|
|
@@ -1,1387 +1,1387 @@
|
|
|
-/*
|
|
|
- * Copyright (c) 2009-2010 jMonkeyEngine
|
|
|
- * All rights reserved.
|
|
|
- *
|
|
|
- * Redistribution and use in source and binary forms, with or without
|
|
|
- * modification, are permitted provided that the following conditions are
|
|
|
- * met:
|
|
|
- *
|
|
|
- * * Redistributions of source code must retain the above copyright
|
|
|
- * notice, this list of conditions and the following disclaimer.
|
|
|
- *
|
|
|
- * * Redistributions in binary form must reproduce the above copyright
|
|
|
- * notice, this list of conditions and the following disclaimer in the
|
|
|
- * documentation and/or other materials provided with the distribution.
|
|
|
- *
|
|
|
- * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
|
|
|
- * may be used to endorse or promote products derived from this software
|
|
|
- * without specific prior written permission.
|
|
|
- *
|
|
|
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
- */
|
|
|
-package com.jme3.math;
|
|
|
-
|
|
|
-import com.jme3.export.*;
|
|
|
-import com.jme3.util.BufferUtils;
|
|
|
-import com.jme3.util.TempVars;
|
|
|
-import java.io.IOException;
|
|
|
-import java.nio.FloatBuffer;
|
|
|
-import java.util.logging.Logger;
|
|
|
-
|
|
|
-/**
|
|
|
- * <code>Matrix3f</code> defines a 3x3 matrix. Matrix data is maintained
|
|
|
- * internally and is accessible via the get and set methods. Convenience methods
|
|
|
- * are used for matrix operations as well as generating a matrix from a given
|
|
|
- * set of values.
|
|
|
- *
|
|
|
- * @author Mark Powell
|
|
|
- * @author Joshua Slack
|
|
|
- */
|
|
|
-public final class Matrix3f implements Savable, Cloneable, java.io.Serializable {
|
|
|
-
|
|
|
- static final long serialVersionUID = 1;
|
|
|
-
|
|
|
- private static final Logger logger = Logger.getLogger(Matrix3f.class.getName());
|
|
|
- protected float m00, m01, m02;
|
|
|
- protected float m10, m11, m12;
|
|
|
- protected float m20, m21, m22;
|
|
|
- public static final Matrix3f ZERO = new Matrix3f(0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
|
- public static final Matrix3f IDENTITY = new Matrix3f();
|
|
|
-
|
|
|
- /**
|
|
|
- * Constructor instantiates a new <code>Matrix3f</code> object. The
|
|
|
- * initial values for the matrix is that of the identity matrix.
|
|
|
- *
|
|
|
- */
|
|
|
- public Matrix3f() {
|
|
|
- loadIdentity();
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * constructs a matrix with the given values.
|
|
|
- *
|
|
|
- * @param m00
|
|
|
- * 0x0 in the matrix.
|
|
|
- * @param m01
|
|
|
- * 0x1 in the matrix.
|
|
|
- * @param m02
|
|
|
- * 0x2 in the matrix.
|
|
|
- * @param m10
|
|
|
- * 1x0 in the matrix.
|
|
|
- * @param m11
|
|
|
- * 1x1 in the matrix.
|
|
|
- * @param m12
|
|
|
- * 1x2 in the matrix.
|
|
|
- * @param m20
|
|
|
- * 2x0 in the matrix.
|
|
|
- * @param m21
|
|
|
- * 2x1 in the matrix.
|
|
|
- * @param m22
|
|
|
- * 2x2 in the matrix.
|
|
|
- */
|
|
|
- public Matrix3f(float m00, float m01, float m02, float m10, float m11,
|
|
|
- float m12, float m20, float m21, float m22) {
|
|
|
-
|
|
|
- this.m00 = m00;
|
|
|
- this.m01 = m01;
|
|
|
- this.m02 = m02;
|
|
|
- this.m10 = m10;
|
|
|
- this.m11 = m11;
|
|
|
- this.m12 = m12;
|
|
|
- this.m20 = m20;
|
|
|
- this.m21 = m21;
|
|
|
- this.m22 = m22;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Copy constructor that creates a new <code>Matrix3f</code> object that
|
|
|
- * is the same as the provided matrix.
|
|
|
- *
|
|
|
- * @param mat
|
|
|
- * the matrix to copy.
|
|
|
- */
|
|
|
- public Matrix3f(Matrix3f mat) {
|
|
|
- set(mat);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Takes the absolute value of all matrix fields locally.
|
|
|
- */
|
|
|
- public void absoluteLocal() {
|
|
|
- m00 = FastMath.abs(m00);
|
|
|
- m01 = FastMath.abs(m01);
|
|
|
- m02 = FastMath.abs(m02);
|
|
|
- m10 = FastMath.abs(m10);
|
|
|
- m11 = FastMath.abs(m11);
|
|
|
- m12 = FastMath.abs(m12);
|
|
|
- m20 = FastMath.abs(m20);
|
|
|
- m21 = FastMath.abs(m21);
|
|
|
- m22 = FastMath.abs(m22);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>copy</code> transfers the contents of a given matrix to this
|
|
|
- * matrix. If a null matrix is supplied, this matrix is set to the identity
|
|
|
- * matrix.
|
|
|
- *
|
|
|
- * @param matrix
|
|
|
- * the matrix to copy.
|
|
|
- * @return this
|
|
|
- */
|
|
|
- public Matrix3f set(Matrix3f matrix) {
|
|
|
- if (null == matrix) {
|
|
|
- loadIdentity();
|
|
|
- } else {
|
|
|
- m00 = matrix.m00;
|
|
|
- m01 = matrix.m01;
|
|
|
- m02 = matrix.m02;
|
|
|
- m10 = matrix.m10;
|
|
|
- m11 = matrix.m11;
|
|
|
- m12 = matrix.m12;
|
|
|
- m20 = matrix.m20;
|
|
|
- m21 = matrix.m21;
|
|
|
- m22 = matrix.m22;
|
|
|
- }
|
|
|
- return this;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>get</code> retrieves a value from the matrix at the given
|
|
|
- * position. If the position is invalid a <code>JmeException</code> is
|
|
|
- * thrown.
|
|
|
- *
|
|
|
- * @param i
|
|
|
- * the row index.
|
|
|
- * @param j
|
|
|
- * the colum index.
|
|
|
- * @return the value at (i, j).
|
|
|
- */
|
|
|
- @SuppressWarnings("fallthrough")
|
|
|
- public float get(int i, int j) {
|
|
|
- switch (i) {
|
|
|
- case 0:
|
|
|
- switch (j) {
|
|
|
- case 0:
|
|
|
- return m00;
|
|
|
- case 1:
|
|
|
- return m01;
|
|
|
- case 2:
|
|
|
- return m02;
|
|
|
- }
|
|
|
- case 1:
|
|
|
- switch (j) {
|
|
|
- case 0:
|
|
|
- return m10;
|
|
|
- case 1:
|
|
|
- return m11;
|
|
|
- case 2:
|
|
|
- return m12;
|
|
|
- }
|
|
|
- case 2:
|
|
|
- switch (j) {
|
|
|
- case 0:
|
|
|
- return m20;
|
|
|
- case 1:
|
|
|
- return m21;
|
|
|
- case 2:
|
|
|
- return m22;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- logger.warning("Invalid matrix index.");
|
|
|
- throw new IllegalArgumentException("Invalid indices into matrix.");
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>get(float[])</code> returns the matrix in row-major or column-major order.
|
|
|
- *
|
|
|
- * @param data
|
|
|
- * The array to return the data into. This array can be 9 or 16 floats in size.
|
|
|
- * Only the upper 3x3 are assigned to in the case of a 16 element array.
|
|
|
- * @param rowMajor
|
|
|
- * True for row major storage in the array (translation in elements 3, 7, 11 for a 4x4),
|
|
|
- * false for column major (translation in elements 12, 13, 14 for a 4x4).
|
|
|
- */
|
|
|
- public void get(float[] data, boolean rowMajor) {
|
|
|
- if (data.length == 9) {
|
|
|
- if (rowMajor) {
|
|
|
- data[0] = m00;
|
|
|
- data[1] = m01;
|
|
|
- data[2] = m02;
|
|
|
- data[3] = m10;
|
|
|
- data[4] = m11;
|
|
|
- data[5] = m12;
|
|
|
- data[6] = m20;
|
|
|
- data[7] = m21;
|
|
|
- data[8] = m22;
|
|
|
- } else {
|
|
|
- data[0] = m00;
|
|
|
- data[1] = m10;
|
|
|
- data[2] = m20;
|
|
|
- data[3] = m01;
|
|
|
- data[4] = m11;
|
|
|
- data[5] = m21;
|
|
|
- data[6] = m02;
|
|
|
- data[7] = m12;
|
|
|
- data[8] = m22;
|
|
|
- }
|
|
|
- } else if (data.length == 16) {
|
|
|
- if (rowMajor) {
|
|
|
- data[0] = m00;
|
|
|
- data[1] = m01;
|
|
|
- data[2] = m02;
|
|
|
- data[4] = m10;
|
|
|
- data[5] = m11;
|
|
|
- data[6] = m12;
|
|
|
- data[8] = m20;
|
|
|
- data[9] = m21;
|
|
|
- data[10] = m22;
|
|
|
- } else {
|
|
|
- data[0] = m00;
|
|
|
- data[1] = m10;
|
|
|
- data[2] = m20;
|
|
|
- data[4] = m01;
|
|
|
- data[5] = m11;
|
|
|
- data[6] = m21;
|
|
|
- data[8] = m02;
|
|
|
- data[9] = m12;
|
|
|
- data[10] = m22;
|
|
|
- }
|
|
|
- } else {
|
|
|
- throw new IndexOutOfBoundsException("Array size must be 9 or 16 in Matrix3f.get().");
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>getColumn</code> returns one of three columns specified by the
|
|
|
- * parameter. This column is returned as a <code>Vector3f</code> object.
|
|
|
- *
|
|
|
- * @param i
|
|
|
- * the column to retrieve. Must be between 0 and 2.
|
|
|
- * @return the column specified by the index.
|
|
|
- */
|
|
|
- public Vector3f getColumn(int i) {
|
|
|
- return getColumn(i, null);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>getColumn</code> returns one of three columns specified by the
|
|
|
- * parameter. This column is returned as a <code>Vector3f</code> object.
|
|
|
- *
|
|
|
- * @param i
|
|
|
- * the column to retrieve. Must be between 0 and 2.
|
|
|
- * @param store
|
|
|
- * the vector object to store the result in. if null, a new one
|
|
|
- * is created.
|
|
|
- * @return the column specified by the index.
|
|
|
- */
|
|
|
- public Vector3f getColumn(int i, Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
- switch (i) {
|
|
|
- case 0:
|
|
|
- store.x = m00;
|
|
|
- store.y = m10;
|
|
|
- store.z = m20;
|
|
|
- break;
|
|
|
- case 1:
|
|
|
- store.x = m01;
|
|
|
- store.y = m11;
|
|
|
- store.z = m21;
|
|
|
- break;
|
|
|
- case 2:
|
|
|
- store.x = m02;
|
|
|
- store.y = m12;
|
|
|
- store.z = m22;
|
|
|
- break;
|
|
|
- default:
|
|
|
- logger.warning("Invalid column index.");
|
|
|
- throw new IllegalArgumentException("Invalid column index. " + i);
|
|
|
- }
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>getColumn</code> returns one of three rows as specified by the
|
|
|
- * parameter. This row is returned as a <code>Vector3f</code> object.
|
|
|
- *
|
|
|
- * @param i
|
|
|
- * the row to retrieve. Must be between 0 and 2.
|
|
|
- * @return the row specified by the index.
|
|
|
- */
|
|
|
- public Vector3f getRow(int i) {
|
|
|
- return getRow(i, null);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>getRow</code> returns one of three rows as specified by the
|
|
|
- * parameter. This row is returned as a <code>Vector3f</code> object.
|
|
|
- *
|
|
|
- * @param i
|
|
|
- * the row to retrieve. Must be between 0 and 2.
|
|
|
- * @param store
|
|
|
- * the vector object to store the result in. if null, a new one
|
|
|
- * is created.
|
|
|
- * @return the row specified by the index.
|
|
|
- */
|
|
|
- public Vector3f getRow(int i, Vector3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Vector3f();
|
|
|
- }
|
|
|
- switch (i) {
|
|
|
- case 0:
|
|
|
- store.x = m00;
|
|
|
- store.y = m01;
|
|
|
- store.z = m02;
|
|
|
- break;
|
|
|
- case 1:
|
|
|
- store.x = m10;
|
|
|
- store.y = m11;
|
|
|
- store.z = m12;
|
|
|
- break;
|
|
|
- case 2:
|
|
|
- store.x = m20;
|
|
|
- store.y = m21;
|
|
|
- store.z = m22;
|
|
|
- break;
|
|
|
- default:
|
|
|
- logger.warning("Invalid row index.");
|
|
|
- throw new IllegalArgumentException("Invalid row index. " + i);
|
|
|
- }
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>toFloatBuffer</code> returns a FloatBuffer object that contains
|
|
|
- * the matrix data.
|
|
|
- *
|
|
|
- * @return matrix data as a FloatBuffer.
|
|
|
- */
|
|
|
- public FloatBuffer toFloatBuffer() {
|
|
|
- FloatBuffer fb = BufferUtils.createFloatBuffer(9);
|
|
|
-
|
|
|
- fb.put(m00).put(m01).put(m02);
|
|
|
- fb.put(m10).put(m11).put(m12);
|
|
|
- fb.put(m20).put(m21).put(m22);
|
|
|
- fb.rewind();
|
|
|
- return fb;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix
|
|
|
- * data.
|
|
|
- *
|
|
|
- * @param fb
|
|
|
- * the buffer to fill, starting at current position. Must have
|
|
|
- * room for 9 more floats.
|
|
|
- * @return matrix data as a FloatBuffer. (position is advanced by 9 and any
|
|
|
- * limit set is not changed).
|
|
|
- */
|
|
|
- public FloatBuffer fillFloatBuffer(FloatBuffer fb, boolean columnMajor) {
|
|
|
-// if (columnMajor){
|
|
|
-// fb.put(m00).put(m10).put(m20);
|
|
|
-// fb.put(m01).put(m11).put(m21);
|
|
|
-// fb.put(m02).put(m12).put(m22);
|
|
|
-// }else{
|
|
|
-// fb.put(m00).put(m01).put(m02);
|
|
|
-// fb.put(m10).put(m11).put(m12);
|
|
|
-// fb.put(m20).put(m21).put(m22);
|
|
|
-// }
|
|
|
-
|
|
|
- TempVars vars = TempVars.get();
|
|
|
-
|
|
|
-
|
|
|
- fillFloatArray(vars.matrixWrite, columnMajor);
|
|
|
- fb.put(vars.matrixWrite, 0, 9);
|
|
|
-
|
|
|
- vars.release();
|
|
|
-
|
|
|
- return fb;
|
|
|
- }
|
|
|
-
|
|
|
- public void fillFloatArray(float[] f, boolean columnMajor) {
|
|
|
- if (columnMajor) {
|
|
|
- f[ 0] = m00;
|
|
|
- f[ 1] = m10;
|
|
|
- f[ 2] = m20;
|
|
|
- f[ 3] = m01;
|
|
|
- f[ 4] = m11;
|
|
|
- f[ 5] = m21;
|
|
|
- f[ 6] = m02;
|
|
|
- f[ 7] = m12;
|
|
|
- f[ 8] = m22;
|
|
|
- } else {
|
|
|
- f[ 0] = m00;
|
|
|
- f[ 1] = m01;
|
|
|
- f[ 2] = m02;
|
|
|
- f[ 3] = m10;
|
|
|
- f[ 4] = m11;
|
|
|
- f[ 5] = m12;
|
|
|
- f[ 6] = m20;
|
|
|
- f[ 7] = m21;
|
|
|
- f[ 8] = m22;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- *
|
|
|
- * <code>setColumn</code> sets a particular column of this matrix to that
|
|
|
- * represented by the provided vector.
|
|
|
- *
|
|
|
- * @param i
|
|
|
- * the column to set.
|
|
|
- * @param column
|
|
|
- * the data to set.
|
|
|
- * @return this
|
|
|
- */
|
|
|
- public Matrix3f setColumn(int i, Vector3f column) {
|
|
|
-
|
|
|
- if (column == null) {
|
|
|
- logger.warning("Column is null. Ignoring.");
|
|
|
- return this;
|
|
|
- }
|
|
|
- switch (i) {
|
|
|
- case 0:
|
|
|
- m00 = column.x;
|
|
|
- m10 = column.y;
|
|
|
- m20 = column.z;
|
|
|
- break;
|
|
|
- case 1:
|
|
|
- m01 = column.x;
|
|
|
- m11 = column.y;
|
|
|
- m21 = column.z;
|
|
|
- break;
|
|
|
- case 2:
|
|
|
- m02 = column.x;
|
|
|
- m12 = column.y;
|
|
|
- m22 = column.z;
|
|
|
- break;
|
|
|
- default:
|
|
|
- logger.warning("Invalid column index.");
|
|
|
- throw new IllegalArgumentException("Invalid column index. " + i);
|
|
|
- }
|
|
|
- return this;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- *
|
|
|
- * <code>setRow</code> sets a particular row of this matrix to that
|
|
|
- * represented by the provided vector.
|
|
|
- *
|
|
|
- * @param i
|
|
|
- * the row to set.
|
|
|
- * @param row
|
|
|
- * the data to set.
|
|
|
- * @return this
|
|
|
- */
|
|
|
- public Matrix3f setRow(int i, Vector3f row) {
|
|
|
-
|
|
|
- if (row == null) {
|
|
|
- logger.warning("Row is null. Ignoring.");
|
|
|
- return this;
|
|
|
- }
|
|
|
- switch (i) {
|
|
|
- case 0:
|
|
|
- m00 = row.x;
|
|
|
- m01 = row.y;
|
|
|
- m02 = row.z;
|
|
|
- break;
|
|
|
- case 1:
|
|
|
- m10 = row.x;
|
|
|
- m11 = row.y;
|
|
|
- m12 = row.z;
|
|
|
- break;
|
|
|
- case 2:
|
|
|
- m20 = row.x;
|
|
|
- m21 = row.y;
|
|
|
- m22 = row.z;
|
|
|
- break;
|
|
|
- default:
|
|
|
- logger.warning("Invalid row index.");
|
|
|
- throw new IllegalArgumentException("Invalid row index. " + i);
|
|
|
- }
|
|
|
- return this;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>set</code> places a given value into the matrix at the given
|
|
|
- * position. If the position is invalid a <code>JmeException</code> is
|
|
|
- * thrown.
|
|
|
- *
|
|
|
- * @param i
|
|
|
- * the row index.
|
|
|
- * @param j
|
|
|
- * the colum index.
|
|
|
- * @param value
|
|
|
- * the value for (i, j).
|
|
|
- * @return this
|
|
|
- */
|
|
|
- @SuppressWarnings("fallthrough")
|
|
|
- public Matrix3f set(int i, int j, float value) {
|
|
|
- switch (i) {
|
|
|
- case 0:
|
|
|
- switch (j) {
|
|
|
- case 0:
|
|
|
- m00 = value;
|
|
|
- return this;
|
|
|
- case 1:
|
|
|
- m01 = value;
|
|
|
- return this;
|
|
|
- case 2:
|
|
|
- m02 = value;
|
|
|
- return this;
|
|
|
- }
|
|
|
- case 1:
|
|
|
- switch (j) {
|
|
|
- case 0:
|
|
|
- m10 = value;
|
|
|
- return this;
|
|
|
- case 1:
|
|
|
- m11 = value;
|
|
|
- return this;
|
|
|
- case 2:
|
|
|
- m12 = value;
|
|
|
- return this;
|
|
|
- }
|
|
|
- case 2:
|
|
|
- switch (j) {
|
|
|
- case 0:
|
|
|
- m20 = value;
|
|
|
- return this;
|
|
|
- case 1:
|
|
|
- m21 = value;
|
|
|
- return this;
|
|
|
- case 2:
|
|
|
- m22 = value;
|
|
|
- return this;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- logger.warning("Invalid matrix index.");
|
|
|
- throw new IllegalArgumentException("Invalid indices into matrix.");
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- *
|
|
|
- * <code>set</code> sets the values of the matrix to those supplied by the
|
|
|
- * 3x3 two dimenion array.
|
|
|
- *
|
|
|
- * @param matrix
|
|
|
- * the new values of the matrix.
|
|
|
- * @throws JmeException
|
|
|
- * if the array is not of size 9.
|
|
|
- * @return this
|
|
|
- */
|
|
|
- public Matrix3f set(float[][] matrix) {
|
|
|
- if (matrix.length != 3 || matrix[0].length != 3) {
|
|
|
- throw new IllegalArgumentException(
|
|
|
- "Array must be of size 9.");
|
|
|
- }
|
|
|
-
|
|
|
- m00 = matrix[0][0];
|
|
|
- m01 = matrix[0][1];
|
|
|
- m02 = matrix[0][2];
|
|
|
- m10 = matrix[1][0];
|
|
|
- m11 = matrix[1][1];
|
|
|
- m12 = matrix[1][2];
|
|
|
- m20 = matrix[2][0];
|
|
|
- m21 = matrix[2][1];
|
|
|
- m22 = matrix[2][2];
|
|
|
-
|
|
|
- return this;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Recreate Matrix using the provided axis.
|
|
|
- *
|
|
|
- * @param uAxis
|
|
|
- * Vector3f
|
|
|
- * @param vAxis
|
|
|
- * Vector3f
|
|
|
- * @param wAxis
|
|
|
- * Vector3f
|
|
|
- */
|
|
|
- public void fromAxes(Vector3f uAxis, Vector3f vAxis, Vector3f wAxis) {
|
|
|
- m00 = uAxis.x;
|
|
|
- m10 = uAxis.y;
|
|
|
- m20 = uAxis.z;
|
|
|
-
|
|
|
- m01 = vAxis.x;
|
|
|
- m11 = vAxis.y;
|
|
|
- m21 = vAxis.z;
|
|
|
-
|
|
|
- m02 = wAxis.x;
|
|
|
- m12 = wAxis.y;
|
|
|
- m22 = wAxis.z;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>set</code> sets the values of this matrix from an array of
|
|
|
- * values assuming that the data is rowMajor order;
|
|
|
- *
|
|
|
- * @param matrix
|
|
|
- * the matrix to set the value to.
|
|
|
- * @return this
|
|
|
- */
|
|
|
- public Matrix3f set(float[] matrix) {
|
|
|
- return set(matrix, true);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>set</code> sets the values of this matrix from an array of
|
|
|
- * values;
|
|
|
- *
|
|
|
- * @param matrix
|
|
|
- * the matrix to set the value to.
|
|
|
- * @param rowMajor
|
|
|
- * whether the incoming data is in row or column major order.
|
|
|
- * @return this
|
|
|
- */
|
|
|
- public Matrix3f set(float[] matrix, boolean rowMajor) {
|
|
|
- if (matrix.length != 9) {
|
|
|
- throw new IllegalArgumentException(
|
|
|
- "Array must be of size 9.");
|
|
|
- }
|
|
|
-
|
|
|
- if (rowMajor) {
|
|
|
- m00 = matrix[0];
|
|
|
- m01 = matrix[1];
|
|
|
- m02 = matrix[2];
|
|
|
- m10 = matrix[3];
|
|
|
- m11 = matrix[4];
|
|
|
- m12 = matrix[5];
|
|
|
- m20 = matrix[6];
|
|
|
- m21 = matrix[7];
|
|
|
- m22 = matrix[8];
|
|
|
- } else {
|
|
|
- m00 = matrix[0];
|
|
|
- m01 = matrix[3];
|
|
|
- m02 = matrix[6];
|
|
|
- m10 = matrix[1];
|
|
|
- m11 = matrix[4];
|
|
|
- m12 = matrix[7];
|
|
|
- m20 = matrix[2];
|
|
|
- m21 = matrix[5];
|
|
|
- m22 = matrix[8];
|
|
|
- }
|
|
|
- return this;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- *
|
|
|
- * <code>set</code> defines the values of the matrix based on a supplied
|
|
|
- * <code>Quaternion</code>. It should be noted that all previous values
|
|
|
- * will be overridden.
|
|
|
- *
|
|
|
- * @param quaternion
|
|
|
- * the quaternion to create a rotational matrix from.
|
|
|
- * @return this
|
|
|
- */
|
|
|
- public Matrix3f set(Quaternion quaternion) {
|
|
|
- return quaternion.toRotationMatrix(this);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>loadIdentity</code> sets this matrix to the identity matrix.
|
|
|
- * Where all values are zero except those along the diagonal which are one.
|
|
|
- *
|
|
|
- */
|
|
|
- public void loadIdentity() {
|
|
|
- m01 = m02 = m10 = m12 = m20 = m21 = 0;
|
|
|
- m00 = m11 = m22 = 1;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * @return true if this matrix is identity
|
|
|
- */
|
|
|
- public boolean isIdentity() {
|
|
|
- return (m00 == 1 && m01 == 0 && m02 == 0)
|
|
|
- && (m10 == 0 && m11 == 1 && m12 == 0)
|
|
|
- && (m20 == 0 && m21 == 0 && m22 == 1);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>fromAngleAxis</code> sets this matrix4f to the values specified
|
|
|
- * by an angle and an axis of rotation. This method creates an object, so
|
|
|
- * use fromAngleNormalAxis if your axis is already normalized.
|
|
|
- *
|
|
|
- * @param angle
|
|
|
- * the angle to rotate (in radians).
|
|
|
- * @param axis
|
|
|
- * the axis of rotation.
|
|
|
- */
|
|
|
- public void fromAngleAxis(float angle, Vector3f axis) {
|
|
|
- Vector3f normAxis = axis.normalize();
|
|
|
- fromAngleNormalAxis(angle, normAxis);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>fromAngleNormalAxis</code> sets this matrix4f to the values
|
|
|
- * specified by an angle and a normalized axis of rotation.
|
|
|
- *
|
|
|
- * @param angle
|
|
|
- * the angle to rotate (in radians).
|
|
|
- * @param axis
|
|
|
- * the axis of rotation (already normalized).
|
|
|
- */
|
|
|
- public void fromAngleNormalAxis(float angle, Vector3f axis) {
|
|
|
- float fCos = FastMath.cos(angle);
|
|
|
- float fSin = FastMath.sin(angle);
|
|
|
- float fOneMinusCos = ((float) 1.0) - fCos;
|
|
|
- float fX2 = axis.x * axis.x;
|
|
|
- float fY2 = axis.y * axis.y;
|
|
|
- float fZ2 = axis.z * axis.z;
|
|
|
- float fXYM = axis.x * axis.y * fOneMinusCos;
|
|
|
- float fXZM = axis.x * axis.z * fOneMinusCos;
|
|
|
- float fYZM = axis.y * axis.z * fOneMinusCos;
|
|
|
- float fXSin = axis.x * fSin;
|
|
|
- float fYSin = axis.y * fSin;
|
|
|
- float fZSin = axis.z * fSin;
|
|
|
-
|
|
|
- m00 = fX2 * fOneMinusCos + fCos;
|
|
|
- m01 = fXYM - fZSin;
|
|
|
- m02 = fXZM + fYSin;
|
|
|
- m10 = fXYM + fZSin;
|
|
|
- m11 = fY2 * fOneMinusCos + fCos;
|
|
|
- m12 = fYZM - fXSin;
|
|
|
- m20 = fXZM - fYSin;
|
|
|
- m21 = fYZM + fXSin;
|
|
|
- m22 = fZ2 * fOneMinusCos + fCos;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>mult</code> multiplies this matrix by a given matrix. The result
|
|
|
- * matrix is returned as a new object. If the given matrix is null, a null
|
|
|
- * matrix is returned.
|
|
|
- *
|
|
|
- * @param mat
|
|
|
- * the matrix to multiply this matrix by.
|
|
|
- * @return the result matrix.
|
|
|
- */
|
|
|
- public Matrix3f mult(Matrix3f mat) {
|
|
|
- return mult(mat, null);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>mult</code> multiplies this matrix by a given matrix. The result
|
|
|
- * matrix is returned as a new object.
|
|
|
- *
|
|
|
- * @param mat
|
|
|
- * the matrix to multiply this matrix by.
|
|
|
- * @param product
|
|
|
- * the matrix to store the result in. if null, a new matrix3f is
|
|
|
- * created. It is safe for mat and product to be the same object.
|
|
|
- * @return a matrix3f object containing the result of this operation
|
|
|
- */
|
|
|
- public Matrix3f mult(Matrix3f mat, Matrix3f product) {
|
|
|
-
|
|
|
- float temp00, temp01, temp02;
|
|
|
- float temp10, temp11, temp12;
|
|
|
- float temp20, temp21, temp22;
|
|
|
-
|
|
|
- if (product == null) {
|
|
|
- product = new Matrix3f();
|
|
|
- }
|
|
|
- temp00 = m00 * mat.m00 + m01 * mat.m10 + m02 * mat.m20;
|
|
|
- temp01 = m00 * mat.m01 + m01 * mat.m11 + m02 * mat.m21;
|
|
|
- temp02 = m00 * mat.m02 + m01 * mat.m12 + m02 * mat.m22;
|
|
|
- temp10 = m10 * mat.m00 + m11 * mat.m10 + m12 * mat.m20;
|
|
|
- temp11 = m10 * mat.m01 + m11 * mat.m11 + m12 * mat.m21;
|
|
|
- temp12 = m10 * mat.m02 + m11 * mat.m12 + m12 * mat.m22;
|
|
|
- temp20 = m20 * mat.m00 + m21 * mat.m10 + m22 * mat.m20;
|
|
|
- temp21 = m20 * mat.m01 + m21 * mat.m11 + m22 * mat.m21;
|
|
|
- temp22 = m20 * mat.m02 + m21 * mat.m12 + m22 * mat.m22;
|
|
|
-
|
|
|
- product.m00 = temp00;
|
|
|
- product.m01 = temp01;
|
|
|
- product.m02 = temp02;
|
|
|
- product.m10 = temp10;
|
|
|
- product.m11 = temp11;
|
|
|
- product.m12 = temp12;
|
|
|
- product.m20 = temp20;
|
|
|
- product.m21 = temp21;
|
|
|
- product.m22 = temp22;
|
|
|
-
|
|
|
- return product;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>mult</code> multiplies this matrix by a given
|
|
|
- * <code>Vector3f</code> object. The result vector is returned. If the
|
|
|
- * given vector is null, null will be returned.
|
|
|
- *
|
|
|
- * @param vec
|
|
|
- * the vector to multiply this matrix by.
|
|
|
- * @return the result vector.
|
|
|
- */
|
|
|
- public Vector3f mult(Vector3f vec) {
|
|
|
- return mult(vec, null);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Multiplies this 3x3 matrix by the 1x3 Vector vec and stores the result in
|
|
|
- * product.
|
|
|
- *
|
|
|
- * @param vec
|
|
|
- * The Vector3f to multiply.
|
|
|
- * @param product
|
|
|
- * The Vector3f to store the result, it is safe for this to be
|
|
|
- * the same as vec.
|
|
|
- * @return The given product vector.
|
|
|
- */
|
|
|
- public Vector3f mult(Vector3f vec, Vector3f product) {
|
|
|
-
|
|
|
- if (null == product) {
|
|
|
- product = new Vector3f();
|
|
|
- }
|
|
|
-
|
|
|
- float x = vec.x;
|
|
|
- float y = vec.y;
|
|
|
- float z = vec.z;
|
|
|
-
|
|
|
- product.x = m00 * x + m01 * y + m02 * z;
|
|
|
- product.y = m10 * x + m11 * y + m12 * z;
|
|
|
- product.z = m20 * x + m21 * y + m22 * z;
|
|
|
- return product;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>multLocal</code> multiplies this matrix internally by
|
|
|
- * a given float scale factor.
|
|
|
- *
|
|
|
- * @param scale
|
|
|
- * the value to scale by.
|
|
|
- * @return this Matrix3f
|
|
|
- */
|
|
|
- public Matrix3f multLocal(float scale) {
|
|
|
- m00 *= scale;
|
|
|
- m01 *= scale;
|
|
|
- m02 *= scale;
|
|
|
- m10 *= scale;
|
|
|
- m11 *= scale;
|
|
|
- m12 *= scale;
|
|
|
- m20 *= scale;
|
|
|
- m21 *= scale;
|
|
|
- m22 *= scale;
|
|
|
- return this;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>multLocal</code> multiplies this matrix by a given
|
|
|
- * <code>Vector3f</code> object. The result vector is stored inside the
|
|
|
- * passed vector, then returned . If the given vector is null, null will be
|
|
|
- * returned.
|
|
|
- *
|
|
|
- * @param vec
|
|
|
- * the vector to multiply this matrix by.
|
|
|
- * @return The passed vector after multiplication
|
|
|
- */
|
|
|
- public Vector3f multLocal(Vector3f vec) {
|
|
|
- if (vec == null) {
|
|
|
- return null;
|
|
|
- }
|
|
|
- float x = vec.x;
|
|
|
- float y = vec.y;
|
|
|
- vec.x = m00 * x + m01 * y + m02 * vec.z;
|
|
|
- vec.y = m10 * x + m11 * y + m12 * vec.z;
|
|
|
- vec.z = m20 * x + m21 * y + m22 * vec.z;
|
|
|
- return vec;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>mult</code> multiplies this matrix by a given matrix. The result
|
|
|
- * matrix is saved in the current matrix. If the given matrix is null,
|
|
|
- * nothing happens. The current matrix is returned. This is equivalent to
|
|
|
- * this*=mat
|
|
|
- *
|
|
|
- * @param mat
|
|
|
- * the matrix to multiply this matrix by.
|
|
|
- * @return This matrix, after the multiplication
|
|
|
- */
|
|
|
- public Matrix3f multLocal(Matrix3f mat) {
|
|
|
- return mult(mat, this);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Transposes this matrix in place. Returns this matrix for chaining
|
|
|
- *
|
|
|
- * @return This matrix after transpose
|
|
|
- */
|
|
|
- public Matrix3f transposeLocal() {
|
|
|
-// float[] tmp = new float[9];
|
|
|
-// get(tmp, false);
|
|
|
-// set(tmp, true);
|
|
|
-
|
|
|
- float tmp = m01;
|
|
|
- m01 = m10;
|
|
|
- m10 = tmp;
|
|
|
-
|
|
|
- tmp = m02;
|
|
|
- m02 = m20;
|
|
|
- m20 = tmp;
|
|
|
-
|
|
|
- tmp = m12;
|
|
|
- m12 = m21;
|
|
|
- m21 = tmp;
|
|
|
-
|
|
|
- return this;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Inverts this matrix as a new Matrix3f.
|
|
|
- *
|
|
|
- * @return The new inverse matrix
|
|
|
- */
|
|
|
- public Matrix3f invert() {
|
|
|
- return invert(null);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Inverts this matrix and stores it in the given store.
|
|
|
- *
|
|
|
- * @return The store
|
|
|
- */
|
|
|
- public Matrix3f invert(Matrix3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Matrix3f();
|
|
|
- }
|
|
|
-
|
|
|
- float det = determinant();
|
|
|
- if (FastMath.abs(det) <= FastMath.FLT_EPSILON) {
|
|
|
- return store.zero();
|
|
|
- }
|
|
|
-
|
|
|
- store.m00 = m11 * m22 - m12 * m21;
|
|
|
- store.m01 = m02 * m21 - m01 * m22;
|
|
|
- store.m02 = m01 * m12 - m02 * m11;
|
|
|
- store.m10 = m12 * m20 - m10 * m22;
|
|
|
- store.m11 = m00 * m22 - m02 * m20;
|
|
|
- store.m12 = m02 * m10 - m00 * m12;
|
|
|
- store.m20 = m10 * m21 - m11 * m20;
|
|
|
- store.m21 = m01 * m20 - m00 * m21;
|
|
|
- store.m22 = m00 * m11 - m01 * m10;
|
|
|
-
|
|
|
- store.multLocal(1f / det);
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Inverts this matrix locally.
|
|
|
- *
|
|
|
- * @return this
|
|
|
- */
|
|
|
- public Matrix3f invertLocal() {
|
|
|
- float det = determinant();
|
|
|
- if (FastMath.abs(det) <= 0f) {
|
|
|
- return zero();
|
|
|
- }
|
|
|
-
|
|
|
- float f00 = m11 * m22 - m12 * m21;
|
|
|
- float f01 = m02 * m21 - m01 * m22;
|
|
|
- float f02 = m01 * m12 - m02 * m11;
|
|
|
- float f10 = m12 * m20 - m10 * m22;
|
|
|
- float f11 = m00 * m22 - m02 * m20;
|
|
|
- float f12 = m02 * m10 - m00 * m12;
|
|
|
- float f20 = m10 * m21 - m11 * m20;
|
|
|
- float f21 = m01 * m20 - m00 * m21;
|
|
|
- float f22 = m00 * m11 - m01 * m10;
|
|
|
-
|
|
|
- m00 = f00;
|
|
|
- m01 = f01;
|
|
|
- m02 = f02;
|
|
|
- m10 = f10;
|
|
|
- m11 = f11;
|
|
|
- m12 = f12;
|
|
|
- m20 = f20;
|
|
|
- m21 = f21;
|
|
|
- m22 = f22;
|
|
|
-
|
|
|
- multLocal(1f / det);
|
|
|
- return this;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Returns a new matrix representing the adjoint of this matrix.
|
|
|
- *
|
|
|
- * @return The adjoint matrix
|
|
|
- */
|
|
|
- public Matrix3f adjoint() {
|
|
|
- return adjoint(null);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Places the adjoint of this matrix in store (creates store if null.)
|
|
|
- *
|
|
|
- * @param store
|
|
|
- * The matrix to store the result in. If null, a new matrix is created.
|
|
|
- * @return store
|
|
|
- */
|
|
|
- public Matrix3f adjoint(Matrix3f store) {
|
|
|
- if (store == null) {
|
|
|
- store = new Matrix3f();
|
|
|
- }
|
|
|
-
|
|
|
- store.m00 = m11 * m22 - m12 * m21;
|
|
|
- store.m01 = m02 * m21 - m01 * m22;
|
|
|
- store.m02 = m01 * m12 - m02 * m11;
|
|
|
- store.m10 = m12 * m20 - m10 * m22;
|
|
|
- store.m11 = m00 * m22 - m02 * m20;
|
|
|
- store.m12 = m02 * m10 - m00 * m12;
|
|
|
- store.m20 = m10 * m21 - m11 * m20;
|
|
|
- store.m21 = m01 * m20 - m00 * m21;
|
|
|
- store.m22 = m00 * m11 - m01 * m10;
|
|
|
-
|
|
|
- return store;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>determinant</code> generates the determinate of this matrix.
|
|
|
- *
|
|
|
- * @return the determinate
|
|
|
- */
|
|
|
- public float determinant() {
|
|
|
- float fCo00 = m11 * m22 - m12 * m21;
|
|
|
- float fCo10 = m12 * m20 - m10 * m22;
|
|
|
- float fCo20 = m10 * m21 - m11 * m20;
|
|
|
- float fDet = m00 * fCo00 + m01 * fCo10 + m02 * fCo20;
|
|
|
- return fDet;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * Sets all of the values in this matrix to zero.
|
|
|
- *
|
|
|
- * @return this matrix
|
|
|
- */
|
|
|
- public Matrix3f zero() {
|
|
|
- m00 = m01 = m02 = m10 = m11 = m12 = m20 = m21 = m22 = 0.0f;
|
|
|
- return this;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>transpose</code> <b>locally</b> transposes this Matrix.
|
|
|
- * This is inconsistent with general value vs local semantics, but is
|
|
|
- * preserved for backwards compatibility. Use transposeNew() to transpose
|
|
|
- * to a new object (value).
|
|
|
- *
|
|
|
- * @return this object for chaining.
|
|
|
- */
|
|
|
- public Matrix3f transpose() {
|
|
|
- return transposeLocal();
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>transposeNew</code> returns a transposed version of this matrix.
|
|
|
- *
|
|
|
- * @return The new Matrix3f object.
|
|
|
- */
|
|
|
- public Matrix3f transposeNew() {
|
|
|
- Matrix3f ret = new Matrix3f(m00, m10, m20, m01, m11, m21, m02, m12, m22);
|
|
|
- return ret;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>toString</code> returns the string representation of this object.
|
|
|
- * It is in a format of a 3x3 matrix. For example, an identity matrix would
|
|
|
- * be represented by the following string. com.jme.math.Matrix3f <br>[<br>
|
|
|
- * 1.0 0.0 0.0 <br>
|
|
|
- * 0.0 1.0 0.0 <br>
|
|
|
- * 0.0 0.0 1.0 <br>]<br>
|
|
|
- *
|
|
|
- * @return the string representation of this object.
|
|
|
- */
|
|
|
- @Override
|
|
|
- public String toString() {
|
|
|
- StringBuilder result = new StringBuilder("Matrix3f\n[\n");
|
|
|
- result.append(" ");
|
|
|
- result.append(m00);
|
|
|
- result.append(" ");
|
|
|
- result.append(m01);
|
|
|
- result.append(" ");
|
|
|
- result.append(m02);
|
|
|
- result.append(" \n");
|
|
|
- result.append(" ");
|
|
|
- result.append(m10);
|
|
|
- result.append(" ");
|
|
|
- result.append(m11);
|
|
|
- result.append(" ");
|
|
|
- result.append(m12);
|
|
|
- result.append(" \n");
|
|
|
- result.append(" ");
|
|
|
- result.append(m20);
|
|
|
- result.append(" ");
|
|
|
- result.append(m21);
|
|
|
- result.append(" ");
|
|
|
- result.append(m22);
|
|
|
- result.append(" \n]");
|
|
|
- return result.toString();
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- *
|
|
|
- * <code>hashCode</code> returns the hash code value as an integer and is
|
|
|
- * supported for the benefit of hashing based collection classes such as
|
|
|
- * Hashtable, HashMap, HashSet etc.
|
|
|
- *
|
|
|
- * @return the hashcode for this instance of Matrix4f.
|
|
|
- * @see java.lang.Object#hashCode()
|
|
|
- */
|
|
|
- @Override
|
|
|
- public int hashCode() {
|
|
|
- int hash = 37;
|
|
|
- hash = 37 * hash + Float.floatToIntBits(m00);
|
|
|
- hash = 37 * hash + Float.floatToIntBits(m01);
|
|
|
- hash = 37 * hash + Float.floatToIntBits(m02);
|
|
|
-
|
|
|
- hash = 37 * hash + Float.floatToIntBits(m10);
|
|
|
- hash = 37 * hash + Float.floatToIntBits(m11);
|
|
|
- hash = 37 * hash + Float.floatToIntBits(m12);
|
|
|
-
|
|
|
- hash = 37 * hash + Float.floatToIntBits(m20);
|
|
|
- hash = 37 * hash + Float.floatToIntBits(m21);
|
|
|
- hash = 37 * hash + Float.floatToIntBits(m22);
|
|
|
-
|
|
|
- return hash;
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * are these two matrices the same? they are is they both have the same mXX values.
|
|
|
- *
|
|
|
- * @param o
|
|
|
- * the object to compare for equality
|
|
|
- * @return true if they are equal
|
|
|
- */
|
|
|
- @Override
|
|
|
- public boolean equals(Object o) {
|
|
|
- if (!(o instanceof Matrix3f) || o == null) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (this == o) {
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- Matrix3f comp = (Matrix3f) o;
|
|
|
- if (Float.compare(m00, comp.m00) != 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Float.compare(m01, comp.m01) != 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Float.compare(m02, comp.m02) != 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (Float.compare(m10, comp.m10) != 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Float.compare(m11, comp.m11) != 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Float.compare(m12, comp.m12) != 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (Float.compare(m20, comp.m20) != 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Float.compare(m21, comp.m21) != 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Float.compare(m22, comp.m22) != 0) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- public void write(JmeExporter e) throws IOException {
|
|
|
- OutputCapsule cap = e.getCapsule(this);
|
|
|
- cap.write(m00, "m00", 1);
|
|
|
- cap.write(m01, "m01", 0);
|
|
|
- cap.write(m02, "m02", 0);
|
|
|
- cap.write(m10, "m10", 0);
|
|
|
- cap.write(m11, "m11", 1);
|
|
|
- cap.write(m12, "m12", 0);
|
|
|
- cap.write(m20, "m20", 0);
|
|
|
- cap.write(m21, "m21", 0);
|
|
|
- cap.write(m22, "m22", 1);
|
|
|
- }
|
|
|
-
|
|
|
- public void read(JmeImporter e) throws IOException {
|
|
|
- InputCapsule cap = e.getCapsule(this);
|
|
|
- m00 = cap.readFloat("m00", 1);
|
|
|
- m01 = cap.readFloat("m01", 0);
|
|
|
- m02 = cap.readFloat("m02", 0);
|
|
|
- m10 = cap.readFloat("m10", 0);
|
|
|
- m11 = cap.readFloat("m11", 1);
|
|
|
- m12 = cap.readFloat("m12", 0);
|
|
|
- m20 = cap.readFloat("m20", 0);
|
|
|
- m21 = cap.readFloat("m21", 0);
|
|
|
- m22 = cap.readFloat("m22", 1);
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * A function for creating a rotation matrix that rotates a vector called
|
|
|
- * "start" into another vector called "end".
|
|
|
- *
|
|
|
- * @param start
|
|
|
- * normalized non-zero starting vector
|
|
|
- * @param end
|
|
|
- * normalized non-zero ending vector
|
|
|
- * @see "Tomas M�ller, John Hughes \"Efficiently Building a Matrix to Rotate \
|
|
|
- * One Vector to Another\" Journal of Graphics Tools, 4(4):1-4, 1999"
|
|
|
- */
|
|
|
- public void fromStartEndVectors(Vector3f start, Vector3f end) {
|
|
|
- Vector3f v = new Vector3f();
|
|
|
- float e, h, f;
|
|
|
-
|
|
|
- start.cross(end, v);
|
|
|
- e = start.dot(end);
|
|
|
- f = (e < 0) ? -e : e;
|
|
|
-
|
|
|
- // if "from" and "to" vectors are nearly parallel
|
|
|
- if (f > 1.0f - FastMath.ZERO_TOLERANCE) {
|
|
|
- Vector3f u = new Vector3f();
|
|
|
- Vector3f x = new Vector3f();
|
|
|
- float c1, c2, c3; /* coefficients for later use */
|
|
|
- int i, j;
|
|
|
-
|
|
|
- x.x = (start.x > 0.0) ? start.x : -start.x;
|
|
|
- x.y = (start.y > 0.0) ? start.y : -start.y;
|
|
|
- x.z = (start.z > 0.0) ? start.z : -start.z;
|
|
|
-
|
|
|
- if (x.x < x.y) {
|
|
|
- if (x.x < x.z) {
|
|
|
- x.x = 1.0f;
|
|
|
- x.y = x.z = 0.0f;
|
|
|
- } else {
|
|
|
- x.z = 1.0f;
|
|
|
- x.x = x.y = 0.0f;
|
|
|
- }
|
|
|
- } else {
|
|
|
- if (x.y < x.z) {
|
|
|
- x.y = 1.0f;
|
|
|
- x.x = x.z = 0.0f;
|
|
|
- } else {
|
|
|
- x.z = 1.0f;
|
|
|
- x.x = x.y = 0.0f;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- u.x = x.x - start.x;
|
|
|
- u.y = x.y - start.y;
|
|
|
- u.z = x.z - start.z;
|
|
|
- v.x = x.x - end.x;
|
|
|
- v.y = x.y - end.y;
|
|
|
- v.z = x.z - end.z;
|
|
|
-
|
|
|
- c1 = 2.0f / u.dot(u);
|
|
|
- c2 = 2.0f / v.dot(v);
|
|
|
- c3 = c1 * c2 * u.dot(v);
|
|
|
-
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- for (j = 0; j < 3; j++) {
|
|
|
- float val = -c1 * u.get(i) * u.get(j) - c2 * v.get(i)
|
|
|
- * v.get(j) + c3 * v.get(i) * u.get(j);
|
|
|
- set(i, j, val);
|
|
|
- }
|
|
|
- float val = get(i, i);
|
|
|
- set(i, i, val + 1.0f);
|
|
|
- }
|
|
|
- } else {
|
|
|
- // the most common case, unless "start"="end", or "start"=-"end"
|
|
|
- float hvx, hvz, hvxy, hvxz, hvyz;
|
|
|
- h = 1.0f / (1.0f + e);
|
|
|
- hvx = h * v.x;
|
|
|
- hvz = h * v.z;
|
|
|
- hvxy = hvx * v.y;
|
|
|
- hvxz = hvx * v.z;
|
|
|
- hvyz = hvz * v.y;
|
|
|
- set(0, 0, e + hvx * v.x);
|
|
|
- set(0, 1, hvxy - v.z);
|
|
|
- set(0, 2, hvxz + v.y);
|
|
|
-
|
|
|
- set(1, 0, hvxy + v.z);
|
|
|
- set(1, 1, e + h * v.y * v.y);
|
|
|
- set(1, 2, hvyz - v.x);
|
|
|
-
|
|
|
- set(2, 0, hvxz - v.y);
|
|
|
- set(2, 1, hvyz + v.x);
|
|
|
- set(2, 2, e + hvz * v.z);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /**
|
|
|
- * <code>scale</code> scales the operation performed by this matrix on a
|
|
|
- * per-component basis.
|
|
|
- *
|
|
|
- * @param scale
|
|
|
- * The scale applied to each of the X, Y and Z output values.
|
|
|
- */
|
|
|
- public void scale(Vector3f scale) {
|
|
|
- m00 *= scale.x;
|
|
|
- m10 *= scale.x;
|
|
|
- m20 *= scale.x;
|
|
|
- m01 *= scale.y;
|
|
|
- m11 *= scale.y;
|
|
|
- m21 *= scale.y;
|
|
|
- m02 *= scale.z;
|
|
|
- m12 *= scale.z;
|
|
|
- m22 *= scale.z;
|
|
|
- }
|
|
|
-
|
|
|
- static boolean equalIdentity(Matrix3f mat) {
|
|
|
- if (Math.abs(mat.m00 - 1) > 1e-4) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Math.abs(mat.m11 - 1) > 1e-4) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Math.abs(mat.m22 - 1) > 1e-4) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (Math.abs(mat.m01) > 1e-4) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Math.abs(mat.m02) > 1e-4) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (Math.abs(mat.m10) > 1e-4) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Math.abs(mat.m12) > 1e-4) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- if (Math.abs(mat.m20) > 1e-4) {
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (Math.abs(mat.m21) > 1e-4) {
|
|
|
- return false;
|
|
|
- }
|
|
|
-
|
|
|
- return true;
|
|
|
- }
|
|
|
-
|
|
|
- @Override
|
|
|
- public Matrix3f clone() {
|
|
|
- try {
|
|
|
- return (Matrix3f) super.clone();
|
|
|
- } catch (CloneNotSupportedException e) {
|
|
|
- throw new AssertionError(); // can not happen
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
+/*
|
|
|
+ * Copyright (c) 2009-2010 jMonkeyEngine
|
|
|
+ * All rights reserved.
|
|
|
+ *
|
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
|
+ * modification, are permitted provided that the following conditions are
|
|
|
+ * met:
|
|
|
+ *
|
|
|
+ * * Redistributions of source code must retain the above copyright
|
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
|
+ *
|
|
|
+ * * Redistributions in binary form must reproduce the above copyright
|
|
|
+ * notice, this list of conditions and the following disclaimer in the
|
|
|
+ * documentation and/or other materials provided with the distribution.
|
|
|
+ *
|
|
|
+ * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
|
|
|
+ * may be used to endorse or promote products derived from this software
|
|
|
+ * without specific prior written permission.
|
|
|
+ *
|
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
+ */
|
|
|
+package com.jme3.math;
|
|
|
+
|
|
|
+import com.jme3.export.*;
|
|
|
+import com.jme3.util.BufferUtils;
|
|
|
+import com.jme3.util.TempVars;
|
|
|
+import java.io.IOException;
|
|
|
+import java.nio.FloatBuffer;
|
|
|
+import java.util.logging.Logger;
|
|
|
+
|
|
|
+/**
|
|
|
+ * <code>Matrix3f</code> defines a 3x3 matrix. Matrix data is maintained
|
|
|
+ * internally and is accessible via the get and set methods. Convenience methods
|
|
|
+ * are used for matrix operations as well as generating a matrix from a given
|
|
|
+ * set of values.
|
|
|
+ *
|
|
|
+ * @author Mark Powell
|
|
|
+ * @author Joshua Slack
|
|
|
+ */
|
|
|
+public final class Matrix3f implements Savable, Cloneable, java.io.Serializable {
|
|
|
+
|
|
|
+ static final long serialVersionUID = 1;
|
|
|
+
|
|
|
+ private static final Logger logger = Logger.getLogger(Matrix3f.class.getName());
|
|
|
+ protected float m00, m01, m02;
|
|
|
+ protected float m10, m11, m12;
|
|
|
+ protected float m20, m21, m22;
|
|
|
+ public static final Matrix3f ZERO = new Matrix3f(0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
|
+ public static final Matrix3f IDENTITY = new Matrix3f();
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Constructor instantiates a new <code>Matrix3f</code> object. The
|
|
|
+ * initial values for the matrix is that of the identity matrix.
|
|
|
+ *
|
|
|
+ */
|
|
|
+ public Matrix3f() {
|
|
|
+ loadIdentity();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * constructs a matrix with the given values.
|
|
|
+ *
|
|
|
+ * @param m00
|
|
|
+ * 0x0 in the matrix.
|
|
|
+ * @param m01
|
|
|
+ * 0x1 in the matrix.
|
|
|
+ * @param m02
|
|
|
+ * 0x2 in the matrix.
|
|
|
+ * @param m10
|
|
|
+ * 1x0 in the matrix.
|
|
|
+ * @param m11
|
|
|
+ * 1x1 in the matrix.
|
|
|
+ * @param m12
|
|
|
+ * 1x2 in the matrix.
|
|
|
+ * @param m20
|
|
|
+ * 2x0 in the matrix.
|
|
|
+ * @param m21
|
|
|
+ * 2x1 in the matrix.
|
|
|
+ * @param m22
|
|
|
+ * 2x2 in the matrix.
|
|
|
+ */
|
|
|
+ public Matrix3f(float m00, float m01, float m02, float m10, float m11,
|
|
|
+ float m12, float m20, float m21, float m22) {
|
|
|
+
|
|
|
+ this.m00 = m00;
|
|
|
+ this.m01 = m01;
|
|
|
+ this.m02 = m02;
|
|
|
+ this.m10 = m10;
|
|
|
+ this.m11 = m11;
|
|
|
+ this.m12 = m12;
|
|
|
+ this.m20 = m20;
|
|
|
+ this.m21 = m21;
|
|
|
+ this.m22 = m22;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Copy constructor that creates a new <code>Matrix3f</code> object that
|
|
|
+ * is the same as the provided matrix.
|
|
|
+ *
|
|
|
+ * @param mat
|
|
|
+ * the matrix to copy.
|
|
|
+ */
|
|
|
+ public Matrix3f(Matrix3f mat) {
|
|
|
+ set(mat);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Takes the absolute value of all matrix fields locally.
|
|
|
+ */
|
|
|
+ public void absoluteLocal() {
|
|
|
+ m00 = FastMath.abs(m00);
|
|
|
+ m01 = FastMath.abs(m01);
|
|
|
+ m02 = FastMath.abs(m02);
|
|
|
+ m10 = FastMath.abs(m10);
|
|
|
+ m11 = FastMath.abs(m11);
|
|
|
+ m12 = FastMath.abs(m12);
|
|
|
+ m20 = FastMath.abs(m20);
|
|
|
+ m21 = FastMath.abs(m21);
|
|
|
+ m22 = FastMath.abs(m22);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>copy</code> transfers the contents of a given matrix to this
|
|
|
+ * matrix. If a null matrix is supplied, this matrix is set to the identity
|
|
|
+ * matrix.
|
|
|
+ *
|
|
|
+ * @param matrix
|
|
|
+ * the matrix to copy.
|
|
|
+ * @return this
|
|
|
+ */
|
|
|
+ public Matrix3f set(Matrix3f matrix) {
|
|
|
+ if (null == matrix) {
|
|
|
+ loadIdentity();
|
|
|
+ } else {
|
|
|
+ m00 = matrix.m00;
|
|
|
+ m01 = matrix.m01;
|
|
|
+ m02 = matrix.m02;
|
|
|
+ m10 = matrix.m10;
|
|
|
+ m11 = matrix.m11;
|
|
|
+ m12 = matrix.m12;
|
|
|
+ m20 = matrix.m20;
|
|
|
+ m21 = matrix.m21;
|
|
|
+ m22 = matrix.m22;
|
|
|
+ }
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>get</code> retrieves a value from the matrix at the given
|
|
|
+ * position. If the position is invalid a <code>JmeException</code> is
|
|
|
+ * thrown.
|
|
|
+ *
|
|
|
+ * @param i
|
|
|
+ * the row index.
|
|
|
+ * @param j
|
|
|
+ * the colum index.
|
|
|
+ * @return the value at (i, j).
|
|
|
+ */
|
|
|
+ @SuppressWarnings("fallthrough")
|
|
|
+ public float get(int i, int j) {
|
|
|
+ switch (i) {
|
|
|
+ case 0:
|
|
|
+ switch (j) {
|
|
|
+ case 0:
|
|
|
+ return m00;
|
|
|
+ case 1:
|
|
|
+ return m01;
|
|
|
+ case 2:
|
|
|
+ return m02;
|
|
|
+ }
|
|
|
+ case 1:
|
|
|
+ switch (j) {
|
|
|
+ case 0:
|
|
|
+ return m10;
|
|
|
+ case 1:
|
|
|
+ return m11;
|
|
|
+ case 2:
|
|
|
+ return m12;
|
|
|
+ }
|
|
|
+ case 2:
|
|
|
+ switch (j) {
|
|
|
+ case 0:
|
|
|
+ return m20;
|
|
|
+ case 1:
|
|
|
+ return m21;
|
|
|
+ case 2:
|
|
|
+ return m22;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ logger.warning("Invalid matrix index.");
|
|
|
+ throw new IllegalArgumentException("Invalid indices into matrix.");
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>get(float[])</code> returns the matrix in row-major or column-major order.
|
|
|
+ *
|
|
|
+ * @param data
|
|
|
+ * The array to return the data into. This array can be 9 or 16 floats in size.
|
|
|
+ * Only the upper 3x3 are assigned to in the case of a 16 element array.
|
|
|
+ * @param rowMajor
|
|
|
+ * True for row major storage in the array (translation in elements 3, 7, 11 for a 4x4),
|
|
|
+ * false for column major (translation in elements 12, 13, 14 for a 4x4).
|
|
|
+ */
|
|
|
+ public void get(float[] data, boolean rowMajor) {
|
|
|
+ if (data.length == 9) {
|
|
|
+ if (rowMajor) {
|
|
|
+ data[0] = m00;
|
|
|
+ data[1] = m01;
|
|
|
+ data[2] = m02;
|
|
|
+ data[3] = m10;
|
|
|
+ data[4] = m11;
|
|
|
+ data[5] = m12;
|
|
|
+ data[6] = m20;
|
|
|
+ data[7] = m21;
|
|
|
+ data[8] = m22;
|
|
|
+ } else {
|
|
|
+ data[0] = m00;
|
|
|
+ data[1] = m10;
|
|
|
+ data[2] = m20;
|
|
|
+ data[3] = m01;
|
|
|
+ data[4] = m11;
|
|
|
+ data[5] = m21;
|
|
|
+ data[6] = m02;
|
|
|
+ data[7] = m12;
|
|
|
+ data[8] = m22;
|
|
|
+ }
|
|
|
+ } else if (data.length == 16) {
|
|
|
+ if (rowMajor) {
|
|
|
+ data[0] = m00;
|
|
|
+ data[1] = m01;
|
|
|
+ data[2] = m02;
|
|
|
+ data[4] = m10;
|
|
|
+ data[5] = m11;
|
|
|
+ data[6] = m12;
|
|
|
+ data[8] = m20;
|
|
|
+ data[9] = m21;
|
|
|
+ data[10] = m22;
|
|
|
+ } else {
|
|
|
+ data[0] = m00;
|
|
|
+ data[1] = m10;
|
|
|
+ data[2] = m20;
|
|
|
+ data[4] = m01;
|
|
|
+ data[5] = m11;
|
|
|
+ data[6] = m21;
|
|
|
+ data[8] = m02;
|
|
|
+ data[9] = m12;
|
|
|
+ data[10] = m22;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ throw new IndexOutOfBoundsException("Array size must be 9 or 16 in Matrix3f.get().");
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>getColumn</code> returns one of three columns specified by the
|
|
|
+ * parameter. This column is returned as a <code>Vector3f</code> object.
|
|
|
+ *
|
|
|
+ * @param i
|
|
|
+ * the column to retrieve. Must be between 0 and 2.
|
|
|
+ * @return the column specified by the index.
|
|
|
+ */
|
|
|
+ public Vector3f getColumn(int i) {
|
|
|
+ return getColumn(i, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>getColumn</code> returns one of three columns specified by the
|
|
|
+ * parameter. This column is returned as a <code>Vector3f</code> object.
|
|
|
+ *
|
|
|
+ * @param i
|
|
|
+ * the column to retrieve. Must be between 0 and 2.
|
|
|
+ * @param store
|
|
|
+ * the vector object to store the result in. if null, a new one
|
|
|
+ * is created.
|
|
|
+ * @return the column specified by the index.
|
|
|
+ */
|
|
|
+ public Vector3f getColumn(int i, Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+ switch (i) {
|
|
|
+ case 0:
|
|
|
+ store.x = m00;
|
|
|
+ store.y = m10;
|
|
|
+ store.z = m20;
|
|
|
+ break;
|
|
|
+ case 1:
|
|
|
+ store.x = m01;
|
|
|
+ store.y = m11;
|
|
|
+ store.z = m21;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ store.x = m02;
|
|
|
+ store.y = m12;
|
|
|
+ store.z = m22;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ logger.warning("Invalid column index.");
|
|
|
+ throw new IllegalArgumentException("Invalid column index. " + i);
|
|
|
+ }
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>getColumn</code> returns one of three rows as specified by the
|
|
|
+ * parameter. This row is returned as a <code>Vector3f</code> object.
|
|
|
+ *
|
|
|
+ * @param i
|
|
|
+ * the row to retrieve. Must be between 0 and 2.
|
|
|
+ * @return the row specified by the index.
|
|
|
+ */
|
|
|
+ public Vector3f getRow(int i) {
|
|
|
+ return getRow(i, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>getRow</code> returns one of three rows as specified by the
|
|
|
+ * parameter. This row is returned as a <code>Vector3f</code> object.
|
|
|
+ *
|
|
|
+ * @param i
|
|
|
+ * the row to retrieve. Must be between 0 and 2.
|
|
|
+ * @param store
|
|
|
+ * the vector object to store the result in. if null, a new one
|
|
|
+ * is created.
|
|
|
+ * @return the row specified by the index.
|
|
|
+ */
|
|
|
+ public Vector3f getRow(int i, Vector3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Vector3f();
|
|
|
+ }
|
|
|
+ switch (i) {
|
|
|
+ case 0:
|
|
|
+ store.x = m00;
|
|
|
+ store.y = m01;
|
|
|
+ store.z = m02;
|
|
|
+ break;
|
|
|
+ case 1:
|
|
|
+ store.x = m10;
|
|
|
+ store.y = m11;
|
|
|
+ store.z = m12;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ store.x = m20;
|
|
|
+ store.y = m21;
|
|
|
+ store.z = m22;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ logger.warning("Invalid row index.");
|
|
|
+ throw new IllegalArgumentException("Invalid row index. " + i);
|
|
|
+ }
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>toFloatBuffer</code> returns a FloatBuffer object that contains
|
|
|
+ * the matrix data.
|
|
|
+ *
|
|
|
+ * @return matrix data as a FloatBuffer.
|
|
|
+ */
|
|
|
+ public FloatBuffer toFloatBuffer() {
|
|
|
+ FloatBuffer fb = BufferUtils.createFloatBuffer(9);
|
|
|
+
|
|
|
+ fb.put(m00).put(m01).put(m02);
|
|
|
+ fb.put(m10).put(m11).put(m12);
|
|
|
+ fb.put(m20).put(m21).put(m22);
|
|
|
+ fb.rewind();
|
|
|
+ return fb;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix
|
|
|
+ * data.
|
|
|
+ *
|
|
|
+ * @param fb
|
|
|
+ * the buffer to fill, starting at current position. Must have
|
|
|
+ * room for 9 more floats.
|
|
|
+ * @return matrix data as a FloatBuffer. (position is advanced by 9 and any
|
|
|
+ * limit set is not changed).
|
|
|
+ */
|
|
|
+ public FloatBuffer fillFloatBuffer(FloatBuffer fb, boolean columnMajor) {
|
|
|
+// if (columnMajor){
|
|
|
+// fb.put(m00).put(m10).put(m20);
|
|
|
+// fb.put(m01).put(m11).put(m21);
|
|
|
+// fb.put(m02).put(m12).put(m22);
|
|
|
+// }else{
|
|
|
+// fb.put(m00).put(m01).put(m02);
|
|
|
+// fb.put(m10).put(m11).put(m12);
|
|
|
+// fb.put(m20).put(m21).put(m22);
|
|
|
+// }
|
|
|
+
|
|
|
+ TempVars vars = TempVars.get();
|
|
|
+
|
|
|
+
|
|
|
+ fillFloatArray(vars.matrixWrite, columnMajor);
|
|
|
+ fb.put(vars.matrixWrite, 0, 9);
|
|
|
+
|
|
|
+ vars.release();
|
|
|
+
|
|
|
+ return fb;
|
|
|
+ }
|
|
|
+
|
|
|
+ public void fillFloatArray(float[] f, boolean columnMajor) {
|
|
|
+ if (columnMajor) {
|
|
|
+ f[ 0] = m00;
|
|
|
+ f[ 1] = m10;
|
|
|
+ f[ 2] = m20;
|
|
|
+ f[ 3] = m01;
|
|
|
+ f[ 4] = m11;
|
|
|
+ f[ 5] = m21;
|
|
|
+ f[ 6] = m02;
|
|
|
+ f[ 7] = m12;
|
|
|
+ f[ 8] = m22;
|
|
|
+ } else {
|
|
|
+ f[ 0] = m00;
|
|
|
+ f[ 1] = m01;
|
|
|
+ f[ 2] = m02;
|
|
|
+ f[ 3] = m10;
|
|
|
+ f[ 4] = m11;
|
|
|
+ f[ 5] = m12;
|
|
|
+ f[ 6] = m20;
|
|
|
+ f[ 7] = m21;
|
|
|
+ f[ 8] = m22;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ *
|
|
|
+ * <code>setColumn</code> sets a particular column of this matrix to that
|
|
|
+ * represented by the provided vector.
|
|
|
+ *
|
|
|
+ * @param i
|
|
|
+ * the column to set.
|
|
|
+ * @param column
|
|
|
+ * the data to set.
|
|
|
+ * @return this
|
|
|
+ */
|
|
|
+ public Matrix3f setColumn(int i, Vector3f column) {
|
|
|
+
|
|
|
+ if (column == null) {
|
|
|
+ logger.warning("Column is null. Ignoring.");
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+ switch (i) {
|
|
|
+ case 0:
|
|
|
+ m00 = column.x;
|
|
|
+ m10 = column.y;
|
|
|
+ m20 = column.z;
|
|
|
+ break;
|
|
|
+ case 1:
|
|
|
+ m01 = column.x;
|
|
|
+ m11 = column.y;
|
|
|
+ m21 = column.z;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ m02 = column.x;
|
|
|
+ m12 = column.y;
|
|
|
+ m22 = column.z;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ logger.warning("Invalid column index.");
|
|
|
+ throw new IllegalArgumentException("Invalid column index. " + i);
|
|
|
+ }
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ *
|
|
|
+ * <code>setRow</code> sets a particular row of this matrix to that
|
|
|
+ * represented by the provided vector.
|
|
|
+ *
|
|
|
+ * @param i
|
|
|
+ * the row to set.
|
|
|
+ * @param row
|
|
|
+ * the data to set.
|
|
|
+ * @return this
|
|
|
+ */
|
|
|
+ public Matrix3f setRow(int i, Vector3f row) {
|
|
|
+
|
|
|
+ if (row == null) {
|
|
|
+ logger.warning("Row is null. Ignoring.");
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+ switch (i) {
|
|
|
+ case 0:
|
|
|
+ m00 = row.x;
|
|
|
+ m01 = row.y;
|
|
|
+ m02 = row.z;
|
|
|
+ break;
|
|
|
+ case 1:
|
|
|
+ m10 = row.x;
|
|
|
+ m11 = row.y;
|
|
|
+ m12 = row.z;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ m20 = row.x;
|
|
|
+ m21 = row.y;
|
|
|
+ m22 = row.z;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ logger.warning("Invalid row index.");
|
|
|
+ throw new IllegalArgumentException("Invalid row index. " + i);
|
|
|
+ }
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>set</code> places a given value into the matrix at the given
|
|
|
+ * position. If the position is invalid a <code>JmeException</code> is
|
|
|
+ * thrown.
|
|
|
+ *
|
|
|
+ * @param i
|
|
|
+ * the row index.
|
|
|
+ * @param j
|
|
|
+ * the colum index.
|
|
|
+ * @param value
|
|
|
+ * the value for (i, j).
|
|
|
+ * @return this
|
|
|
+ */
|
|
|
+ @SuppressWarnings("fallthrough")
|
|
|
+ public Matrix3f set(int i, int j, float value) {
|
|
|
+ switch (i) {
|
|
|
+ case 0:
|
|
|
+ switch (j) {
|
|
|
+ case 0:
|
|
|
+ m00 = value;
|
|
|
+ return this;
|
|
|
+ case 1:
|
|
|
+ m01 = value;
|
|
|
+ return this;
|
|
|
+ case 2:
|
|
|
+ m02 = value;
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+ case 1:
|
|
|
+ switch (j) {
|
|
|
+ case 0:
|
|
|
+ m10 = value;
|
|
|
+ return this;
|
|
|
+ case 1:
|
|
|
+ m11 = value;
|
|
|
+ return this;
|
|
|
+ case 2:
|
|
|
+ m12 = value;
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+ case 2:
|
|
|
+ switch (j) {
|
|
|
+ case 0:
|
|
|
+ m20 = value;
|
|
|
+ return this;
|
|
|
+ case 1:
|
|
|
+ m21 = value;
|
|
|
+ return this;
|
|
|
+ case 2:
|
|
|
+ m22 = value;
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ logger.warning("Invalid matrix index.");
|
|
|
+ throw new IllegalArgumentException("Invalid indices into matrix.");
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ *
|
|
|
+ * <code>set</code> sets the values of the matrix to those supplied by the
|
|
|
+ * 3x3 two dimenion array.
|
|
|
+ *
|
|
|
+ * @param matrix
|
|
|
+ * the new values of the matrix.
|
|
|
+ * @throws JmeException
|
|
|
+ * if the array is not of size 9.
|
|
|
+ * @return this
|
|
|
+ */
|
|
|
+ public Matrix3f set(float[][] matrix) {
|
|
|
+ if (matrix.length != 3 || matrix[0].length != 3) {
|
|
|
+ throw new IllegalArgumentException(
|
|
|
+ "Array must be of size 9.");
|
|
|
+ }
|
|
|
+
|
|
|
+ m00 = matrix[0][0];
|
|
|
+ m01 = matrix[0][1];
|
|
|
+ m02 = matrix[0][2];
|
|
|
+ m10 = matrix[1][0];
|
|
|
+ m11 = matrix[1][1];
|
|
|
+ m12 = matrix[1][2];
|
|
|
+ m20 = matrix[2][0];
|
|
|
+ m21 = matrix[2][1];
|
|
|
+ m22 = matrix[2][2];
|
|
|
+
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Recreate Matrix using the provided axis.
|
|
|
+ *
|
|
|
+ * @param uAxis
|
|
|
+ * Vector3f
|
|
|
+ * @param vAxis
|
|
|
+ * Vector3f
|
|
|
+ * @param wAxis
|
|
|
+ * Vector3f
|
|
|
+ */
|
|
|
+ public void fromAxes(Vector3f uAxis, Vector3f vAxis, Vector3f wAxis) {
|
|
|
+ m00 = uAxis.x;
|
|
|
+ m10 = uAxis.y;
|
|
|
+ m20 = uAxis.z;
|
|
|
+
|
|
|
+ m01 = vAxis.x;
|
|
|
+ m11 = vAxis.y;
|
|
|
+ m21 = vAxis.z;
|
|
|
+
|
|
|
+ m02 = wAxis.x;
|
|
|
+ m12 = wAxis.y;
|
|
|
+ m22 = wAxis.z;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>set</code> sets the values of this matrix from an array of
|
|
|
+ * values assuming that the data is rowMajor order;
|
|
|
+ *
|
|
|
+ * @param matrix
|
|
|
+ * the matrix to set the value to.
|
|
|
+ * @return this
|
|
|
+ */
|
|
|
+ public Matrix3f set(float[] matrix) {
|
|
|
+ return set(matrix, true);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>set</code> sets the values of this matrix from an array of
|
|
|
+ * values;
|
|
|
+ *
|
|
|
+ * @param matrix
|
|
|
+ * the matrix to set the value to.
|
|
|
+ * @param rowMajor
|
|
|
+ * whether the incoming data is in row or column major order.
|
|
|
+ * @return this
|
|
|
+ */
|
|
|
+ public Matrix3f set(float[] matrix, boolean rowMajor) {
|
|
|
+ if (matrix.length != 9) {
|
|
|
+ throw new IllegalArgumentException(
|
|
|
+ "Array must be of size 9.");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (rowMajor) {
|
|
|
+ m00 = matrix[0];
|
|
|
+ m01 = matrix[1];
|
|
|
+ m02 = matrix[2];
|
|
|
+ m10 = matrix[3];
|
|
|
+ m11 = matrix[4];
|
|
|
+ m12 = matrix[5];
|
|
|
+ m20 = matrix[6];
|
|
|
+ m21 = matrix[7];
|
|
|
+ m22 = matrix[8];
|
|
|
+ } else {
|
|
|
+ m00 = matrix[0];
|
|
|
+ m01 = matrix[3];
|
|
|
+ m02 = matrix[6];
|
|
|
+ m10 = matrix[1];
|
|
|
+ m11 = matrix[4];
|
|
|
+ m12 = matrix[7];
|
|
|
+ m20 = matrix[2];
|
|
|
+ m21 = matrix[5];
|
|
|
+ m22 = matrix[8];
|
|
|
+ }
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ *
|
|
|
+ * <code>set</code> defines the values of the matrix based on a supplied
|
|
|
+ * <code>Quaternion</code>. It should be noted that all previous values
|
|
|
+ * will be overridden.
|
|
|
+ *
|
|
|
+ * @param quaternion
|
|
|
+ * the quaternion to create a rotational matrix from.
|
|
|
+ * @return this
|
|
|
+ */
|
|
|
+ public Matrix3f set(Quaternion quaternion) {
|
|
|
+ return quaternion.toRotationMatrix(this);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>loadIdentity</code> sets this matrix to the identity matrix.
|
|
|
+ * Where all values are zero except those along the diagonal which are one.
|
|
|
+ *
|
|
|
+ */
|
|
|
+ public void loadIdentity() {
|
|
|
+ m01 = m02 = m10 = m12 = m20 = m21 = 0;
|
|
|
+ m00 = m11 = m22 = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @return true if this matrix is identity
|
|
|
+ */
|
|
|
+ public boolean isIdentity() {
|
|
|
+ return (m00 == 1 && m01 == 0 && m02 == 0)
|
|
|
+ && (m10 == 0 && m11 == 1 && m12 == 0)
|
|
|
+ && (m20 == 0 && m21 == 0 && m22 == 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>fromAngleAxis</code> sets this matrix4f to the values specified
|
|
|
+ * by an angle and an axis of rotation. This method creates an object, so
|
|
|
+ * use fromAngleNormalAxis if your axis is already normalized.
|
|
|
+ *
|
|
|
+ * @param angle
|
|
|
+ * the angle to rotate (in radians).
|
|
|
+ * @param axis
|
|
|
+ * the axis of rotation.
|
|
|
+ */
|
|
|
+ public void fromAngleAxis(float angle, Vector3f axis) {
|
|
|
+ Vector3f normAxis = axis.normalize();
|
|
|
+ fromAngleNormalAxis(angle, normAxis);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>fromAngleNormalAxis</code> sets this matrix4f to the values
|
|
|
+ * specified by an angle and a normalized axis of rotation.
|
|
|
+ *
|
|
|
+ * @param angle
|
|
|
+ * the angle to rotate (in radians).
|
|
|
+ * @param axis
|
|
|
+ * the axis of rotation (already normalized).
|
|
|
+ */
|
|
|
+ public void fromAngleNormalAxis(float angle, Vector3f axis) {
|
|
|
+ float fCos = FastMath.cos(angle);
|
|
|
+ float fSin = FastMath.sin(angle);
|
|
|
+ float fOneMinusCos = ((float) 1.0) - fCos;
|
|
|
+ float fX2 = axis.x * axis.x;
|
|
|
+ float fY2 = axis.y * axis.y;
|
|
|
+ float fZ2 = axis.z * axis.z;
|
|
|
+ float fXYM = axis.x * axis.y * fOneMinusCos;
|
|
|
+ float fXZM = axis.x * axis.z * fOneMinusCos;
|
|
|
+ float fYZM = axis.y * axis.z * fOneMinusCos;
|
|
|
+ float fXSin = axis.x * fSin;
|
|
|
+ float fYSin = axis.y * fSin;
|
|
|
+ float fZSin = axis.z * fSin;
|
|
|
+
|
|
|
+ m00 = fX2 * fOneMinusCos + fCos;
|
|
|
+ m01 = fXYM - fZSin;
|
|
|
+ m02 = fXZM + fYSin;
|
|
|
+ m10 = fXYM + fZSin;
|
|
|
+ m11 = fY2 * fOneMinusCos + fCos;
|
|
|
+ m12 = fYZM - fXSin;
|
|
|
+ m20 = fXZM - fYSin;
|
|
|
+ m21 = fYZM + fXSin;
|
|
|
+ m22 = fZ2 * fOneMinusCos + fCos;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>mult</code> multiplies this matrix by a given matrix. The result
|
|
|
+ * matrix is returned as a new object. If the given matrix is null, a null
|
|
|
+ * matrix is returned.
|
|
|
+ *
|
|
|
+ * @param mat
|
|
|
+ * the matrix to multiply this matrix by.
|
|
|
+ * @return the result matrix.
|
|
|
+ */
|
|
|
+ public Matrix3f mult(Matrix3f mat) {
|
|
|
+ return mult(mat, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>mult</code> multiplies this matrix by a given matrix. The result
|
|
|
+ * matrix is returned as a new object.
|
|
|
+ *
|
|
|
+ * @param mat
|
|
|
+ * the matrix to multiply this matrix by.
|
|
|
+ * @param product
|
|
|
+ * the matrix to store the result in. if null, a new matrix3f is
|
|
|
+ * created. It is safe for mat and product to be the same object.
|
|
|
+ * @return a matrix3f object containing the result of this operation
|
|
|
+ */
|
|
|
+ public Matrix3f mult(Matrix3f mat, Matrix3f product) {
|
|
|
+
|
|
|
+ float temp00, temp01, temp02;
|
|
|
+ float temp10, temp11, temp12;
|
|
|
+ float temp20, temp21, temp22;
|
|
|
+
|
|
|
+ if (product == null) {
|
|
|
+ product = new Matrix3f();
|
|
|
+ }
|
|
|
+ temp00 = m00 * mat.m00 + m01 * mat.m10 + m02 * mat.m20;
|
|
|
+ temp01 = m00 * mat.m01 + m01 * mat.m11 + m02 * mat.m21;
|
|
|
+ temp02 = m00 * mat.m02 + m01 * mat.m12 + m02 * mat.m22;
|
|
|
+ temp10 = m10 * mat.m00 + m11 * mat.m10 + m12 * mat.m20;
|
|
|
+ temp11 = m10 * mat.m01 + m11 * mat.m11 + m12 * mat.m21;
|
|
|
+ temp12 = m10 * mat.m02 + m11 * mat.m12 + m12 * mat.m22;
|
|
|
+ temp20 = m20 * mat.m00 + m21 * mat.m10 + m22 * mat.m20;
|
|
|
+ temp21 = m20 * mat.m01 + m21 * mat.m11 + m22 * mat.m21;
|
|
|
+ temp22 = m20 * mat.m02 + m21 * mat.m12 + m22 * mat.m22;
|
|
|
+
|
|
|
+ product.m00 = temp00;
|
|
|
+ product.m01 = temp01;
|
|
|
+ product.m02 = temp02;
|
|
|
+ product.m10 = temp10;
|
|
|
+ product.m11 = temp11;
|
|
|
+ product.m12 = temp12;
|
|
|
+ product.m20 = temp20;
|
|
|
+ product.m21 = temp21;
|
|
|
+ product.m22 = temp22;
|
|
|
+
|
|
|
+ return product;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>mult</code> multiplies this matrix by a given
|
|
|
+ * <code>Vector3f</code> object. The result vector is returned. If the
|
|
|
+ * given vector is null, null will be returned.
|
|
|
+ *
|
|
|
+ * @param vec
|
|
|
+ * the vector to multiply this matrix by.
|
|
|
+ * @return the result vector.
|
|
|
+ */
|
|
|
+ public Vector3f mult(Vector3f vec) {
|
|
|
+ return mult(vec, null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Multiplies this 3x3 matrix by the 1x3 Vector vec and stores the result in
|
|
|
+ * product.
|
|
|
+ *
|
|
|
+ * @param vec
|
|
|
+ * The Vector3f to multiply.
|
|
|
+ * @param product
|
|
|
+ * The Vector3f to store the result, it is safe for this to be
|
|
|
+ * the same as vec.
|
|
|
+ * @return The given product vector.
|
|
|
+ */
|
|
|
+ public Vector3f mult(Vector3f vec, Vector3f product) {
|
|
|
+
|
|
|
+ if (null == product) {
|
|
|
+ product = new Vector3f();
|
|
|
+ }
|
|
|
+
|
|
|
+ float x = vec.x;
|
|
|
+ float y = vec.y;
|
|
|
+ float z = vec.z;
|
|
|
+
|
|
|
+ product.x = m00 * x + m01 * y + m02 * z;
|
|
|
+ product.y = m10 * x + m11 * y + m12 * z;
|
|
|
+ product.z = m20 * x + m21 * y + m22 * z;
|
|
|
+ return product;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>multLocal</code> multiplies this matrix internally by
|
|
|
+ * a given float scale factor.
|
|
|
+ *
|
|
|
+ * @param scale
|
|
|
+ * the value to scale by.
|
|
|
+ * @return this Matrix3f
|
|
|
+ */
|
|
|
+ public Matrix3f multLocal(float scale) {
|
|
|
+ m00 *= scale;
|
|
|
+ m01 *= scale;
|
|
|
+ m02 *= scale;
|
|
|
+ m10 *= scale;
|
|
|
+ m11 *= scale;
|
|
|
+ m12 *= scale;
|
|
|
+ m20 *= scale;
|
|
|
+ m21 *= scale;
|
|
|
+ m22 *= scale;
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>multLocal</code> multiplies this matrix by a given
|
|
|
+ * <code>Vector3f</code> object. The result vector is stored inside the
|
|
|
+ * passed vector, then returned . If the given vector is null, null will be
|
|
|
+ * returned.
|
|
|
+ *
|
|
|
+ * @param vec
|
|
|
+ * the vector to multiply this matrix by.
|
|
|
+ * @return The passed vector after multiplication
|
|
|
+ */
|
|
|
+ public Vector3f multLocal(Vector3f vec) {
|
|
|
+ if (vec == null) {
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+ float x = vec.x;
|
|
|
+ float y = vec.y;
|
|
|
+ vec.x = m00 * x + m01 * y + m02 * vec.z;
|
|
|
+ vec.y = m10 * x + m11 * y + m12 * vec.z;
|
|
|
+ vec.z = m20 * x + m21 * y + m22 * vec.z;
|
|
|
+ return vec;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>mult</code> multiplies this matrix by a given matrix. The result
|
|
|
+ * matrix is saved in the current matrix. If the given matrix is null,
|
|
|
+ * nothing happens. The current matrix is returned. This is equivalent to
|
|
|
+ * this*=mat
|
|
|
+ *
|
|
|
+ * @param mat
|
|
|
+ * the matrix to multiply this matrix by.
|
|
|
+ * @return This matrix, after the multiplication
|
|
|
+ */
|
|
|
+ public Matrix3f multLocal(Matrix3f mat) {
|
|
|
+ return mult(mat, this);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Transposes this matrix in place. Returns this matrix for chaining
|
|
|
+ *
|
|
|
+ * @return This matrix after transpose
|
|
|
+ */
|
|
|
+ public Matrix3f transposeLocal() {
|
|
|
+// float[] tmp = new float[9];
|
|
|
+// get(tmp, false);
|
|
|
+// set(tmp, true);
|
|
|
+
|
|
|
+ float tmp = m01;
|
|
|
+ m01 = m10;
|
|
|
+ m10 = tmp;
|
|
|
+
|
|
|
+ tmp = m02;
|
|
|
+ m02 = m20;
|
|
|
+ m20 = tmp;
|
|
|
+
|
|
|
+ tmp = m12;
|
|
|
+ m12 = m21;
|
|
|
+ m21 = tmp;
|
|
|
+
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Inverts this matrix as a new Matrix3f.
|
|
|
+ *
|
|
|
+ * @return The new inverse matrix
|
|
|
+ */
|
|
|
+ public Matrix3f invert() {
|
|
|
+ return invert(null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Inverts this matrix and stores it in the given store.
|
|
|
+ *
|
|
|
+ * @return The store
|
|
|
+ */
|
|
|
+ public Matrix3f invert(Matrix3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Matrix3f();
|
|
|
+ }
|
|
|
+
|
|
|
+ float det = determinant();
|
|
|
+ if (FastMath.abs(det) <= FastMath.FLT_EPSILON) {
|
|
|
+ return store.zero();
|
|
|
+ }
|
|
|
+
|
|
|
+ store.m00 = m11 * m22 - m12 * m21;
|
|
|
+ store.m01 = m02 * m21 - m01 * m22;
|
|
|
+ store.m02 = m01 * m12 - m02 * m11;
|
|
|
+ store.m10 = m12 * m20 - m10 * m22;
|
|
|
+ store.m11 = m00 * m22 - m02 * m20;
|
|
|
+ store.m12 = m02 * m10 - m00 * m12;
|
|
|
+ store.m20 = m10 * m21 - m11 * m20;
|
|
|
+ store.m21 = m01 * m20 - m00 * m21;
|
|
|
+ store.m22 = m00 * m11 - m01 * m10;
|
|
|
+
|
|
|
+ store.multLocal(1f / det);
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Inverts this matrix locally.
|
|
|
+ *
|
|
|
+ * @return this
|
|
|
+ */
|
|
|
+ public Matrix3f invertLocal() {
|
|
|
+ float det = determinant();
|
|
|
+ if (FastMath.abs(det) <= 0f) {
|
|
|
+ return zero();
|
|
|
+ }
|
|
|
+
|
|
|
+ float f00 = m11 * m22 - m12 * m21;
|
|
|
+ float f01 = m02 * m21 - m01 * m22;
|
|
|
+ float f02 = m01 * m12 - m02 * m11;
|
|
|
+ float f10 = m12 * m20 - m10 * m22;
|
|
|
+ float f11 = m00 * m22 - m02 * m20;
|
|
|
+ float f12 = m02 * m10 - m00 * m12;
|
|
|
+ float f20 = m10 * m21 - m11 * m20;
|
|
|
+ float f21 = m01 * m20 - m00 * m21;
|
|
|
+ float f22 = m00 * m11 - m01 * m10;
|
|
|
+
|
|
|
+ m00 = f00;
|
|
|
+ m01 = f01;
|
|
|
+ m02 = f02;
|
|
|
+ m10 = f10;
|
|
|
+ m11 = f11;
|
|
|
+ m12 = f12;
|
|
|
+ m20 = f20;
|
|
|
+ m21 = f21;
|
|
|
+ m22 = f22;
|
|
|
+
|
|
|
+ multLocal(1f / det);
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Returns a new matrix representing the adjoint of this matrix.
|
|
|
+ *
|
|
|
+ * @return The adjoint matrix
|
|
|
+ */
|
|
|
+ public Matrix3f adjoint() {
|
|
|
+ return adjoint(null);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Places the adjoint of this matrix in store (creates store if null.)
|
|
|
+ *
|
|
|
+ * @param store
|
|
|
+ * The matrix to store the result in. If null, a new matrix is created.
|
|
|
+ * @return store
|
|
|
+ */
|
|
|
+ public Matrix3f adjoint(Matrix3f store) {
|
|
|
+ if (store == null) {
|
|
|
+ store = new Matrix3f();
|
|
|
+ }
|
|
|
+
|
|
|
+ store.m00 = m11 * m22 - m12 * m21;
|
|
|
+ store.m01 = m02 * m21 - m01 * m22;
|
|
|
+ store.m02 = m01 * m12 - m02 * m11;
|
|
|
+ store.m10 = m12 * m20 - m10 * m22;
|
|
|
+ store.m11 = m00 * m22 - m02 * m20;
|
|
|
+ store.m12 = m02 * m10 - m00 * m12;
|
|
|
+ store.m20 = m10 * m21 - m11 * m20;
|
|
|
+ store.m21 = m01 * m20 - m00 * m21;
|
|
|
+ store.m22 = m00 * m11 - m01 * m10;
|
|
|
+
|
|
|
+ return store;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>determinant</code> generates the determinant of this matrix.
|
|
|
+ *
|
|
|
+ * @return the determinant
|
|
|
+ */
|
|
|
+ public float determinant() {
|
|
|
+ float fCo00 = m11 * m22 - m12 * m21;
|
|
|
+ float fCo10 = m12 * m20 - m10 * m22;
|
|
|
+ float fCo20 = m10 * m21 - m11 * m20;
|
|
|
+ float fDet = m00 * fCo00 + m01 * fCo10 + m02 * fCo20;
|
|
|
+ return fDet;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Sets all of the values in this matrix to zero.
|
|
|
+ *
|
|
|
+ * @return this matrix
|
|
|
+ */
|
|
|
+ public Matrix3f zero() {
|
|
|
+ m00 = m01 = m02 = m10 = m11 = m12 = m20 = m21 = m22 = 0.0f;
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>transpose</code> <b>locally</b> transposes this Matrix.
|
|
|
+ * This is inconsistent with general value vs local semantics, but is
|
|
|
+ * preserved for backwards compatibility. Use transposeNew() to transpose
|
|
|
+ * to a new object (value).
|
|
|
+ *
|
|
|
+ * @return this object for chaining.
|
|
|
+ */
|
|
|
+ public Matrix3f transpose() {
|
|
|
+ return transposeLocal();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>transposeNew</code> returns a transposed version of this matrix.
|
|
|
+ *
|
|
|
+ * @return The new Matrix3f object.
|
|
|
+ */
|
|
|
+ public Matrix3f transposeNew() {
|
|
|
+ Matrix3f ret = new Matrix3f(m00, m10, m20, m01, m11, m21, m02, m12, m22);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>toString</code> returns the string representation of this object.
|
|
|
+ * It is in a format of a 3x3 matrix. For example, an identity matrix would
|
|
|
+ * be represented by the following string. com.jme.math.Matrix3f <br>[<br>
|
|
|
+ * 1.0 0.0 0.0 <br>
|
|
|
+ * 0.0 1.0 0.0 <br>
|
|
|
+ * 0.0 0.0 1.0 <br>]<br>
|
|
|
+ *
|
|
|
+ * @return the string representation of this object.
|
|
|
+ */
|
|
|
+ @Override
|
|
|
+ public String toString() {
|
|
|
+ StringBuilder result = new StringBuilder("Matrix3f\n[\n");
|
|
|
+ result.append(" ");
|
|
|
+ result.append(m00);
|
|
|
+ result.append(" ");
|
|
|
+ result.append(m01);
|
|
|
+ result.append(" ");
|
|
|
+ result.append(m02);
|
|
|
+ result.append(" \n");
|
|
|
+ result.append(" ");
|
|
|
+ result.append(m10);
|
|
|
+ result.append(" ");
|
|
|
+ result.append(m11);
|
|
|
+ result.append(" ");
|
|
|
+ result.append(m12);
|
|
|
+ result.append(" \n");
|
|
|
+ result.append(" ");
|
|
|
+ result.append(m20);
|
|
|
+ result.append(" ");
|
|
|
+ result.append(m21);
|
|
|
+ result.append(" ");
|
|
|
+ result.append(m22);
|
|
|
+ result.append(" \n]");
|
|
|
+ return result.toString();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ *
|
|
|
+ * <code>hashCode</code> returns the hash code value as an integer and is
|
|
|
+ * supported for the benefit of hashing based collection classes such as
|
|
|
+ * Hashtable, HashMap, HashSet etc.
|
|
|
+ *
|
|
|
+ * @return the hashcode for this instance of Matrix4f.
|
|
|
+ * @see java.lang.Object#hashCode()
|
|
|
+ */
|
|
|
+ @Override
|
|
|
+ public int hashCode() {
|
|
|
+ int hash = 37;
|
|
|
+ hash = 37 * hash + Float.floatToIntBits(m00);
|
|
|
+ hash = 37 * hash + Float.floatToIntBits(m01);
|
|
|
+ hash = 37 * hash + Float.floatToIntBits(m02);
|
|
|
+
|
|
|
+ hash = 37 * hash + Float.floatToIntBits(m10);
|
|
|
+ hash = 37 * hash + Float.floatToIntBits(m11);
|
|
|
+ hash = 37 * hash + Float.floatToIntBits(m12);
|
|
|
+
|
|
|
+ hash = 37 * hash + Float.floatToIntBits(m20);
|
|
|
+ hash = 37 * hash + Float.floatToIntBits(m21);
|
|
|
+ hash = 37 * hash + Float.floatToIntBits(m22);
|
|
|
+
|
|
|
+ return hash;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * are these two matrices the same? they are is they both have the same mXX values.
|
|
|
+ *
|
|
|
+ * @param o
|
|
|
+ * the object to compare for equality
|
|
|
+ * @return true if they are equal
|
|
|
+ */
|
|
|
+ @Override
|
|
|
+ public boolean equals(Object o) {
|
|
|
+ if (!(o instanceof Matrix3f) || o == null) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (this == o) {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ Matrix3f comp = (Matrix3f) o;
|
|
|
+ if (Float.compare(m00, comp.m00) != 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Float.compare(m01, comp.m01) != 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Float.compare(m02, comp.m02) != 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (Float.compare(m10, comp.m10) != 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Float.compare(m11, comp.m11) != 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Float.compare(m12, comp.m12) != 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (Float.compare(m20, comp.m20) != 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Float.compare(m21, comp.m21) != 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Float.compare(m22, comp.m22) != 0) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ public void write(JmeExporter e) throws IOException {
|
|
|
+ OutputCapsule cap = e.getCapsule(this);
|
|
|
+ cap.write(m00, "m00", 1);
|
|
|
+ cap.write(m01, "m01", 0);
|
|
|
+ cap.write(m02, "m02", 0);
|
|
|
+ cap.write(m10, "m10", 0);
|
|
|
+ cap.write(m11, "m11", 1);
|
|
|
+ cap.write(m12, "m12", 0);
|
|
|
+ cap.write(m20, "m20", 0);
|
|
|
+ cap.write(m21, "m21", 0);
|
|
|
+ cap.write(m22, "m22", 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ public void read(JmeImporter e) throws IOException {
|
|
|
+ InputCapsule cap = e.getCapsule(this);
|
|
|
+ m00 = cap.readFloat("m00", 1);
|
|
|
+ m01 = cap.readFloat("m01", 0);
|
|
|
+ m02 = cap.readFloat("m02", 0);
|
|
|
+ m10 = cap.readFloat("m10", 0);
|
|
|
+ m11 = cap.readFloat("m11", 1);
|
|
|
+ m12 = cap.readFloat("m12", 0);
|
|
|
+ m20 = cap.readFloat("m20", 0);
|
|
|
+ m21 = cap.readFloat("m21", 0);
|
|
|
+ m22 = cap.readFloat("m22", 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * A function for creating a rotation matrix that rotates a vector called
|
|
|
+ * "start" into another vector called "end".
|
|
|
+ *
|
|
|
+ * @param start
|
|
|
+ * normalized non-zero starting vector
|
|
|
+ * @param end
|
|
|
+ * normalized non-zero ending vector
|
|
|
+ * @see "Tomas M�ller, John Hughes \"Efficiently Building a Matrix to Rotate \
|
|
|
+ * One Vector to Another\" Journal of Graphics Tools, 4(4):1-4, 1999"
|
|
|
+ */
|
|
|
+ public void fromStartEndVectors(Vector3f start, Vector3f end) {
|
|
|
+ Vector3f v = new Vector3f();
|
|
|
+ float e, h, f;
|
|
|
+
|
|
|
+ start.cross(end, v);
|
|
|
+ e = start.dot(end);
|
|
|
+ f = (e < 0) ? -e : e;
|
|
|
+
|
|
|
+ // if "from" and "to" vectors are nearly parallel
|
|
|
+ if (f > 1.0f - FastMath.ZERO_TOLERANCE) {
|
|
|
+ Vector3f u = new Vector3f();
|
|
|
+ Vector3f x = new Vector3f();
|
|
|
+ float c1, c2, c3; /* coefficients for later use */
|
|
|
+ int i, j;
|
|
|
+
|
|
|
+ x.x = (start.x > 0.0) ? start.x : -start.x;
|
|
|
+ x.y = (start.y > 0.0) ? start.y : -start.y;
|
|
|
+ x.z = (start.z > 0.0) ? start.z : -start.z;
|
|
|
+
|
|
|
+ if (x.x < x.y) {
|
|
|
+ if (x.x < x.z) {
|
|
|
+ x.x = 1.0f;
|
|
|
+ x.y = x.z = 0.0f;
|
|
|
+ } else {
|
|
|
+ x.z = 1.0f;
|
|
|
+ x.x = x.y = 0.0f;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if (x.y < x.z) {
|
|
|
+ x.y = 1.0f;
|
|
|
+ x.x = x.z = 0.0f;
|
|
|
+ } else {
|
|
|
+ x.z = 1.0f;
|
|
|
+ x.x = x.y = 0.0f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ u.x = x.x - start.x;
|
|
|
+ u.y = x.y - start.y;
|
|
|
+ u.z = x.z - start.z;
|
|
|
+ v.x = x.x - end.x;
|
|
|
+ v.y = x.y - end.y;
|
|
|
+ v.z = x.z - end.z;
|
|
|
+
|
|
|
+ c1 = 2.0f / u.dot(u);
|
|
|
+ c2 = 2.0f / v.dot(v);
|
|
|
+ c3 = c1 * c2 * u.dot(v);
|
|
|
+
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ for (j = 0; j < 3; j++) {
|
|
|
+ float val = -c1 * u.get(i) * u.get(j) - c2 * v.get(i)
|
|
|
+ * v.get(j) + c3 * v.get(i) * u.get(j);
|
|
|
+ set(i, j, val);
|
|
|
+ }
|
|
|
+ float val = get(i, i);
|
|
|
+ set(i, i, val + 1.0f);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // the most common case, unless "start"="end", or "start"=-"end"
|
|
|
+ float hvx, hvz, hvxy, hvxz, hvyz;
|
|
|
+ h = 1.0f / (1.0f + e);
|
|
|
+ hvx = h * v.x;
|
|
|
+ hvz = h * v.z;
|
|
|
+ hvxy = hvx * v.y;
|
|
|
+ hvxz = hvx * v.z;
|
|
|
+ hvyz = hvz * v.y;
|
|
|
+ set(0, 0, e + hvx * v.x);
|
|
|
+ set(0, 1, hvxy - v.z);
|
|
|
+ set(0, 2, hvxz + v.y);
|
|
|
+
|
|
|
+ set(1, 0, hvxy + v.z);
|
|
|
+ set(1, 1, e + h * v.y * v.y);
|
|
|
+ set(1, 2, hvyz - v.x);
|
|
|
+
|
|
|
+ set(2, 0, hvxz - v.y);
|
|
|
+ set(2, 1, hvyz + v.x);
|
|
|
+ set(2, 2, e + hvz * v.z);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * <code>scale</code> scales the operation performed by this matrix on a
|
|
|
+ * per-component basis.
|
|
|
+ *
|
|
|
+ * @param scale
|
|
|
+ * The scale applied to each of the X, Y and Z output values.
|
|
|
+ */
|
|
|
+ public void scale(Vector3f scale) {
|
|
|
+ m00 *= scale.x;
|
|
|
+ m10 *= scale.x;
|
|
|
+ m20 *= scale.x;
|
|
|
+ m01 *= scale.y;
|
|
|
+ m11 *= scale.y;
|
|
|
+ m21 *= scale.y;
|
|
|
+ m02 *= scale.z;
|
|
|
+ m12 *= scale.z;
|
|
|
+ m22 *= scale.z;
|
|
|
+ }
|
|
|
+
|
|
|
+ static boolean equalIdentity(Matrix3f mat) {
|
|
|
+ if (Math.abs(mat.m00 - 1) > 1e-4) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Math.abs(mat.m11 - 1) > 1e-4) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Math.abs(mat.m22 - 1) > 1e-4) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (Math.abs(mat.m01) > 1e-4) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Math.abs(mat.m02) > 1e-4) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (Math.abs(mat.m10) > 1e-4) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Math.abs(mat.m12) > 1e-4) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (Math.abs(mat.m20) > 1e-4) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ if (Math.abs(mat.m21) > 1e-4) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ @Override
|
|
|
+ public Matrix3f clone() {
|
|
|
+ try {
|
|
|
+ return (Matrix3f) super.clone();
|
|
|
+ } catch (CloneNotSupportedException e) {
|
|
|
+ throw new AssertionError(); // can not happen
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|