the end value is the value for a scale of 1.
|
|
|
+ * @param scale the scale for extrapolation
|
|
|
+ * @param startValue the starting value (scale = 0)
|
|
|
+ * @param endValue the end value (scale = 1)
|
|
|
+ * @param store an initialized vector to store the return value
|
|
|
+ * @return an extrapolation for the given parameters
|
|
|
+ */
|
|
|
+ public static Vector3f extrapolateLinear(float scale, Vector3f startValue, Vector3f endValue, Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+// if (scale <= 1f) {
|
|
|
+// return interpolateLinear(scale, startValue, endValue, store);
|
|
|
+// }
|
|
|
+ store.x = extrapolateLinear(scale, startValue.x, endValue.x);
|
|
|
+ store.y = extrapolateLinear(scale, startValue.y, endValue.y);
|
|
|
+ store.z = extrapolateLinear(scale, startValue.z, endValue.z);
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Linear extrapolation from startValue to endValue by the given scale.
|
|
|
+ * if scale is between 0 and 1 this method returns the same result as interpolateLinear
|
|
|
+ * if the scale is over 1 the value is linearly extrapolated.
|
|
|
+ * Note that the end value is the value for a scale of 1.
|
|
|
+ * @param scale the scale for extrapolation
|
|
|
+ * @param startValue the starting value (scale = 0)
|
|
|
+ * @param endValue the end value (scale = 1)
|
|
|
+ * @return an extrapolation for the given parameters
|
|
|
+ */
|
|
|
+ public static Vector3f extrapolateLinear(float scale, Vector3f startValue, Vector3f endValue) {
|
|
|
+ return extrapolateLinear(scale, startValue, endValue, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
|
|
|
+ * here is the interpolation matrix
|
|
|
+ * m = [ 0.0 1.0 0.0 0.0 ]
|
|
|
+ * [-T 0.0 T 0.0 ]
|
|
|
+ * [ 2T T-3 3-2T -T ]
|
|
|
+ * [-T 2-T T-2 T ]
|
|
|
+ * where T is the curve tension
|
|
|
+ * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
|
|
|
+ * @param u value from 0 to 1
|
|
|
+ * @param T The tension of the curve
|
|
|
+ * @param p0 control point 0
|
|
|
+ * @param p1 control point 1
|
|
|
+ * @param p2 control point 2
|
|
|
+ * @param p3 control point 3
|
|
|
+ * @return Catmull–Rom interpolation
|
|
|
+ */
|
|
|
+ public static float interpolateCatmullRom(float u, float T, float p0, float p1, float p2, float p3) {
|
|
|
+ float c1, c2, c3, c4;
|
|
|
+ c1 = p1;
|
|
|
+ c2 = -1.0f * T * p0 + T * p2;
|
|
|
+ c3 = 2 * T * p0 + (T - 3) * p1 + (3 - 2 * T) * p2 + -T * p3;
|
|
|
+ c4 = -T * p0 + (2 - T) * p1 + (T - 2) * p2 + T * p3;
|
|
|
+
|
|
|
+ return (float) (((c4 * u + c3) * u + c2) * u + c1);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
|
|
|
+ * here is the interpolation matrix
|
|
|
+ * m = [ 0.0 1.0 0.0 0.0 ]
|
|
|
+ * [-T 0.0 T 0.0 ]
|
|
|
+ * [ 2T T-3 3-2T -T ]
|
|
|
+ * [-T 2-T T-2 T ]
|
|
|
+ * where T is the tension of the curve
|
|
|
+ * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
|
|
|
+ * @param u value from 0 to 1
|
|
|
+ * @param T The tension of the curve
|
|
|
+ * @param p0 control point 0
|
|
|
+ * @param p1 control point 1
|
|
|
+ * @param p2 control point 2
|
|
|
+ * @param p3 control point 3
|
|
|
+ * @param store a Vector3f to store the result
|
|
|
+ * @return Catmull–Rom interpolation
|
|
|
+ */
|
|
|
+ public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+ store.x = interpolateCatmullRom(u, T, p0.x, p1.x, p2.x, p3.x);
|
|
|
+ store.y = interpolateCatmullRom(u, T, p0.y, p1.y, p2.y, p3.y);
|
|
|
+ store.z = interpolateCatmullRom(u, T, p0.z, p1.z, p2.z, p3.z);
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Interpolate a spline between at least 4 control points using the
|
|
|
+ * Catmull-Rom equation. Here is the interpolation matrix:
|
|
|
+ * m = [ 0.0 1.0 0.0 0.0 ]
|
|
|
+ * [-T 0.0 T 0.0 ]
|
|
|
+ * [ 2T T-3 3-2T -T ]
|
|
|
+ * [-T 2-T T-2 T ]
|
|
|
+ * where T is the tension of the curve
|
|
|
+ * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
|
|
|
+ * @param u value from 0 to 1
|
|
|
+ * @param T The tension of the curve
|
|
|
+ * @param p0 control point 0
|
|
|
+ * @param p1 control point 1
|
|
|
+ * @param p2 control point 2
|
|
|
+ * @param p3 control point 3
|
|
|
+ * @return Catmull–Rom interpolation
|
|
|
+ */
|
|
|
+ public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
|
|
|
+ return interpolateCatmullRom(u, T, p0, p1, p2, p3, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**Interpolate a spline between at least 4 control points following the Bezier equation.
|
|
|
+ * here is the interpolation matrix
|
|
|
+ * m = [ -1.0 3.0 -3.0 1.0 ]
|
|
|
+ * [ 3.0 -6.0 3.0 0.0 ]
|
|
|
+ * [ -3.0 3.0 0.0 0.0 ]
|
|
|
+ * [ 1.0 0.0 0.0 0.0 ]
|
|
|
+ * where T is the curve tension
|
|
|
+ * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
|
|
|
+ * @param u value from 0 to 1
|
|
|
+ * @param p0 control point 0
|
|
|
+ * @param p1 control point 1
|
|
|
+ * @param p2 control point 2
|
|
|
+ * @param p3 control point 3
|
|
|
+ * @return Bezier interpolation
|
|
|
+ */
|
|
|
+ public static float interpolateBezier(float u, float p0, float p1, float p2, float p3) {
|
|
|
+ float oneMinusU = 1.0f - u;
|
|
|
+ float oneMinusU2 = oneMinusU * oneMinusU;
|
|
|
+ float u2 = u * u;
|
|
|
+ return p0 * oneMinusU2 * oneMinusU
|
|
|
+ + 3.0f * p1 * u * oneMinusU2
|
|
|
+ + 3.0f * p2 * u2 * oneMinusU
|
|
|
+ + p3 * u2 * u;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**Interpolate a spline between at least 4 control points following the Bezier equation.
|
|
|
+ * here is the interpolation matrix
|
|
|
+ * m = [ -1.0 3.0 -3.0 1.0 ]
|
|
|
+ * [ 3.0 -6.0 3.0 0.0 ]
|
|
|
+ * [ -3.0 3.0 0.0 0.0 ]
|
|
|
+ * [ 1.0 0.0 0.0 0.0 ]
|
|
|
+ * where T is the tension of the curve
|
|
|
+ * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
|
|
|
+ * @param u value from 0 to 1
|
|
|
+ * @param p0 control point 0
|
|
|
+ * @param p1 control point 1
|
|
|
+ * @param p2 control point 2
|
|
|
+ * @param p3 control point 3
|
|
|
+ * @param store a Vector3f to store the result
|
|
|
+ * @return Bezier interpolation
|
|
|
+ */
|
|
|
+ public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+ store.x = interpolateBezier(u, p0.x, p1.x, p2.x, p3.x);
|
|
|
+ store.y = interpolateBezier(u, p0.y, p1.y, p2.y, p3.y);
|
|
|
+ store.z = interpolateBezier(u, p0.z, p1.z, p2.z, p3.z);
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**Interpolate a spline between at least 4 control points following the Bezier equation.
|
|
|
+ * here is the interpolation matrix
|
|
|
+ * m = [ -1.0 3.0 -3.0 1.0 ]
|
|
|
+ * [ 3.0 -6.0 3.0 0.0 ]
|
|
|
+ * [ -3.0 3.0 0.0 0.0 ]
|
|
|
+ * [ 1.0 0.0 0.0 0.0 ]
|
|
|
+ * where T is the tension of the curve
|
|
|
+ * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
|
|
|
+ * @param u value from 0 to 1
|
|
|
+ * @param p0 control point 0
|
|
|
+ * @param p1 control point 1
|
|
|
+ * @param p2 control point 2
|
|
|
+ * @param p3 control point 3
|
|
|
+ * @return Bezier interpolation
|
|
|
+ */
|
|
|
+ public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
|
|
|
+ return interpolateBezier(u, p0, p1, p2, p3, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Compute the length of a Catmull–Rom spline between control points 1 and 2
|
|
|
+ * @param p0 control point 0
|
|
|
+ * @param p1 control point 1
|
|
|
+ * @param p2 control point 2
|
|
|
+ * @param p3 control point 3
|
|
|
+ * @param startRange the starting range on the segment (use 0)
|
|
|
+ * @param endRange the end range on the segment (use 1)
|
|
|
+ * @param curveTension the curve tension
|
|
|
+ * @return the length of the segment
|
|
|
+ */
|
|
|
+ public static float getCatmullRomP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, float startRange, float endRange, float curveTension) {
|
|
|
+
|
|
|
+ float epsilon = 0.001f;
|
|
|
+ float middleValue = (startRange + endRange) * 0.5f;
|
|
|
+ Vector3f start = p1.clone();
|
|
|
+ if (startRange != 0) {
|
|
|
+ FastMath.interpolateCatmullRom(startRange, curveTension, p0, p1, p2, p3, start);
|
|
|
+ }
|
|
|
+ Vector3f end = p2.clone();
|
|
|
+ if (endRange != 1) {
|
|
|
+ FastMath.interpolateCatmullRom(endRange, curveTension, p0, p1, p2, p3, end);
|
|
|
+ }
|
|
|
+ Vector3f middle = FastMath.interpolateCatmullRom(middleValue, curveTension, p0, p1, p2, p3);
|
|
|
+ float l = end.subtract(start).length();
|
|
|
+ float l1 = middle.subtract(start).length();
|
|
|
+ float l2 = end.subtract(middle).length();
|
|
|
+ float len = l1 + l2;
|
|
|
+ if (l + epsilon < len) {
|
|
|
+ l1 = getCatmullRomP1toP2Length(p0, p1, p2, p3, startRange, middleValue, curveTension);
|
|
|
+ l2 = getCatmullRomP1toP2Length(p0, p1, p2, p3, middleValue, endRange, curveTension);
|
|
|
+ }
|
|
|
+ l = l1 + l2;
|
|
|
+ return l;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Compute the length on a Bezier spline between control points 1 and 2.
|
|
|
+ * @param p0 control point 0
|
|
|
+ * @param p1 control point 1
|
|
|
+ * @param p2 control point 2
|
|
|
+ * @param p3 control point 3
|
|
|
+ * @return the length of the segment
|
|
|
+ */
|
|
|
+ public static float getBezierP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
|
|
|
+ float delta = 0.02f, t = 0.0f, result = 0.0f;
|
|
|
+ Vector3f v1 = p0.clone(), v2 = new Vector3f();
|
|
|
+ while (t <= 1.0f) {
|
|
|
+ FastMath.interpolateBezier(t, p0, p1, p2, p3, v2);
|
|
|
+ result += v1.subtractLocal(v2).length();
|
|
|
+ v1.set(v2);
|
|
|
+ t += delta;
|
|
|
+ }
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the arc cosine of a value.<br>
|
|
|
+ * Special cases:
|
|
|
+ * <ul><li>If fValue is smaller than -1, then the result is PI.
|
|
|
+ * <li>If the argument is greater than 1, then the result is 0.</ul>
|
|
|
+ * @param fValue The value to arc cosine.
|
|
|
+ * @return The angle, in radians.
|
|
|
+ * @see java.lang.Math#acos(double)
|
|
|
+ */
|
|
|
+ public static float acos(float fValue) {
|
|
|
+ if (-1.0f < fValue) {
|
|
|
+ if (fValue < 1.0f) {
|
|
|
+ return (float) Math.acos(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0.0f;
|
|
|
+ }
|
|
|
+
|
|
|
+ return PI;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the arc sine of a value.<br>
|
|
|
+ * Special cases:
|
|
|
+ * <ul><li>If fValue is smaller than -1, then the result is -HALF_PI.
|
|
|
+ * <li>If the argument is greater than 1, then the result is HALF_PI.</ul>
|
|
|
+ * @param fValue The value to arc sine.
|
|
|
+ * @return the angle in radians.
|
|
|
+ * @see java.lang.Math#asin(double)
|
|
|
+ */
|
|
|
+ public static float asin(float fValue) {
|
|
|
+ if (-1.0f < fValue) {
|
|
|
+ if (fValue < 1.0f) {
|
|
|
+ return (float) Math.asin(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ return HALF_PI;
|
|
|
+ }
|
|
|
+
|
|
|
+ return -HALF_PI;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the arc tangent of an angle given in radians.<br>
|
|
|
+ * @param fValue The angle, in radians.
|
|
|
+ * @return fValue's atan
|
|
|
+ * @see java.lang.Math#atan(double)
|
|
|
+ */
|
|
|
+ public static float atan(float fValue) {
|
|
|
+ return (float) Math.atan(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * A direct call to Math.atan2.
|
|
|
+ * @param fY
|
|
|
+ * @param fX
|
|
|
+ * @return Math.atan2(fY,fX)
|
|
|
+ * @see java.lang.Math#atan2(double, double)
|
|
|
+ */
|
|
|
+ public static float atan2(float fY, float fX) {
|
|
|
+ return (float) Math.atan2(fY, fX);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Rounds a fValue up. A call to Math.ceil
|
|
|
+ * @param fValue The value.
|
|
|
+ * @return The fValue rounded up
|
|
|
+ * @see java.lang.Math#ceil(double)
|
|
|
+ */
|
|
|
+ public static float ceil(float fValue) {
|
|
|
+ return (float) Math.ceil(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns cosine of an angle. Direct call to java.lang.Math
|
|
|
+ * @see Math#cos(double)
|
|
|
+ * @param v The angle to cosine.
|
|
|
+ * @return the cosine of the angle.
|
|
|
+ */
|
|
|
+ public static float cos(float v) {
|
|
|
+ return (float) Math.cos(v);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the sine of an angle. Direct call to java.lang.Math
|
|
|
+ * @see Math#sin(double)
|
|
|
+ * @param v The angle to sine.
|
|
|
+ * @return the sine of the angle.
|
|
|
+ */
|
|
|
+ public static float sin(float v) {
|
|
|
+ return (float) Math.sin(v);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns E^fValue
|
|
|
+ * @param fValue Value to raise to a power.
|
|
|
+ * @return The value E^fValue
|
|
|
+ * @see java.lang.Math#exp(double)
|
|
|
+ */
|
|
|
+ public static float exp(float fValue) {
|
|
|
+ return (float) Math.exp(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns Absolute value of a float.
|
|
|
+ * @param fValue The value to abs.
|
|
|
+ * @return The abs of the value.
|
|
|
+ * @see java.lang.Math#abs(float)
|
|
|
+ */
|
|
|
+ public static float abs(float fValue) {
|
|
|
+ if (fValue < 0) {
|
|
|
+ return -fValue;
|
|
|
+ }
|
|
|
+ return fValue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a number rounded down.
|
|
|
+ * @param fValue The value to round
|
|
|
+ * @return The given number rounded down
|
|
|
+ * @see java.lang.Math#floor(double)
|
|
|
+ */
|
|
|
+ public static float floor(float fValue) {
|
|
|
+ return (float) Math.floor(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns 1/sqrt(fValue)
|
|
|
+ * @param fValue The value to process.
|
|
|
+ * @return 1/sqrt(fValue)
|
|
|
+ * @see java.lang.Math#sqrt(double)
|
|
|
+ */
|
|
|
+ public static float invSqrt(float fValue) {
|
|
|
+ return (float) (1.0f / Math.sqrt(fValue));
|
|
|
+ }
|
|
|
+
|
|
|
+ public static float fastInvSqrt(float x) {
|
|
|
+ float xhalf = 0.5f * x;
|
|
|
+ int i = Float.floatToIntBits(x); // get bits for floating value
|
|
|
+ i = 0x5f375a86 - (i >> 1); // gives initial guess y0
|
|
|
+ x = Float.intBitsToFloat(i); // convert bits back to float
|
|
|
+ x = x * (1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
|
|
|
+ return x;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the log base E of a value.
|
|
|
+ * @param fValue The value to log.
|
|
|
+ * @return The log of fValue base E
|
|
|
+ * @see java.lang.Math#log(double)
|
|
|
+ */
|
|
|
+ public static float log(float fValue) {
|
|
|
+ return (float) Math.log(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the logarithm of value with given base, calculated as log(value)/log(base),
|
|
|
+ * so that pow(base, return)==value (contributed by vear)
|
|
|
+ * @param value The value to log.
|
|
|
+ * @param base Base of logarithm.
|
|
|
+ * @return The logarithm of value with given base
|
|
|
+ */
|
|
|
+ public static float log(float value, float base) {
|
|
|
+ return (float) (Math.log(value) / Math.log(base));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a number raised to an exponent power. fBase^fExponent
|
|
|
+ * @param fBase The base value (IE 2)
|
|
|
+ * @param fExponent The exponent value (IE 3)
|
|
|
+ * @return base raised to exponent (IE 8)
|
|
|
+ * @see java.lang.Math#pow(double, double)
|
|
|
+ */
|
|
|
+ public static float pow(float fBase, float fExponent) {
|
|
|
+ return (float) Math.pow(fBase, fExponent);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the value squared. fValue ^ 2
|
|
|
+ * @param fValue The value to square.
|
|
|
+ * @return The square of the given value.
|
|
|
+ */
|
|
|
+ public static float sqr(float fValue) {
|
|
|
+ return fValue * fValue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the square root of a given value.
|
|
|
+ * @param fValue The value to sqrt.
|
|
|
+ * @return The square root of the given value.
|
|
|
+ * @see java.lang.Math#sqrt(double)
|
|
|
+ */
|
|
|
+ public static float sqrt(float fValue) {
|
|
|
+ return (float) Math.sqrt(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the tangent of a value. If USE_FAST_TRIG is enabled, an approximate value
|
|
|
+ * is returned. Otherwise, a direct value is used.
|
|
|
+ * @param fValue The value to tangent, in radians.
|
|
|
+ * @return The tangent of fValue.
|
|
|
+ * @see java.lang.Math#tan(double)
|
|
|
+ */
|
|
|
+ public static float tan(float fValue) {
|
|
|
+ return (float) Math.tan(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
|
|
|
+ * @param iValue The integer to examine.
|
|
|
+ * @return The integer's sign.
|
|
|
+ */
|
|
|
+ public static int sign(int iValue) {
|
|
|
+ if (iValue > 0) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ if (iValue < 0) {
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
|
|
|
+ * @param fValue The float to examine.
|
|
|
+ * @return The float's sign.
|
|
|
+ */
|
|
|
+ public static float sign(float fValue) {
|
|
|
+ return Math.signum(fValue);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Given 3 points in a 2d plane, this function computes if the points going from A-B-C
|
|
|
+ * are moving counter clock wise.
|
|
|
+ * @param p0 Point 0.
|
|
|
+ * @param p1 Point 1.
|
|
|
+ * @param p2 Point 2.
|
|
|
+ * @return 1 If they are CCW, -1 if they are not CCW, 0 if p2 is between p0 and p1.
|
|
|
+ */
|
|
|
+ public static int counterClockwise(Vector2f p0, Vector2f p1, Vector2f p2) {
|
|
|
+ float dx1, dx2, dy1, dy2;
|
|
|
+ dx1 = p1.x - p0.x;
|
|
|
+ dy1 = p1.y - p0.y;
|
|
|
+ dx2 = p2.x - p0.x;
|
|
|
+ dy2 = p2.y - p0.y;
|
|
|
+ if (dx1 * dy2 > dy1 * dx2) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ if (dx1 * dy2 < dy1 * dx2) {
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ if ((dx1 * dx2 < 0) || (dy1 * dy2 < 0)) {
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ if ((dx1 * dx1 + dy1 * dy1) < (dx2 * dx2 + dy2 * dy2)) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Test if a point is inside a triangle. 1 if the point is on the ccw side,
|
|
|
+ * -1 if the point is on the cw side, and 0 if it is on neither.
|
|
|
+ * @param t0 First point of the triangle.
|
|
|
+ * @param t1 Second point of the triangle.
|
|
|
+ * @param t2 Third point of the triangle.
|
|
|
+ * @param p The point to test.
|
|
|
+ * @return Value 1 or -1 if inside triangle, 0 otherwise.
|
|
|
+ */
|
|
|
+ public static int pointInsideTriangle(Vector2f t0, Vector2f t1, Vector2f t2, Vector2f p) {
|
|
|
+ int val1 = counterClockwise(t0, t1, p);
|
|
|
+ if (val1 == 0) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ int val2 = counterClockwise(t1, t2, p);
|
|
|
+ if (val2 == 0) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ if (val2 != val1) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ int val3 = counterClockwise(t2, t0, p);
|
|
|
+ if (val3 == 0) {
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ if (val3 != val1) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+ return val3;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * A method that computes normal for a triangle defined by three vertices.
|
|
|
+ * @param v1 first vertex
|
|
|
+ * @param v2 second vertex
|
|
|
+ * @param v3 third vertex
|
|
|
+ * @return a normal for the face
|
|
|
+ */
|
|
|
+ public static Vector3f computeNormal(Vector3f v1, Vector3f v2, Vector3f v3) {
|
|
|
+ Vector3f a1 = v1.subtract(v2);
|
|
|
+ Vector3f a2 = v3.subtract(v2);
|
|
|
+ return a2.crossLocal(a1).normalizeLocal();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns the determinant of a 4x4 matrix.
|
|
|
+ */
|
|
|
+ public static float determinant(double m00, double m01, double m02,
|
|
|
+ double m03, double m10, double m11, double m12, double m13,
|
|
|
+ double m20, double m21, double m22, double m23, double m30,
|
|
|
+ double m31, double m32, double m33) {
|
|
|
+
|
|
|
+ double det01 = m20 * m31 - m21 * m30;
|
|
|
+ double det02 = m20 * m32 - m22 * m30;
|
|
|
+ double det03 = m20 * m33 - m23 * m30;
|
|
|
+ double det12 = m21 * m32 - m22 * m31;
|
|
|
+ double det13 = m21 * m33 - m23 * m31;
|
|
|
+ double det23 = m22 * m33 - m23 * m32;
|
|
|
+ return (float) (m00 * (m11 * det23 - m12 * det13 + m13 * det12) - m01
|
|
|
+ * (m10 * det23 - m12 * det03 + m13 * det02) + m02
|
|
|
+ * (m10 * det13 - m11 * det03 + m13 * det01) - m03
|
|
|
+ * (m10 * det12 - m11 * det02 + m12 * det01));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a random float between 0 and 1.
|
|
|
+ *
|
|
|
+ * @return A random float between <tt>0.0f</tt> (inclusive) to
|
|
|
+ * <tt>1.0f</tt> (exclusive).
|
|
|
+ */
|
|
|
+ public static float nextRandomFloat() {
|
|
|
+ return rand.nextFloat();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a random integer between min and max.
|
|
|
+ *
|
|
|
+ * @return A random int between <tt>min</tt> (inclusive) to
|
|
|
+ * <tt>max</tt> (inclusive).
|
|
|
+ */
|
|
|
+ public static int nextRandomInt(int min, int max) {
|
|
|
+ return (int) (nextRandomFloat() * (max - min + 1)) + min;
|
|
|
+ }
|
|
|
+
|
|
|
+ public static int nextRandomInt() {
|
|
|
+ return rand.nextInt();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Converts a point from Spherical coordinates to Cartesian (using positive
|
|
|
+ * Y as up) and stores the results in the store var.
|
|
|
+ */
|
|
|
+ public static Vector3f sphericalToCartesian(Vector3f sphereCoords,
|
|
|
+ Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+ store.y = sphereCoords.x * FastMath.sin(sphereCoords.z);
|
|
|
+ float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
|
|
|
+ store.x = a * FastMath.cos(sphereCoords.y);
|
|
|
+ store.z = a * FastMath.sin(sphereCoords.y);
|
|
|
+
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Converts a point from Cartesian coordinates (using positive Y as up) to
|
|
|
+ * Spherical and stores the results in the store var. (Radius, Azimuth,
|
|
|
+ * Polar)
|
|
|
+ */
|
|
|
+ public static Vector3f cartesianToSpherical(Vector3f cartCoords,
|
|
|
+ Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+ float x = cartCoords.x;
|
|
|
+ if (x == 0) {
|
|
|
+ x = FastMath.FLT_EPSILON;
|
|
|
+ }
|
|
|
+ store.x = FastMath.sqrt((x * x)
|
|
|
+ + (cartCoords.y * cartCoords.y)
|
|
|
+ + (cartCoords.z * cartCoords.z));
|
|
|
+ store.y = FastMath.atan(cartCoords.z / x);
|
|
|
+ if (x < 0) {
|
|
|
+ store.y += FastMath.PI;
|
|
|
+ }
|
|
|
+ store.z = FastMath.asin(cartCoords.y / store.x);
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Converts a point from Spherical coordinates to Cartesian (using positive
|
|
|
+ * Z as up) and stores the results in the store var.
|
|
|
+ */
|
|
|
+ public static Vector3f sphericalToCartesianZ(Vector3f sphereCoords,
|
|
|
+ Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+ store.z = sphereCoords.x * FastMath.sin(sphereCoords.z);
|
|
|
+ float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
|
|
|
+ store.x = a * FastMath.cos(sphereCoords.y);
|
|
|
+ store.y = a * FastMath.sin(sphereCoords.y);
|
|
|
+
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Converts a point from Cartesian coordinates (using positive Z as up) to
|
|
|
+ * Spherical and stores the results in the store var. (Radius, Azimuth,
|
|
|
+ * Polar)
|
|
|
+ */
|
|
|
+ public static Vector3f cartesianZToSpherical(Vector3f cartCoords,
|
|
|
+ Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+ float x = cartCoords.x;
|
|
|
+ if (x == 0) {
|
|
|
+ x = FastMath.FLT_EPSILON;
|
|
|
+ }
|
|
|
+ store.x = FastMath.sqrt((x * x)
|
|
|
+ + (cartCoords.y * cartCoords.y)
|
|
|
+ + (cartCoords.z * cartCoords.z));
|
|
|
+ store.z = FastMath.atan(cartCoords.z / x);
|
|
|
+ if (x < 0) {
|
|
|
+ store.z += FastMath.PI;
|
|
|
+ }
|
|
|
+ store.y = FastMath.asin(cartCoords.y / store.x);
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Takes an value and expresses it in terms of min to max.
|
|
|
+ *
|
|
|
+ * @param val -
|
|
|
+ * the angle to normalize (in radians)
|
|
|
+ * @return the normalized angle (also in radians)
|
|
|
+ */
|
|
|
+ public static float normalize(float val, float min, float max) {
|
|
|
+ if (Float.isInfinite(val) || Float.isNaN(val)) {
|
|
|
+ return 0f;
|
|
|
+ }
|
|
|
+ float range = max - min;
|
|
|
+ while (val > max) {
|
|
|
+ val -= range;
|
|
|
+ }
|
|
|
+ while (val < min) {
|
|
|
+ val += range;
|
|
|
+ }
|
|
|
+ return val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @param x
|
|
|
+ * the value whose sign is to be adjusted.
|
|
|
+ * @param y
|
|
|
+ * the value whose sign is to be used.
|
|
|
+ * @return x with its sign changed to match the sign of y.
|
|
|
+ */
|
|
|
+ public static float copysign(float x, float y) {
|
|
|
+ if (y >= 0 && x <= -0) {
|
|
|
+ return -x;
|
|
|
+ } else if (y < 0 && x >= 0) {
|
|
|
+ return -x;
|
|
|
+ } else {
|
|
|
+ return x;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Take a float input and clamp it between min and max.
|
|
|
+ *
|
|
|
+ * @param input
|
|
|
+ * @param min
|
|
|
+ * @param max
|
|
|
+ * @return clamped input
|
|
|
+ */
|
|
|
+ public static float clamp(float input, float min, float max) {
|
|
|
+ return (input < min) ? min : (input > max) ? max : input;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Clamps the given float to be between 0 and 1.
|
|
|
+ *
|
|
|
+ * @param input
|
|
|
+ * @return input clamped between 0 and 1.
|
|
|
+ */
|
|
|
+ public static float saturate(float input) {
|
|
|
+ return clamp(input, 0f, 1f);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Converts a single precision (32 bit) floating point value
|
|
|
+ * into half precision (16 bit).
|
|
|
+ *
|
|
|
+ * <p>Source: <a href="http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf">
|
|
|
+ * http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf</a><br><strong>broken link</strong>
|
|
|
+ *
|
|
|
+ * @param half The half floating point value as a short.
|
|
|
+ * @return floating point value of the half.
|
|
|
+ */
|
|
|
+ public static float convertHalfToFloat(short half) {
|
|
|
+ switch ((int) half) {
|
|
|
+ case 0x0000:
|
|
|
+ return 0f;
|
|
|
+ case 0x8000:
|
|
|
+ return -0f;
|
|
|
+ case 0x7c00:
|
|
|
+ return Float.POSITIVE_INFINITY;
|
|
|
+ case 0xfc00:
|
|
|
+ return Float.NEGATIVE_INFINITY;
|
|
|
+ // TODO: Support for NaN?
|
|
|
+ default:
|
|
|
+ return Float.intBitsToFloat(((half & 0x8000) << 16)
|
|
|
+ | (((half & 0x7c00) + 0x1C000) << 13)
|
|
|
+ | ((half & 0x03FF) << 13));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ public static short convertFloatToHalf(float flt) {
|
|
|
+ if (Float.isNaN(flt)) {
|
|
|
+ throw new UnsupportedOperationException("NaN to half conversion not supported!");
|
|
|
+ } else if (flt == Float.POSITIVE_INFINITY) {
|
|
|
+ return (short) 0x7c00;
|
|
|
+ } else if (flt == Float.NEGATIVE_INFINITY) {
|
|
|
+ return (short) 0xfc00;
|
|
|
+ } else if (flt == 0f) {
|
|
|
+ return (short) 0x0000;
|
|
|
+ } else if (flt == -0f) {
|
|
|
+ return (short) 0x8000;
|
|
|
+ } else if (flt > 65504f) {
|
|
|
+ // max value supported by half float
|
|
|
+ return 0x7bff;
|
|
|
+ } else if (flt < -65504f) {
|
|
|
+ return (short) (0x7bff | 0x8000);
|
|
|
+ } else if (flt > 0f && flt < 5.96046E-8f) {
|
|
|
+ return 0x0001;
|
|
|
+ } else if (flt < 0f && flt > -5.96046E-8f) {
|
|
|
+ return (short) 0x8001;
|
|
|
+ }
|
|
|
+
|
|
|
+ int f = Float.floatToIntBits(flt);
|
|
|
+ return (short) (((f >> 16) & 0x8000)
|
|
|
+ | ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00)
|
|
|
+ | ((f >> 13) & 0x03ff));
|
|
|
+ }
|
|
|
+}
|