Quellcode durchsuchen

* Fixed issue 583 (Matrix4f.multAcross() not working correctly)

git-svn-id: https://jmonkeyengine.googlecode.com/svn/trunk@10543 75d07b2b-3a1a-0410-a2c5-0572b91ccdca
Sha..om vor 12 Jahren
Ursprung
Commit
c972861331
1 geänderte Dateien mit 2355 neuen und 2355 gelöschten Zeilen
  1. 2355 2355
      engine/src/core/com/jme3/math/Matrix4f.java

+ 2355 - 2355
engine/src/core/com/jme3/math/Matrix4f.java

@@ -1,2355 +1,2355 @@
-/*
- * Copyright (c) 2009-2012 jMonkeyEngine
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- *   notice, this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright
- *   notice, this list of conditions and the following disclaimer in the
- *   documentation and/or other materials provided with the distribution.
- *
- * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
- *   may be used to endorse or promote products derived from this software
- *   without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-package com.jme3.math;
-
-import com.jme3.export.*;
-import com.jme3.util.BufferUtils;
-import com.jme3.util.TempVars;
-import java.io.IOException;
-import java.nio.FloatBuffer;
-import java.util.logging.Logger;
-
-/**
- * <code>Matrix4f</code> defines and maintains a 4x4 matrix in row major order.
- * This matrix is intended for use in a translation and rotational capacity. 
- * It provides convenience methods for creating the matrix from a multitude 
- * of sources.
- * 
- * Matrices are stored assuming column vectors on the right, with the translation
- * in the rightmost column. Element numbering is row,column, so m03 is the zeroth
- * row, third column, which is the "x" translation part. This means that the implicit
- * storage order is column major. However, the get() and set() functions on float
- * arrays default to row major order!
- *
- * @author Mark Powell
- * @author Joshua Slack
- */
-public final class Matrix4f implements Savable, Cloneable, java.io.Serializable {
-
-    static final long serialVersionUID = 1;
-
-    private static final Logger logger = Logger.getLogger(Matrix4f.class.getName());
-    public float m00, m01, m02, m03;
-    public float m10, m11, m12, m13;
-    public float m20, m21, m22, m23;
-    public float m30, m31, m32, m33;
-    public static final Matrix4f ZERO = new Matrix4f(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
-    public static final Matrix4f IDENTITY = new Matrix4f();
-
-    /**
-     * Constructor instantiates a new <code>Matrix</code> that is set to the
-     * identity matrix.
-     *  
-     */
-    public Matrix4f() {
-        loadIdentity();
-    }
-
-    /**
-     * constructs a matrix with the given values.
-     */
-    public Matrix4f(float m00, float m01, float m02, float m03,
-            float m10, float m11, float m12, float m13,
-            float m20, float m21, float m22, float m23,
-            float m30, float m31, float m32, float m33) {
-
-        this.m00 = m00;
-        this.m01 = m01;
-        this.m02 = m02;
-        this.m03 = m03;
-        this.m10 = m10;
-        this.m11 = m11;
-        this.m12 = m12;
-        this.m13 = m13;
-        this.m20 = m20;
-        this.m21 = m21;
-        this.m22 = m22;
-        this.m23 = m23;
-        this.m30 = m30;
-        this.m31 = m31;
-        this.m32 = m32;
-        this.m33 = m33;
-    }
-
-    /**
-     * Create a new Matrix4f, given data in column-major format.
-     *
-     * @param array
-     *		An array of 16 floats in column-major format (translation in elements 12, 13 and 14).
-     */
-    public Matrix4f(float[] array) {
-        set(array, false);
-    }
-
-    /**
-     * Constructor instantiates a new <code>Matrix</code> that is set to the
-     * provided matrix. This constructor copies a given Matrix. If the provided
-     * matrix is null, the constructor sets the matrix to the identity.
-     * 
-     * @param mat
-     *            the matrix to copy.
-     */
-    public Matrix4f(Matrix4f mat) {
-        copy(mat);
-    }
-
-    /**
-     * <code>copy</code> transfers the contents of a given matrix to this
-     * matrix. If a null matrix is supplied, this matrix is set to the identity
-     * matrix.
-     * 
-     * @param matrix
-     *            the matrix to copy.
-     */
-    public void copy(Matrix4f matrix) {
-        if (null == matrix) {
-            loadIdentity();
-        } else {
-            m00 = matrix.m00;
-            m01 = matrix.m01;
-            m02 = matrix.m02;
-            m03 = matrix.m03;
-            m10 = matrix.m10;
-            m11 = matrix.m11;
-            m12 = matrix.m12;
-            m13 = matrix.m13;
-            m20 = matrix.m20;
-            m21 = matrix.m21;
-            m22 = matrix.m22;
-            m23 = matrix.m23;
-            m30 = matrix.m30;
-            m31 = matrix.m31;
-            m32 = matrix.m32;
-            m33 = matrix.m33;
-        }
-    }
-
-    public void fromFrame(Vector3f location, Vector3f direction, Vector3f up, Vector3f left) {
-        loadIdentity();
-
-        TempVars vars = TempVars.get();
-
-        Vector3f f = vars.vect1.set(direction);
-        Vector3f s = vars.vect2.set(f).crossLocal(up);
-        Vector3f u = vars.vect3.set(s).crossLocal(f);
-//        s.normalizeLocal();
-//        u.normalizeLocal();
-
-        m00 = s.x;
-        m01 = s.y;
-        m02 = s.z;
-
-        m10 = u.x;
-        m11 = u.y;
-        m12 = u.z;
-
-        m20 = -f.x;
-        m21 = -f.y;
-        m22 = -f.z;
-
-//        m00 = -left.x;
-//        m10 = -left.y;
-//        m20 = -left.z;
-//
-//        m01 = up.x;
-//        m11 = up.y;
-//        m21 = up.z;
-//
-//        m02 = -direction.x;
-//        m12 = -direction.y;
-//        m22 = -direction.z;
-//
-
-        Matrix4f transMatrix = vars.tempMat4;
-        transMatrix.loadIdentity();
-        transMatrix.m03 = -location.x;
-        transMatrix.m13 = -location.y;
-        transMatrix.m23 = -location.z;
-        this.multLocal(transMatrix);
-
-        vars.release();
-
-//        transMatrix.multLocal(this);
-
-//        set(transMatrix);
-    }
-
-    /**
-     * <code>get</code> retrieves the values of this object into
-     * a float array in row-major order.
-     * 
-     * @param matrix
-     *            the matrix to set the values into.
-     */
-    public void get(float[] matrix) {
-        get(matrix, true);
-    }
-
-    /**
-     * <code>set</code> retrieves the values of this object into
-     * a float array.
-     * 
-     * @param matrix
-     *            the matrix to set the values into.
-     * @param rowMajor
-     *            whether the outgoing data is in row or column major order.
-     */
-    public void get(float[] matrix, boolean rowMajor) {
-        if (matrix.length != 16) {
-            throw new IllegalArgumentException(
-                    "Array must be of size 16.");
-        }
-
-        if (rowMajor) {
-            matrix[0] = m00;
-            matrix[1] = m01;
-            matrix[2] = m02;
-            matrix[3] = m03;
-            matrix[4] = m10;
-            matrix[5] = m11;
-            matrix[6] = m12;
-            matrix[7] = m13;
-            matrix[8] = m20;
-            matrix[9] = m21;
-            matrix[10] = m22;
-            matrix[11] = m23;
-            matrix[12] = m30;
-            matrix[13] = m31;
-            matrix[14] = m32;
-            matrix[15] = m33;
-        } else {
-            matrix[0] = m00;
-            matrix[4] = m01;
-            matrix[8] = m02;
-            matrix[12] = m03;
-            matrix[1] = m10;
-            matrix[5] = m11;
-            matrix[9] = m12;
-            matrix[13] = m13;
-            matrix[2] = m20;
-            matrix[6] = m21;
-            matrix[10] = m22;
-            matrix[14] = m23;
-            matrix[3] = m30;
-            matrix[7] = m31;
-            matrix[11] = m32;
-            matrix[15] = m33;
-        }
-    }
-
-    /**
-     * <code>get</code> retrieves a value from the matrix at the given
-     * position. If the position is invalid a <code>JmeException</code> is
-     * thrown.
-     * 
-     * @param i
-     *            the row index.
-     * @param j
-     *            the colum index.
-     * @return the value at (i, j).
-     */
-    @SuppressWarnings("fallthrough")
-    public float get(int i, int j) {
-        switch (i) {
-            case 0:
-                switch (j) {
-                    case 0:
-                        return m00;
-                    case 1:
-                        return m01;
-                    case 2:
-                        return m02;
-                    case 3:
-                        return m03;
-                }
-            case 1:
-                switch (j) {
-                    case 0:
-                        return m10;
-                    case 1:
-                        return m11;
-                    case 2:
-                        return m12;
-                    case 3:
-                        return m13;
-                }
-            case 2:
-                switch (j) {
-                    case 0:
-                        return m20;
-                    case 1:
-                        return m21;
-                    case 2:
-                        return m22;
-                    case 3:
-                        return m23;
-                }
-            case 3:
-                switch (j) {
-                    case 0:
-                        return m30;
-                    case 1:
-                        return m31;
-                    case 2:
-                        return m32;
-                    case 3:
-                        return m33;
-                }
-        }
-
-        logger.warning("Invalid matrix index.");
-        throw new IllegalArgumentException("Invalid indices into matrix.");
-    }
-
-    /**
-     * <code>getColumn</code> returns one of three columns specified by the
-     * parameter. This column is returned as a float array of length 4.
-     * 
-     * @param i
-     *            the column to retrieve. Must be between 0 and 3.
-     * @return the column specified by the index.
-     */
-    public float[] getColumn(int i) {
-        return getColumn(i, null);
-    }
-
-    /**
-     * <code>getColumn</code> returns one of three columns specified by the
-     * parameter. This column is returned as a float[4].
-     * 
-     * @param i
-     *            the column to retrieve. Must be between 0 and 3.
-     * @param store
-     *            the float array to store the result in. if null, a new one
-     *            is created.
-     * @return the column specified by the index.
-     */
-    public float[] getColumn(int i, float[] store) {
-        if (store == null) {
-            store = new float[4];
-        }
-        switch (i) {
-            case 0:
-                store[0] = m00;
-                store[1] = m10;
-                store[2] = m20;
-                store[3] = m30;
-                break;
-            case 1:
-                store[0] = m01;
-                store[1] = m11;
-                store[2] = m21;
-                store[3] = m31;
-                break;
-            case 2:
-                store[0] = m02;
-                store[1] = m12;
-                store[2] = m22;
-                store[3] = m32;
-                break;
-            case 3:
-                store[0] = m03;
-                store[1] = m13;
-                store[2] = m23;
-                store[3] = m33;
-                break;
-            default:
-                logger.warning("Invalid column index.");
-                throw new IllegalArgumentException("Invalid column index. " + i);
-        }
-        return store;
-    }
-
-    /**
-     * 
-     * <code>setColumn</code> sets a particular column of this matrix to that
-     * represented by the provided vector.
-     * 
-     * @param i
-     *            the column to set.
-     * @param column
-     *            the data to set.
-     */
-    public void setColumn(int i, float[] column) {
-
-        if (column == null) {
-            logger.warning("Column is null. Ignoring.");
-            return;
-        }
-        switch (i) {
-            case 0:
-                m00 = column[0];
-                m10 = column[1];
-                m20 = column[2];
-                m30 = column[3];
-                break;
-            case 1:
-                m01 = column[0];
-                m11 = column[1];
-                m21 = column[2];
-                m31 = column[3];
-                break;
-            case 2:
-                m02 = column[0];
-                m12 = column[1];
-                m22 = column[2];
-                m32 = column[3];
-                break;
-            case 3:
-                m03 = column[0];
-                m13 = column[1];
-                m23 = column[2];
-                m33 = column[3];
-                break;
-            default:
-                logger.warning("Invalid column index.");
-                throw new IllegalArgumentException("Invalid column index. " + i);
-        }
-    }
-
-    /**
-     * <code>set</code> places a given value into the matrix at the given
-     * position. If the position is invalid a <code>JmeException</code> is
-     * thrown.
-     * 
-     * @param i
-     *            the row index.
-     * @param j
-     *            the colum index.
-     * @param value
-     *            the value for (i, j).
-     */
-    @SuppressWarnings("fallthrough")
-    public void set(int i, int j, float value) {
-        switch (i) {
-            case 0:
-                switch (j) {
-                    case 0:
-                        m00 = value;
-                        return;
-                    case 1:
-                        m01 = value;
-                        return;
-                    case 2:
-                        m02 = value;
-                        return;
-                    case 3:
-                        m03 = value;
-                        return;
-                }
-            case 1:
-                switch (j) {
-                    case 0:
-                        m10 = value;
-                        return;
-                    case 1:
-                        m11 = value;
-                        return;
-                    case 2:
-                        m12 = value;
-                        return;
-                    case 3:
-                        m13 = value;
-                        return;
-                }
-            case 2:
-                switch (j) {
-                    case 0:
-                        m20 = value;
-                        return;
-                    case 1:
-                        m21 = value;
-                        return;
-                    case 2:
-                        m22 = value;
-                        return;
-                    case 3:
-                        m23 = value;
-                        return;
-                }
-            case 3:
-                switch (j) {
-                    case 0:
-                        m30 = value;
-                        return;
-                    case 1:
-                        m31 = value;
-                        return;
-                    case 2:
-                        m32 = value;
-                        return;
-                    case 3:
-                        m33 = value;
-                        return;
-                }
-        }
-
-        logger.warning("Invalid matrix index.");
-        throw new IllegalArgumentException("Invalid indices into matrix.");
-    }
-
-    /**
-     * <code>set</code> sets the values of this matrix from an array of
-     * values.
-     * 
-     * @param matrix
-     *            the matrix to set the value to.
-     * @throws JmeException
-     *             if the array is not of size 16.
-     */
-    public void set(float[][] matrix) {
-        if (matrix.length != 4 || matrix[0].length != 4) {
-            throw new IllegalArgumentException(
-                    "Array must be of size 16.");
-        }
-
-        m00 = matrix[0][0];
-        m01 = matrix[0][1];
-        m02 = matrix[0][2];
-        m03 = matrix[0][3];
-        m10 = matrix[1][0];
-        m11 = matrix[1][1];
-        m12 = matrix[1][2];
-        m13 = matrix[1][3];
-        m20 = matrix[2][0];
-        m21 = matrix[2][1];
-        m22 = matrix[2][2];
-        m23 = matrix[2][3];
-        m30 = matrix[3][0];
-        m31 = matrix[3][1];
-        m32 = matrix[3][2];
-        m33 = matrix[3][3];
-    }
-    
-    
-    /**
-     * Sets the values of this matrix
-     */
-    public void set(float m00, float m01, float m02, float m03,
-            float m10, float m11, float m12, float m13,
-            float m20, float m21, float m22, float m23,
-            float m30, float m31, float m32, float m33) {
-
-        this.m00 = m00;
-        this.m01 = m01;
-        this.m02 = m02;
-        this.m03 = m03;
-        this.m10 = m10;
-        this.m11 = m11;
-        this.m12 = m12;
-        this.m13 = m13;
-        this.m20 = m20;
-        this.m21 = m21;
-        this.m22 = m22;
-        this.m23 = m23;
-        this.m30 = m30;
-        this.m31 = m31;
-        this.m32 = m32;
-        this.m33 = m33;
-    }
-
-    /**
-     * <code>set</code> sets the values of this matrix from another matrix.
-     *
-     * @param matrix
-     *            the matrix to read the value from.
-     */
-    public Matrix4f set(Matrix4f matrix) {
-        m00 = matrix.m00;
-        m01 = matrix.m01;
-        m02 = matrix.m02;
-        m03 = matrix.m03;
-        m10 = matrix.m10;
-        m11 = matrix.m11;
-        m12 = matrix.m12;
-        m13 = matrix.m13;
-        m20 = matrix.m20;
-        m21 = matrix.m21;
-        m22 = matrix.m22;
-        m23 = matrix.m23;
-        m30 = matrix.m30;
-        m31 = matrix.m31;
-        m32 = matrix.m32;
-        m33 = matrix.m33;
-        return this;
-    }
-
-    /**
-     * <code>set</code> sets the values of this matrix from an array of
-     * values assuming that the data is rowMajor order;
-     * 
-     * @param matrix
-     *            the matrix to set the value to.
-     */
-    public void set(float[] matrix) {
-        set(matrix, true);
-    }
-
-    /**
-     * <code>set</code> sets the values of this matrix from an array of
-     * values;
-     * 
-     * @param matrix
-     *            the matrix to set the value to.
-     * @param rowMajor
-     *            whether the incoming data is in row or column major order.
-     */
-    public void set(float[] matrix, boolean rowMajor) {
-        if (matrix.length != 16) {
-            throw new IllegalArgumentException(
-                    "Array must be of size 16.");
-        }
-
-        if (rowMajor) {
-            m00 = matrix[0];
-            m01 = matrix[1];
-            m02 = matrix[2];
-            m03 = matrix[3];
-            m10 = matrix[4];
-            m11 = matrix[5];
-            m12 = matrix[6];
-            m13 = matrix[7];
-            m20 = matrix[8];
-            m21 = matrix[9];
-            m22 = matrix[10];
-            m23 = matrix[11];
-            m30 = matrix[12];
-            m31 = matrix[13];
-            m32 = matrix[14];
-            m33 = matrix[15];
-        } else {
-            m00 = matrix[0];
-            m01 = matrix[4];
-            m02 = matrix[8];
-            m03 = matrix[12];
-            m10 = matrix[1];
-            m11 = matrix[5];
-            m12 = matrix[9];
-            m13 = matrix[13];
-            m20 = matrix[2];
-            m21 = matrix[6];
-            m22 = matrix[10];
-            m23 = matrix[14];
-            m30 = matrix[3];
-            m31 = matrix[7];
-            m32 = matrix[11];
-            m33 = matrix[15];
-        }
-    }
-
-    public Matrix4f transpose() {
-        float[] tmp = new float[16];
-        get(tmp, true);
-        Matrix4f mat = new Matrix4f(tmp);
-        return mat;
-    }
-
-    /**
-     * <code>transpose</code> locally transposes this Matrix.
-     * 
-     * @return this object for chaining.
-     */
-    public Matrix4f transposeLocal() {
-        float tmp = m01;
-        m01 = m10;
-        m10 = tmp;
-
-        tmp = m02;
-        m02 = m20;
-        m20 = tmp;
-
-        tmp = m03;
-        m03 = m30;
-        m30 = tmp;
-
-        tmp = m12;
-        m12 = m21;
-        m21 = tmp;
-
-        tmp = m13;
-        m13 = m31;
-        m31 = tmp;
-
-        tmp = m23;
-        m23 = m32;
-        m32 = tmp;
-
-        return this;
-    }
-
-    /**
-     * <code>toFloatBuffer</code> returns a FloatBuffer object that contains
-     * the matrix data.
-     * 
-     * @return matrix data as a FloatBuffer.
-     */
-    public FloatBuffer toFloatBuffer() {
-        return toFloatBuffer(false);
-    }
-
-    /**
-     * <code>toFloatBuffer</code> returns a FloatBuffer object that contains the
-     * matrix data.
-     * 
-     * @param columnMajor
-     *            if true, this buffer should be filled with column major data,
-     *            otherwise it will be filled row major.
-     * @return matrix data as a FloatBuffer. The position is set to 0 for
-     *         convenience.
-     */
-    public FloatBuffer toFloatBuffer(boolean columnMajor) {
-        FloatBuffer fb = BufferUtils.createFloatBuffer(16);
-        fillFloatBuffer(fb, columnMajor);
-        fb.rewind();
-        return fb;
-    }
-
-    /**
-     * <code>fillFloatBuffer</code> fills a FloatBuffer object with
-     * the matrix data.
-     * @param fb the buffer to fill, must be correct size
-     * @return matrix data as a FloatBuffer.
-     */
-    public FloatBuffer fillFloatBuffer(FloatBuffer fb) {
-        return fillFloatBuffer(fb, false);
-    }
-
-    /**
-     * <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix
-     * data.
-     * 
-     * @param fb
-     *            the buffer to fill, starting at current position. Must have
-     *            room for 16 more floats.
-     * @param columnMajor
-     *            if true, this buffer should be filled with column major data,
-     *            otherwise it will be filled row major.
-     * @return matrix data as a FloatBuffer. (position is advanced by 16 and any
-     *         limit set is not changed).
-     */
-    public FloatBuffer fillFloatBuffer(FloatBuffer fb, boolean columnMajor) {
-//        if (columnMajor) {
-//            fb.put(m00).put(m10).put(m20).put(m30);
-//            fb.put(m01).put(m11).put(m21).put(m31);
-//            fb.put(m02).put(m12).put(m22).put(m32);
-//            fb.put(m03).put(m13).put(m23).put(m33);
-//        } else {
-//            fb.put(m00).put(m01).put(m02).put(m03);
-//            fb.put(m10).put(m11).put(m12).put(m13);
-//            fb.put(m20).put(m21).put(m22).put(m23);
-//            fb.put(m30).put(m31).put(m32).put(m33);
-//        }
-
-        TempVars vars = TempVars.get();
-
-
-        fillFloatArray(vars.matrixWrite, columnMajor);
-        fb.put(vars.matrixWrite, 0, 16);
-
-        vars.release();
-
-        return fb;
-    }
-
-    public void fillFloatArray(float[] f, boolean columnMajor) {
-        if (columnMajor) {
-            f[ 0] = m00;
-            f[ 1] = m10;
-            f[ 2] = m20;
-            f[ 3] = m30;
-            f[ 4] = m01;
-            f[ 5] = m11;
-            f[ 6] = m21;
-            f[ 7] = m31;
-            f[ 8] = m02;
-            f[ 9] = m12;
-            f[10] = m22;
-            f[11] = m32;
-            f[12] = m03;
-            f[13] = m13;
-            f[14] = m23;
-            f[15] = m33;
-        } else {
-            f[ 0] = m00;
-            f[ 1] = m01;
-            f[ 2] = m02;
-            f[ 3] = m03;
-            f[ 4] = m10;
-            f[ 5] = m11;
-            f[ 6] = m12;
-            f[ 7] = m13;
-            f[ 8] = m20;
-            f[ 9] = m21;
-            f[10] = m22;
-            f[11] = m23;
-            f[12] = m30;
-            f[13] = m31;
-            f[14] = m32;
-            f[15] = m33;
-        }
-    }
-
-    /**
-     * <code>readFloatBuffer</code> reads value for this matrix from a FloatBuffer.
-     * @param fb the buffer to read from, must be correct size
-     * @return this data as a FloatBuffer.
-     */
-    public Matrix4f readFloatBuffer(FloatBuffer fb) {
-        return readFloatBuffer(fb, false);
-    }
-
-    /**
-     * <code>readFloatBuffer</code> reads value for this matrix from a FloatBuffer.
-     * @param fb the buffer to read from, must be correct size
-     * @param columnMajor if true, this buffer should be filled with column
-     * 		major data, otherwise it will be filled row major.
-     * @return this data as a FloatBuffer.
-     */
-    public Matrix4f readFloatBuffer(FloatBuffer fb, boolean columnMajor) {
-
-        if (columnMajor) {
-            m00 = fb.get();
-            m10 = fb.get();
-            m20 = fb.get();
-            m30 = fb.get();
-            m01 = fb.get();
-            m11 = fb.get();
-            m21 = fb.get();
-            m31 = fb.get();
-            m02 = fb.get();
-            m12 = fb.get();
-            m22 = fb.get();
-            m32 = fb.get();
-            m03 = fb.get();
-            m13 = fb.get();
-            m23 = fb.get();
-            m33 = fb.get();
-        } else {
-            m00 = fb.get();
-            m01 = fb.get();
-            m02 = fb.get();
-            m03 = fb.get();
-            m10 = fb.get();
-            m11 = fb.get();
-            m12 = fb.get();
-            m13 = fb.get();
-            m20 = fb.get();
-            m21 = fb.get();
-            m22 = fb.get();
-            m23 = fb.get();
-            m30 = fb.get();
-            m31 = fb.get();
-            m32 = fb.get();
-            m33 = fb.get();
-        }
-        return this;
-    }
-
-    /**
-     * <code>loadIdentity</code> sets this matrix to the identity matrix,
-     * namely all zeros with ones along the diagonal.
-     *  
-     */
-    public void loadIdentity() {
-        m01 = m02 = m03 = 0.0f;
-        m10 = m12 = m13 = 0.0f;
-        m20 = m21 = m23 = 0.0f;
-        m30 = m31 = m32 = 0.0f;
-        m00 = m11 = m22 = m33 = 1.0f;
-    }
-
-    public void fromFrustum(float near, float far, float left, float right, float top, float bottom, boolean parallel) {
-        loadIdentity();
-        if (parallel) {
-            // scale
-            m00 = 2.0f / (right - left);
-            //m11 = 2.0f / (bottom - top);
-            m11 = 2.0f / (top - bottom);
-            m22 = -2.0f / (far - near);
-            m33 = 1f;
-
-            // translation
-            m03 = -(right + left) / (right - left);
-            //m31 = -(bottom + top) / (bottom - top);
-            m13 = -(top + bottom) / (top - bottom);
-            m23 = -(far + near) / (far - near);
-        } else {
-            m00 = (2.0f * near) / (right - left);
-            m11 = (2.0f * near) / (top - bottom);
-            m32 = -1.0f;
-            m33 = -0.0f;
-
-            // A
-            m02 = (right + left) / (right - left);
-
-            // B 
-            m12 = (top + bottom) / (top - bottom);
-
-            // C
-            m22 = -(far + near) / (far - near);
-
-            // D
-            m23 = -(2.0f * far * near) / (far - near);
-        }
-    }
-
-    /**
-     * <code>fromAngleAxis</code> sets this matrix4f to the values specified
-     * by an angle and an axis of rotation.  This method creates an object, so
-     * use fromAngleNormalAxis if your axis is already normalized.
-     * 
-     * @param angle
-     *            the angle to rotate (in radians).
-     * @param axis
-     *            the axis of rotation.
-     */
-    public void fromAngleAxis(float angle, Vector3f axis) {
-        Vector3f normAxis = axis.normalize();
-        fromAngleNormalAxis(angle, normAxis);
-    }
-
-    /**
-     * <code>fromAngleNormalAxis</code> sets this matrix4f to the values
-     * specified by an angle and a normalized axis of rotation.
-     * 
-     * @param angle
-     *            the angle to rotate (in radians).
-     * @param axis
-     *            the axis of rotation (already normalized).
-     */
-    public void fromAngleNormalAxis(float angle, Vector3f axis) {
-        zero();
-        m33 = 1;
-
-        float fCos = FastMath.cos(angle);
-        float fSin = FastMath.sin(angle);
-        float fOneMinusCos = ((float) 1.0) - fCos;
-        float fX2 = axis.x * axis.x;
-        float fY2 = axis.y * axis.y;
-        float fZ2 = axis.z * axis.z;
-        float fXYM = axis.x * axis.y * fOneMinusCos;
-        float fXZM = axis.x * axis.z * fOneMinusCos;
-        float fYZM = axis.y * axis.z * fOneMinusCos;
-        float fXSin = axis.x * fSin;
-        float fYSin = axis.y * fSin;
-        float fZSin = axis.z * fSin;
-
-        m00 = fX2 * fOneMinusCos + fCos;
-        m01 = fXYM - fZSin;
-        m02 = fXZM + fYSin;
-        m10 = fXYM + fZSin;
-        m11 = fY2 * fOneMinusCos + fCos;
-        m12 = fYZM - fXSin;
-        m20 = fXZM - fYSin;
-        m21 = fYZM + fXSin;
-        m22 = fZ2 * fOneMinusCos + fCos;
-    }
-
-    /**
-     * <code>mult</code> multiplies this matrix by a scalar.
-     * 
-     * @param scalar
-     *            the scalar to multiply this matrix by.
-     */
-    public void multLocal(float scalar) {
-        m00 *= scalar;
-        m01 *= scalar;
-        m02 *= scalar;
-        m03 *= scalar;
-        m10 *= scalar;
-        m11 *= scalar;
-        m12 *= scalar;
-        m13 *= scalar;
-        m20 *= scalar;
-        m21 *= scalar;
-        m22 *= scalar;
-        m23 *= scalar;
-        m30 *= scalar;
-        m31 *= scalar;
-        m32 *= scalar;
-        m33 *= scalar;
-    }
-
-    public Matrix4f mult(float scalar) {
-        Matrix4f out = new Matrix4f();
-        out.set(this);
-        out.multLocal(scalar);
-        return out;
-    }
-
-    public Matrix4f mult(float scalar, Matrix4f store) {
-        store.set(this);
-        store.multLocal(scalar);
-        return store;
-    }
-
-    /**
-     * <code>mult</code> multiplies this matrix with another matrix. The
-     * result matrix will then be returned. This matrix will be on the left hand
-     * side, while the parameter matrix will be on the right.
-     * 
-     * @param in2
-     *            the matrix to multiply this matrix by.
-     * @return the resultant matrix
-     */
-    public Matrix4f mult(Matrix4f in2) {
-        return mult(in2, null);
-    }
-
-    /**
-     * <code>mult</code> multiplies this matrix with another matrix. The
-     * result matrix will then be returned. This matrix will be on the left hand
-     * side, while the parameter matrix will be on the right.
-     * 
-     * @param in2
-     *            the matrix to multiply this matrix by.
-     * @param store
-     *            where to store the result. It is safe for in2 and store to be
-     *            the same object.
-     * @return the resultant matrix
-     */
-    public Matrix4f mult(Matrix4f in2, Matrix4f store) {
-        if (store == null) {
-            store = new Matrix4f();
-        }
-
-        float temp00, temp01, temp02, temp03;
-        float temp10, temp11, temp12, temp13;
-        float temp20, temp21, temp22, temp23;
-        float temp30, temp31, temp32, temp33;
-
-        temp00 = m00 * in2.m00
-                + m01 * in2.m10
-                + m02 * in2.m20
-                + m03 * in2.m30;
-        temp01 = m00 * in2.m01
-                + m01 * in2.m11
-                + m02 * in2.m21
-                + m03 * in2.m31;
-        temp02 = m00 * in2.m02
-                + m01 * in2.m12
-                + m02 * in2.m22
-                + m03 * in2.m32;
-        temp03 = m00 * in2.m03
-                + m01 * in2.m13
-                + m02 * in2.m23
-                + m03 * in2.m33;
-
-        temp10 = m10 * in2.m00
-                + m11 * in2.m10
-                + m12 * in2.m20
-                + m13 * in2.m30;
-        temp11 = m10 * in2.m01
-                + m11 * in2.m11
-                + m12 * in2.m21
-                + m13 * in2.m31;
-        temp12 = m10 * in2.m02
-                + m11 * in2.m12
-                + m12 * in2.m22
-                + m13 * in2.m32;
-        temp13 = m10 * in2.m03
-                + m11 * in2.m13
-                + m12 * in2.m23
-                + m13 * in2.m33;
-
-        temp20 = m20 * in2.m00
-                + m21 * in2.m10
-                + m22 * in2.m20
-                + m23 * in2.m30;
-        temp21 = m20 * in2.m01
-                + m21 * in2.m11
-                + m22 * in2.m21
-                + m23 * in2.m31;
-        temp22 = m20 * in2.m02
-                + m21 * in2.m12
-                + m22 * in2.m22
-                + m23 * in2.m32;
-        temp23 = m20 * in2.m03
-                + m21 * in2.m13
-                + m22 * in2.m23
-                + m23 * in2.m33;
-
-        temp30 = m30 * in2.m00
-                + m31 * in2.m10
-                + m32 * in2.m20
-                + m33 * in2.m30;
-        temp31 = m30 * in2.m01
-                + m31 * in2.m11
-                + m32 * in2.m21
-                + m33 * in2.m31;
-        temp32 = m30 * in2.m02
-                + m31 * in2.m12
-                + m32 * in2.m22
-                + m33 * in2.m32;
-        temp33 = m30 * in2.m03
-                + m31 * in2.m13
-                + m32 * in2.m23
-                + m33 * in2.m33;
-
-        store.m00 = temp00;
-        store.m01 = temp01;
-        store.m02 = temp02;
-        store.m03 = temp03;
-        store.m10 = temp10;
-        store.m11 = temp11;
-        store.m12 = temp12;
-        store.m13 = temp13;
-        store.m20 = temp20;
-        store.m21 = temp21;
-        store.m22 = temp22;
-        store.m23 = temp23;
-        store.m30 = temp30;
-        store.m31 = temp31;
-        store.m32 = temp32;
-        store.m33 = temp33;
-
-        return store;
-    }
-
-    /**
-     * <code>mult</code> multiplies this matrix with another matrix. The
-     * results are stored internally and a handle to this matrix will 
-     * then be returned. This matrix will be on the left hand
-     * side, while the parameter matrix will be on the right.
-     * 
-     * @param in2
-     *            the matrix to multiply this matrix by.
-     * @return the resultant matrix
-     */
-    public Matrix4f multLocal(Matrix4f in2) {
-        return mult(in2, this);
-    }
-
-    /**
-     * <code>mult</code> multiplies a vector about a rotation matrix. The
-     * resulting vector is returned as a new Vector3f.
-     * 
-     * @param vec
-     *            vec to multiply against.
-     * @return the rotated vector.
-     */
-    public Vector3f mult(Vector3f vec) {
-        return mult(vec, null);
-    }
-
-    /**
-     * <code>mult</code> multiplies a vector about a rotation matrix and adds
-     * translation. The resulting vector is returned.
-     * 
-     * @param vec
-     *            vec to multiply against.
-     * @param store
-     *            a vector to store the result in. Created if null is passed.
-     * @return the rotated vector.
-     */
-    public Vector3f mult(Vector3f vec, Vector3f store) {
-        if (store == null) {
-            store = new Vector3f();
-        }
-
-        float vx = vec.x, vy = vec.y, vz = vec.z;
-        store.x = m00 * vx + m01 * vy + m02 * vz + m03;
-        store.y = m10 * vx + m11 * vy + m12 * vz + m13;
-        store.z = m20 * vx + m21 * vy + m22 * vz + m23;
-
-        return store;
-    }
-
-    /**
-     * <code>mult</code> multiplies a <code>Vector4f</code> about a rotation
-     * matrix. The resulting vector is returned as a new <code>Vector4f</code>.
-     *
-     * @param vec
-     *            vec to multiply against.
-     * @return the rotated vector.
-     */
-    public Vector4f mult(Vector4f vec) {
-        return mult(vec, null);
-    }
-
-    /**
-     * <code>mult</code> multiplies a <code>Vector4f</code> about a rotation
-     * matrix. The resulting vector is returned.
-     *
-     * @param vec
-     *            vec to multiply against.
-     * @param store
-     *            a vector to store the result in. Created if null is passed.
-     * @return the rotated vector.
-     */
-    public Vector4f mult(Vector4f vec, Vector4f store) {
-        if (null == vec) {
-            logger.warning("Source vector is null, null result returned.");
-            return null;
-        }
-        if (store == null) {
-            store = new Vector4f();
-        }
-
-        float vx = vec.x, vy = vec.y, vz = vec.z, vw = vec.w;
-        store.x = m00 * vx + m01 * vy + m02 * vz + m03 * vw;
-        store.y = m10 * vx + m11 * vy + m12 * vz + m13 * vw;
-        store.z = m20 * vx + m21 * vy + m22 * vz + m23 * vw;
-        store.w = m30 * vx + m31 * vy + m32 * vz + m33 * vw;
-
-        return store;
-    }
-
-    /**
-     * <code>mult</code> multiplies a vector about a rotation matrix. The
-     * resulting vector is returned.
-     *
-     * @param vec
-     *            vec to multiply against.
-     * 
-     * @return the rotated vector.
-     */
-    public Vector4f multAcross(Vector4f vec) {
-        return multAcross(vec, null);
-    }
-
-    /**
-     * <code>mult</code> multiplies a vector about a rotation matrix. The
-     * resulting vector is returned.
-     *
-     * @param vec
-     *            vec to multiply against.
-     * @param store
-     *            a vector to store the result in.  created if null is passed.
-     * @return the rotated vector.
-     */
-    public Vector4f multAcross(Vector4f vec, Vector4f store) {
-        if (null == vec) {
-            logger.warning("Source vector is null, null result returned.");
-            return null;
-        }
-        if (store == null) {
-            store = new Vector4f();
-        }
-
-        float vx = vec.x, vy = vec.y, vz = vec.z, vw = vec.w;
-        store.x = m00 * vx + m10 * vy + m20 * vz + m30 * vw;
-        store.y = m01 * vx + m11 * vy + m21 * vz + m31 * vw;
-        store.z = m02 * vx + m12 * vy + m22 * vz + m32 * vw;
-        store.z = m03 * vx + m13 * vy + m23 * vz + m33 * vw;
-
-        return store;
-    }
-
-    /**
-     * <code>multNormal</code> multiplies a vector about a rotation matrix, but
-     * does not add translation. The resulting vector is returned.
-     *
-     * @param vec
-     *            vec to multiply against.
-     * @param store
-     *            a vector to store the result in. Created if null is passed.
-     * @return the rotated vector.
-     */
-    public Vector3f multNormal(Vector3f vec, Vector3f store) {
-        if (store == null) {
-            store = new Vector3f();
-        }
-
-        float vx = vec.x, vy = vec.y, vz = vec.z;
-        store.x = m00 * vx + m01 * vy + m02 * vz;
-        store.y = m10 * vx + m11 * vy + m12 * vz;
-        store.z = m20 * vx + m21 * vy + m22 * vz;
-
-        return store;
-    }
-
-    /**
-     * <code>multNormal</code> multiplies a vector about a rotation matrix, but
-     * does not add translation. The resulting vector is returned.
-     *
-     * @param vec
-     *            vec to multiply against.
-     * @param store
-     *            a vector to store the result in. Created if null is passed.
-     * @return the rotated vector.
-     */
-    public Vector3f multNormalAcross(Vector3f vec, Vector3f store) {
-        if (store == null) {
-            store = new Vector3f();
-        }
-
-        float vx = vec.x, vy = vec.y, vz = vec.z;
-        store.x = m00 * vx + m10 * vy + m20 * vz;
-        store.y = m01 * vx + m11 * vy + m21 * vz;
-        store.z = m02 * vx + m12 * vy + m22 * vz;
-
-        return store;
-    }
-
-    /**
-     * <code>mult</code> multiplies a vector about a rotation matrix and adds
-     * translation. The w value is returned as a result of
-     * multiplying the last column of the matrix by 1.0
-     * 
-     * @param vec
-     *            vec to multiply against.
-     * @param store
-     *            a vector to store the result in. 
-     * @return the W value
-     */
-    public float multProj(Vector3f vec, Vector3f store) {
-        float vx = vec.x, vy = vec.y, vz = vec.z;
-        store.x = m00 * vx + m01 * vy + m02 * vz + m03;
-        store.y = m10 * vx + m11 * vy + m12 * vz + m13;
-        store.z = m20 * vx + m21 * vy + m22 * vz + m23;
-        return m30 * vx + m31 * vy + m32 * vz + m33;
-    }
-
-    /**
-     * <code>mult</code> multiplies a vector about a rotation matrix. The
-     * resulting vector is returned.
-     * 
-     * @param vec
-     *            vec to multiply against.
-     * @param store
-     *            a vector to store the result in.  created if null is passed.
-     * @return the rotated vector.
-     */
-    public Vector3f multAcross(Vector3f vec, Vector3f store) {
-        if (null == vec) {
-            logger.warning("Source vector is null, null result returned.");
-            return null;
-        }
-        if (store == null) {
-            store = new Vector3f();
-        }
-
-        float vx = vec.x, vy = vec.y, vz = vec.z;
-        store.x = m00 * vx + m10 * vy + m20 * vz + m30 * 1;
-        store.y = m01 * vx + m11 * vy + m21 * vz + m31 * 1;
-        store.z = m02 * vx + m12 * vy + m22 * vz + m32 * 1;
-
-        return store;
-    }
-
-    /**
-     * <code>mult</code> multiplies a quaternion about a matrix. The
-     * resulting vector is returned.
-     *
-     * @param vec
-     *            vec to multiply against.
-     * @param store
-     *            a quaternion to store the result in.  created if null is passed.
-     * @return store = this * vec
-     */
-    public Quaternion mult(Quaternion vec, Quaternion store) {
-
-        if (null == vec) {
-            logger.warning("Source vector is null, null result returned.");
-            return null;
-        }
-        if (store == null) {
-            store = new Quaternion();
-        }
-
-        float x = m00 * vec.x + m10 * vec.y + m20 * vec.z + m30 * vec.w;
-        float y = m01 * vec.x + m11 * vec.y + m21 * vec.z + m31 * vec.w;
-        float z = m02 * vec.x + m12 * vec.y + m22 * vec.z + m32 * vec.w;
-        float w = m03 * vec.x + m13 * vec.y + m23 * vec.z + m33 * vec.w;
-        store.x = x;
-        store.y = y;
-        store.z = z;
-        store.w = w;
-
-        return store;
-    }
-
-    /**
-     * <code>mult</code> multiplies an array of 4 floats against this rotation 
-     * matrix. The results are stored directly in the array. (vec4f x mat4f)
-     * 
-     * @param vec4f
-     *            float array (size 4) to multiply against the matrix.
-     * @return the vec4f for chaining.
-     */
-    public float[] mult(float[] vec4f) {
-        if (null == vec4f || vec4f.length != 4) {
-            logger.warning("invalid array given, must be nonnull and length 4");
-            return null;
-        }
-
-        float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
-
-        vec4f[0] = m00 * x + m01 * y + m02 * z + m03 * w;
-        vec4f[1] = m10 * x + m11 * y + m12 * z + m13 * w;
-        vec4f[2] = m20 * x + m21 * y + m22 * z + m23 * w;
-        vec4f[3] = m30 * x + m31 * y + m32 * z + m33 * w;
-
-        return vec4f;
-    }
-
-    /**
-     * <code>mult</code> multiplies an array of 4 floats against this rotation 
-     * matrix. The results are stored directly in the array. (vec4f x mat4f)
-     * 
-     * @param vec4f
-     *            float array (size 4) to multiply against the matrix.
-     * @return the vec4f for chaining.
-     */
-    public float[] multAcross(float[] vec4f) {
-        if (null == vec4f || vec4f.length != 4) {
-            logger.warning("invalid array given, must be nonnull and length 4");
-            return null;
-        }
-
-        float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
-
-        vec4f[0] = m00 * x + m10 * y + m20 * z + m30 * w;
-        vec4f[1] = m01 * x + m11 * y + m21 * z + m31 * w;
-        vec4f[2] = m02 * x + m12 * y + m22 * z + m32 * w;
-        vec4f[3] = m03 * x + m13 * y + m23 * z + m33 * w;
-
-        return vec4f;
-    }
-
-    /**
-     * Inverts this matrix as a new Matrix4f.
-     * 
-     * @return The new inverse matrix
-     */
-    public Matrix4f invert() {
-        return invert(null);
-    }
-
-    /**
-     * Inverts this matrix and stores it in the given store.
-     * 
-     * @return The store
-     */
-    public Matrix4f invert(Matrix4f store) {
-        if (store == null) {
-            store = new Matrix4f();
-        }
-
-        float fA0 = m00 * m11 - m01 * m10;
-        float fA1 = m00 * m12 - m02 * m10;
-        float fA2 = m00 * m13 - m03 * m10;
-        float fA3 = m01 * m12 - m02 * m11;
-        float fA4 = m01 * m13 - m03 * m11;
-        float fA5 = m02 * m13 - m03 * m12;
-        float fB0 = m20 * m31 - m21 * m30;
-        float fB1 = m20 * m32 - m22 * m30;
-        float fB2 = m20 * m33 - m23 * m30;
-        float fB3 = m21 * m32 - m22 * m31;
-        float fB4 = m21 * m33 - m23 * m31;
-        float fB5 = m22 * m33 - m23 * m32;
-        float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
-
-        if (FastMath.abs(fDet) <= 0f) {
-            throw new ArithmeticException("This matrix cannot be inverted");
-        }
-
-        store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
-        store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
-        store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
-        store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
-        store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
-        store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
-        store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
-        store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
-        store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
-        store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
-        store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
-        store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
-        store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
-        store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
-        store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
-        store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
-
-        float fInvDet = 1.0f / fDet;
-        store.multLocal(fInvDet);
-
-        return store;
-    }
-
-    /**
-     * Inverts this matrix locally.
-     * 
-     * @return this
-     */
-    public Matrix4f invertLocal() {
-
-        float fA0 = m00 * m11 - m01 * m10;
-        float fA1 = m00 * m12 - m02 * m10;
-        float fA2 = m00 * m13 - m03 * m10;
-        float fA3 = m01 * m12 - m02 * m11;
-        float fA4 = m01 * m13 - m03 * m11;
-        float fA5 = m02 * m13 - m03 * m12;
-        float fB0 = m20 * m31 - m21 * m30;
-        float fB1 = m20 * m32 - m22 * m30;
-        float fB2 = m20 * m33 - m23 * m30;
-        float fB3 = m21 * m32 - m22 * m31;
-        float fB4 = m21 * m33 - m23 * m31;
-        float fB5 = m22 * m33 - m23 * m32;
-        float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
-
-        if (FastMath.abs(fDet) <= 0f) {
-            return zero();
-        }
-
-        float f00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
-        float f10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
-        float f20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
-        float f30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
-        float f01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
-        float f11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
-        float f21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
-        float f31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
-        float f02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
-        float f12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
-        float f22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
-        float f32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
-        float f03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
-        float f13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
-        float f23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
-        float f33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
-
-        m00 = f00;
-        m01 = f01;
-        m02 = f02;
-        m03 = f03;
-        m10 = f10;
-        m11 = f11;
-        m12 = f12;
-        m13 = f13;
-        m20 = f20;
-        m21 = f21;
-        m22 = f22;
-        m23 = f23;
-        m30 = f30;
-        m31 = f31;
-        m32 = f32;
-        m33 = f33;
-
-        float fInvDet = 1.0f / fDet;
-        multLocal(fInvDet);
-
-        return this;
-    }
-
-    /**
-     * Returns a new matrix representing the adjoint of this matrix.
-     * 
-     * @return The adjoint matrix
-     */
-    public Matrix4f adjoint() {
-        return adjoint(null);
-    }
-
-    public void setTransform(Vector3f position, Vector3f scale, Matrix3f rotMat) {
-        // Ordering:
-        //    1. Scale
-        //    2. Rotate
-        //    3. Translate
-
-        // Set up final matrix with scale, rotation and translation
-        m00 = scale.x * rotMat.m00;
-        m01 = scale.y * rotMat.m01;
-        m02 = scale.z * rotMat.m02;
-        m03 = position.x;
-        m10 = scale.x * rotMat.m10;
-        m11 = scale.y * rotMat.m11;
-        m12 = scale.z * rotMat.m12;
-        m13 = position.y;
-        m20 = scale.x * rotMat.m20;
-        m21 = scale.y * rotMat.m21;
-        m22 = scale.z * rotMat.m22;
-        m23 = position.z;
-
-        // No projection term
-        m30 = 0;
-        m31 = 0;
-        m32 = 0;
-        m33 = 1;
-    }
-
-    /**
-     * Places the adjoint of this matrix in store (creates store if null.)
-     * 
-     * @param store
-     *            The matrix to store the result in.  If null, a new matrix is created.
-     * @return store
-     */
-    public Matrix4f adjoint(Matrix4f store) {
-        if (store == null) {
-            store = new Matrix4f();
-        }
-
-        float fA0 = m00 * m11 - m01 * m10;
-        float fA1 = m00 * m12 - m02 * m10;
-        float fA2 = m00 * m13 - m03 * m10;
-        float fA3 = m01 * m12 - m02 * m11;
-        float fA4 = m01 * m13 - m03 * m11;
-        float fA5 = m02 * m13 - m03 * m12;
-        float fB0 = m20 * m31 - m21 * m30;
-        float fB1 = m20 * m32 - m22 * m30;
-        float fB2 = m20 * m33 - m23 * m30;
-        float fB3 = m21 * m32 - m22 * m31;
-        float fB4 = m21 * m33 - m23 * m31;
-        float fB5 = m22 * m33 - m23 * m32;
-
-        store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
-        store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
-        store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
-        store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
-        store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
-        store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
-        store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
-        store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
-        store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
-        store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
-        store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
-        store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
-        store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
-        store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
-        store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
-        store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
-
-        return store;
-    }
-
-    /**
-     * <code>determinant</code> generates the determinate of this matrix.
-     * 
-     * @return the determinate
-     */
-    public float determinant() {
-        float fA0 = m00 * m11 - m01 * m10;
-        float fA1 = m00 * m12 - m02 * m10;
-        float fA2 = m00 * m13 - m03 * m10;
-        float fA3 = m01 * m12 - m02 * m11;
-        float fA4 = m01 * m13 - m03 * m11;
-        float fA5 = m02 * m13 - m03 * m12;
-        float fB0 = m20 * m31 - m21 * m30;
-        float fB1 = m20 * m32 - m22 * m30;
-        float fB2 = m20 * m33 - m23 * m30;
-        float fB3 = m21 * m32 - m22 * m31;
-        float fB4 = m21 * m33 - m23 * m31;
-        float fB5 = m22 * m33 - m23 * m32;
-        float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
-        return fDet;
-    }
-
-    /**
-     * Sets all of the values in this matrix to zero.
-     * 
-     * @return this matrix
-     */
-    public Matrix4f zero() {
-        m00 = m01 = m02 = m03 = 0.0f;
-        m10 = m11 = m12 = m13 = 0.0f;
-        m20 = m21 = m22 = m23 = 0.0f;
-        m30 = m31 = m32 = m33 = 0.0f;
-        return this;
-    }
-
-    public Matrix4f add(Matrix4f mat) {
-        Matrix4f result = new Matrix4f();
-        result.m00 = this.m00 + mat.m00;
-        result.m01 = this.m01 + mat.m01;
-        result.m02 = this.m02 + mat.m02;
-        result.m03 = this.m03 + mat.m03;
-        result.m10 = this.m10 + mat.m10;
-        result.m11 = this.m11 + mat.m11;
-        result.m12 = this.m12 + mat.m12;
-        result.m13 = this.m13 + mat.m13;
-        result.m20 = this.m20 + mat.m20;
-        result.m21 = this.m21 + mat.m21;
-        result.m22 = this.m22 + mat.m22;
-        result.m23 = this.m23 + mat.m23;
-        result.m30 = this.m30 + mat.m30;
-        result.m31 = this.m31 + mat.m31;
-        result.m32 = this.m32 + mat.m32;
-        result.m33 = this.m33 + mat.m33;
-        return result;
-    }
-
-    /**
-     * <code>add</code> adds the values of a parameter matrix to this matrix.
-     * 
-     * @param mat
-     *            the matrix to add to this.
-     */
-    public void addLocal(Matrix4f mat) {
-        m00 += mat.m00;
-        m01 += mat.m01;
-        m02 += mat.m02;
-        m03 += mat.m03;
-        m10 += mat.m10;
-        m11 += mat.m11;
-        m12 += mat.m12;
-        m13 += mat.m13;
-        m20 += mat.m20;
-        m21 += mat.m21;
-        m22 += mat.m22;
-        m23 += mat.m23;
-        m30 += mat.m30;
-        m31 += mat.m31;
-        m32 += mat.m32;
-        m33 += mat.m33;
-    }
-
-    public Vector3f toTranslationVector() {
-        return new Vector3f(m03, m13, m23);
-    }
-
-    public void toTranslationVector(Vector3f vector) {
-        vector.set(m03, m13, m23);
-    }
-
-    public Quaternion toRotationQuat() {
-        Quaternion quat = new Quaternion();
-        quat.fromRotationMatrix(toRotationMatrix());
-        return quat;
-    }
-
-    public void toRotationQuat(Quaternion q) {
-        q.fromRotationMatrix(toRotationMatrix());
-    }
-
-    public Matrix3f toRotationMatrix() {
-        return new Matrix3f(m00, m01, m02, m10, m11, m12, m20, m21, m22);
-    }
-
-    public void toRotationMatrix(Matrix3f mat) {
-        mat.m00 = m00;
-        mat.m01 = m01;
-        mat.m02 = m02;
-        mat.m10 = m10;
-        mat.m11 = m11;
-        mat.m12 = m12;
-        mat.m20 = m20;
-        mat.m21 = m21;
-        mat.m22 = m22;
-	}
-
-	/**
-	 * Retreives the scale vector from the matrix.
-	 * 
-	 * @return the scale vector
-	 */
-	public Vector3f toScaleVector() {
-		Vector3f result = new Vector3f();
-		this.toScaleVector(result);
-		return result;
-	}
-
-	/**
-	 * Retreives the scale vector from the matrix and stores it into a given
-	 * vector.
-	 * 
-	 * @param the
-	 *            vector where the scale will be stored
-	 */
-	public void toScaleVector(Vector3f vector) {
-		float scaleX = (float) Math.sqrt(m00 * m00 + m10 * m10 + m20 * m20);
-		float scaleY = (float) Math.sqrt(m01 * m01 + m11 * m11 + m21 * m21);
-		float scaleZ = (float) Math.sqrt(m02 * m02 + m12 * m12 + m22 * m22);
-		vector.set(scaleX, scaleY, scaleZ);
-	}
-
-    public void setScale(float x, float y, float z) {
-        m00 *= x;
-        m11 *= y;
-        m22 *= z;
-    }
-
-    public void setScale(Vector3f scale) {
-        m00 *= scale.x;
-        m11 *= scale.y;
-        m22 *= scale.z;
-    }
-
-    /**
-     * <code>setTranslation</code> will set the matrix's translation values.
-     * 
-     * @param translation
-     *            the new values for the translation.
-     * @throws JmeException
-     *             if translation is not size 3.
-     */
-    public void setTranslation(float[] translation) {
-        if (translation.length != 3) {
-            throw new IllegalArgumentException(
-                    "Translation size must be 3.");
-        }
-        m03 = translation[0];
-        m13 = translation[1];
-        m23 = translation[2];
-    }
-
-    /**
-     * <code>setTranslation</code> will set the matrix's translation values.
-     * 
-     * @param x
-     *            value of the translation on the x axis
-     * @param y
-     *            value of the translation on the y axis
-     * @param z
-     *            value of the translation on the z axis
-     */
-    public void setTranslation(float x, float y, float z) {
-        m03 = x;
-        m13 = y;
-        m23 = z;
-    }
-
-    /**
-     * <code>setTranslation</code> will set the matrix's translation values.
-     *
-     * @param translation
-     *            the new values for the translation.
-     */
-    public void setTranslation(Vector3f translation) {
-        m03 = translation.x;
-        m13 = translation.y;
-        m23 = translation.z;
-    }
-
-    /**
-     * <code>setInverseTranslation</code> will set the matrix's inverse
-     * translation values.
-     * 
-     * @param translation
-     *            the new values for the inverse translation.
-     * @throws JmeException
-     *             if translation is not size 3.
-     */
-    public void setInverseTranslation(float[] translation) {
-        if (translation.length != 3) {
-            throw new IllegalArgumentException(
-                    "Translation size must be 3.");
-        }
-        m03 = -translation[0];
-        m13 = -translation[1];
-        m23 = -translation[2];
-    }
-
-    /**
-     * <code>angleRotation</code> sets this matrix to that of a rotation about
-     * three axes (x, y, z). Where each axis has a specified rotation in
-     * degrees. These rotations are expressed in a single <code>Vector3f</code>
-     * object.
-     * 
-     * @param angles
-     *            the angles to rotate.
-     */
-    public void angleRotation(Vector3f angles) {
-        float angle;
-        float sr, sp, sy, cr, cp, cy;
-
-        angle = (angles.z * FastMath.DEG_TO_RAD);
-        sy = FastMath.sin(angle);
-        cy = FastMath.cos(angle);
-        angle = (angles.y * FastMath.DEG_TO_RAD);
-        sp = FastMath.sin(angle);
-        cp = FastMath.cos(angle);
-        angle = (angles.x * FastMath.DEG_TO_RAD);
-        sr = FastMath.sin(angle);
-        cr = FastMath.cos(angle);
-
-        // matrix = (Z * Y) * X
-        m00 = cp * cy;
-        m10 = cp * sy;
-        m20 = -sp;
-        m01 = sr * sp * cy + cr * -sy;
-        m11 = sr * sp * sy + cr * cy;
-        m21 = sr * cp;
-        m02 = (cr * sp * cy + -sr * -sy);
-        m12 = (cr * sp * sy + -sr * cy);
-        m22 = cr * cp;
-        m03 = 0.0f;
-        m13 = 0.0f;
-        m23 = 0.0f;
-    }
-
-    /**
-     * <code>setRotationQuaternion</code> builds a rotation from a
-     * <code>Quaternion</code>.
-     * 
-     * @param quat
-     *            the quaternion to build the rotation from.
-     * @throws NullPointerException
-     *             if quat is null.
-     */
-    public void setRotationQuaternion(Quaternion quat) {
-        quat.toRotationMatrix(this);
-    }
-
-    /**
-     * <code>setInverseRotationRadians</code> builds an inverted rotation from
-     * Euler angles that are in radians.
-     * 
-     * @param angles
-     *            the Euler angles in radians.
-     * @throws JmeException
-     *             if angles is not size 3.
-     */
-    public void setInverseRotationRadians(float[] angles) {
-        if (angles.length != 3) {
-            throw new IllegalArgumentException(
-                    "Angles must be of size 3.");
-        }
-        double cr = FastMath.cos(angles[0]);
-        double sr = FastMath.sin(angles[0]);
-        double cp = FastMath.cos(angles[1]);
-        double sp = FastMath.sin(angles[1]);
-        double cy = FastMath.cos(angles[2]);
-        double sy = FastMath.sin(angles[2]);
-
-        m00 = (float) (cp * cy);
-        m10 = (float) (cp * sy);
-        m20 = (float) (-sp);
-
-        double srsp = sr * sp;
-        double crsp = cr * sp;
-
-        m01 = (float) (srsp * cy - cr * sy);
-        m11 = (float) (srsp * sy + cr * cy);
-        m21 = (float) (sr * cp);
-
-        m02 = (float) (crsp * cy + sr * sy);
-        m12 = (float) (crsp * sy - sr * cy);
-        m22 = (float) (cr * cp);
-    }
-
-    /**
-     * <code>setInverseRotationDegrees</code> builds an inverted rotation from
-     * Euler angles that are in degrees.
-     * 
-     * @param angles
-     *            the Euler angles in degrees.
-     * @throws JmeException
-     *             if angles is not size 3.
-     */
-    public void setInverseRotationDegrees(float[] angles) {
-        if (angles.length != 3) {
-            throw new IllegalArgumentException(
-                    "Angles must be of size 3.");
-        }
-        float vec[] = new float[3];
-        vec[0] = (angles[0] * FastMath.RAD_TO_DEG);
-        vec[1] = (angles[1] * FastMath.RAD_TO_DEG);
-        vec[2] = (angles[2] * FastMath.RAD_TO_DEG);
-        setInverseRotationRadians(vec);
-    }
-
-    /**
-     * 
-     * <code>inverseTranslateVect</code> translates a given Vector3f by the
-     * translation part of this matrix.
-     * 
-     * @param vec
-     *            the Vector3f data to be translated.
-     * @throws JmeException
-     *             if the size of the Vector3f is not 3.
-     */
-    public void inverseTranslateVect(float[] vec) {
-        if (vec.length != 3) {
-            throw new IllegalArgumentException(
-                    "vec must be of size 3.");
-        }
-
-        vec[0] = vec[0] - m03;
-        vec[1] = vec[1] - m13;
-        vec[2] = vec[2] - m23;
-    }
-
-    /**
-     * 
-     * <code>inverseTranslateVect</code> translates a given Vector3f by the
-     * translation part of this matrix.
-     * 
-     * @param data
-     *            the Vector3f to be translated.
-     * @throws JmeException
-     *             if the size of the Vector3f is not 3.
-     */
-    public void inverseTranslateVect(Vector3f data) {
-        data.x -= m03;
-        data.y -= m13;
-        data.z -= m23;
-    }
-
-    /**
-     * 
-     * <code>inverseTranslateVect</code> translates a given Vector3f by the
-     * translation part of this matrix.
-     * 
-     * @param data
-     *            the Vector3f to be translated.
-     * @throws JmeException
-     *             if the size of the Vector3f is not 3.
-     */
-    public void translateVect(Vector3f data) {
-        data.x += m03;
-        data.y += m13;
-        data.z += m23;
-    }
-
-    /**
-     * 
-     * <code>inverseRotateVect</code> rotates a given Vector3f by the rotation
-     * part of this matrix.
-     * 
-     * @param vec
-     *            the Vector3f to be rotated.
-     */
-    public void inverseRotateVect(Vector3f vec) {
-        float vx = vec.x, vy = vec.y, vz = vec.z;
-
-        vec.x = vx * m00 + vy * m10 + vz * m20;
-        vec.y = vx * m01 + vy * m11 + vz * m21;
-        vec.z = vx * m02 + vy * m12 + vz * m22;
-    }
-
-    public void rotateVect(Vector3f vec) {
-        float vx = vec.x, vy = vec.y, vz = vec.z;
-
-        vec.x = vx * m00 + vy * m01 + vz * m02;
-        vec.y = vx * m10 + vy * m11 + vz * m12;
-        vec.z = vx * m20 + vy * m21 + vz * m22;
-    }
-
-    /**
-     * <code>toString</code> returns the string representation of this object.
-     * It is in a format of a 4x4 matrix. For example, an identity matrix would
-     * be represented by the following string. com.jme.math.Matrix3f <br>[<br>
-     * 1.0  0.0  0.0  0.0 <br>
-     * 0.0  1.0  0.0  0.0 <br>
-     * 0.0  0.0  1.0  0.0 <br>
-     * 0.0  0.0  0.0  1.0 <br>]<br>
-     * 
-     * @return the string representation of this object.
-     */
-    @Override
-    public String toString() {
-        StringBuilder result = new StringBuilder("Matrix4f\n[\n");
-        result.append(" ");
-        result.append(m00);
-        result.append("  ");
-        result.append(m01);
-        result.append("  ");
-        result.append(m02);
-        result.append("  ");
-        result.append(m03);
-        result.append(" \n");
-        result.append(" ");
-        result.append(m10);
-        result.append("  ");
-        result.append(m11);
-        result.append("  ");
-        result.append(m12);
-        result.append("  ");
-        result.append(m13);
-        result.append(" \n");
-        result.append(" ");
-        result.append(m20);
-        result.append("  ");
-        result.append(m21);
-        result.append("  ");
-        result.append(m22);
-        result.append("  ");
-        result.append(m23);
-        result.append(" \n");
-        result.append(" ");
-        result.append(m30);
-        result.append("  ");
-        result.append(m31);
-        result.append("  ");
-        result.append(m32);
-        result.append("  ");
-        result.append(m33);
-        result.append(" \n]");
-        return result.toString();
-    }
-
-    /**
-     * 
-     * <code>hashCode</code> returns the hash code value as an integer and is
-     * supported for the benefit of hashing based collection classes such as
-     * Hashtable, HashMap, HashSet etc.
-     * 
-     * @return the hashcode for this instance of Matrix4f.
-     * @see java.lang.Object#hashCode()
-     */
-    @Override
-    public int hashCode() {
-        int hash = 37;
-        hash = 37 * hash + Float.floatToIntBits(m00);
-        hash = 37 * hash + Float.floatToIntBits(m01);
-        hash = 37 * hash + Float.floatToIntBits(m02);
-        hash = 37 * hash + Float.floatToIntBits(m03);
-
-        hash = 37 * hash + Float.floatToIntBits(m10);
-        hash = 37 * hash + Float.floatToIntBits(m11);
-        hash = 37 * hash + Float.floatToIntBits(m12);
-        hash = 37 * hash + Float.floatToIntBits(m13);
-
-        hash = 37 * hash + Float.floatToIntBits(m20);
-        hash = 37 * hash + Float.floatToIntBits(m21);
-        hash = 37 * hash + Float.floatToIntBits(m22);
-        hash = 37 * hash + Float.floatToIntBits(m23);
-
-        hash = 37 * hash + Float.floatToIntBits(m30);
-        hash = 37 * hash + Float.floatToIntBits(m31);
-        hash = 37 * hash + Float.floatToIntBits(m32);
-        hash = 37 * hash + Float.floatToIntBits(m33);
-
-        return hash;
-    }
-
-    /**
-     * are these two matrices the same? they are is they both have the same mXX values.
-     *
-     * @param o
-     *            the object to compare for equality
-     * @return true if they are equal
-     */
-    @Override
-    public boolean equals(Object o) {
-        if (!(o instanceof Matrix4f) || o == null) {
-            return false;
-        }
-
-        if (this == o) {
-            return true;
-        }
-
-        Matrix4f comp = (Matrix4f) o;
-        if (Float.compare(m00, comp.m00) != 0) {
-            return false;
-        }
-        if (Float.compare(m01, comp.m01) != 0) {
-            return false;
-        }
-        if (Float.compare(m02, comp.m02) != 0) {
-            return false;
-        }
-        if (Float.compare(m03, comp.m03) != 0) {
-            return false;
-        }
-
-        if (Float.compare(m10, comp.m10) != 0) {
-            return false;
-        }
-        if (Float.compare(m11, comp.m11) != 0) {
-            return false;
-        }
-        if (Float.compare(m12, comp.m12) != 0) {
-            return false;
-        }
-        if (Float.compare(m13, comp.m13) != 0) {
-            return false;
-        }
-
-        if (Float.compare(m20, comp.m20) != 0) {
-            return false;
-        }
-        if (Float.compare(m21, comp.m21) != 0) {
-            return false;
-        }
-        if (Float.compare(m22, comp.m22) != 0) {
-            return false;
-        }
-        if (Float.compare(m23, comp.m23) != 0) {
-            return false;
-        }
-
-        if (Float.compare(m30, comp.m30) != 0) {
-            return false;
-        }
-        if (Float.compare(m31, comp.m31) != 0) {
-            return false;
-        }
-        if (Float.compare(m32, comp.m32) != 0) {
-            return false;
-        }
-        if (Float.compare(m33, comp.m33) != 0) {
-            return false;
-        }
-
-        return true;
-    }
-
-    public void write(JmeExporter e) throws IOException {
-        OutputCapsule cap = e.getCapsule(this);
-        cap.write(m00, "m00", 1);
-        cap.write(m01, "m01", 0);
-        cap.write(m02, "m02", 0);
-        cap.write(m03, "m03", 0);
-        cap.write(m10, "m10", 0);
-        cap.write(m11, "m11", 1);
-        cap.write(m12, "m12", 0);
-        cap.write(m13, "m13", 0);
-        cap.write(m20, "m20", 0);
-        cap.write(m21, "m21", 0);
-        cap.write(m22, "m22", 1);
-        cap.write(m23, "m23", 0);
-        cap.write(m30, "m30", 0);
-        cap.write(m31, "m31", 0);
-        cap.write(m32, "m32", 0);
-        cap.write(m33, "m33", 1);
-    }
-
-    public void read(JmeImporter e) throws IOException {
-        InputCapsule cap = e.getCapsule(this);
-        m00 = cap.readFloat("m00", 1);
-        m01 = cap.readFloat("m01", 0);
-        m02 = cap.readFloat("m02", 0);
-        m03 = cap.readFloat("m03", 0);
-        m10 = cap.readFloat("m10", 0);
-        m11 = cap.readFloat("m11", 1);
-        m12 = cap.readFloat("m12", 0);
-        m13 = cap.readFloat("m13", 0);
-        m20 = cap.readFloat("m20", 0);
-        m21 = cap.readFloat("m21", 0);
-        m22 = cap.readFloat("m22", 1);
-        m23 = cap.readFloat("m23", 0);
-        m30 = cap.readFloat("m30", 0);
-        m31 = cap.readFloat("m31", 0);
-        m32 = cap.readFloat("m32", 0);
-        m33 = cap.readFloat("m33", 1);
-    }
-
-    /**
-     * @return true if this matrix is identity
-     */
-    public boolean isIdentity() {
-        return (m00 == 1 && m01 == 0 && m02 == 0 && m03 == 0)
-                && (m10 == 0 && m11 == 1 && m12 == 0 && m13 == 0)
-                && (m20 == 0 && m21 == 0 && m22 == 1 && m23 == 0)
-                && (m30 == 0 && m31 == 0 && m32 == 0 && m33 == 1);
-    }
-
-    /**
-     * Apply a scale to this matrix.
-     * 
-     * @param scale
-     *            the scale to apply
-     */
-    public void scale(Vector3f scale) {
-        m00 *= scale.getX();
-        m10 *= scale.getX();
-        m20 *= scale.getX();
-        m30 *= scale.getX();
-        m01 *= scale.getY();
-        m11 *= scale.getY();
-        m21 *= scale.getY();
-        m31 *= scale.getY();
-        m02 *= scale.getZ();
-        m12 *= scale.getZ();
-        m22 *= scale.getZ();
-        m32 *= scale.getZ();
-    }
-
-    static boolean equalIdentity(Matrix4f mat) {
-        if (Math.abs(mat.m00 - 1) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m11 - 1) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m22 - 1) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m33 - 1) > 1e-4) {
-            return false;
-        }
-
-        if (Math.abs(mat.m01) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m02) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m03) > 1e-4) {
-            return false;
-        }
-
-        if (Math.abs(mat.m10) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m12) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m13) > 1e-4) {
-            return false;
-        }
-
-        if (Math.abs(mat.m20) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m21) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m23) > 1e-4) {
-            return false;
-        }
-
-        if (Math.abs(mat.m30) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m31) > 1e-4) {
-            return false;
-        }
-        if (Math.abs(mat.m32) > 1e-4) {
-            return false;
-        }
-
-        return true;
-    }
-
-    // XXX: This tests more solid than converting the q to a matrix and multiplying... why?
-    public void multLocal(Quaternion rotation) {
-        Vector3f axis = new Vector3f();
-        float angle = rotation.toAngleAxis(axis);
-        Matrix4f matrix4f = new Matrix4f();
-        matrix4f.fromAngleAxis(angle, axis);
-        multLocal(matrix4f);
-    }
-
-    @Override
-    public Matrix4f clone() {
-        try {
-            return (Matrix4f) super.clone();
-        } catch (CloneNotSupportedException e) {
-            throw new AssertionError(); // can not happen
-        }
-    }
-}
+/*
+ * Copyright (c) 2009-2012 jMonkeyEngine
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ *   notice, this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ *   notice, this list of conditions and the following disclaimer in the
+ *   documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
+ *   may be used to endorse or promote products derived from this software
+ *   without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+package com.jme3.math;
+
+import com.jme3.export.*;
+import com.jme3.util.BufferUtils;
+import com.jme3.util.TempVars;
+import java.io.IOException;
+import java.nio.FloatBuffer;
+import java.util.logging.Logger;
+
+/**
+ * <code>Matrix4f</code> defines and maintains a 4x4 matrix in row major order.
+ * This matrix is intended for use in a translation and rotational capacity. 
+ * It provides convenience methods for creating the matrix from a multitude 
+ * of sources.
+ * 
+ * Matrices are stored assuming column vectors on the right, with the translation
+ * in the rightmost column. Element numbering is row,column, so m03 is the zeroth
+ * row, third column, which is the "x" translation part. This means that the implicit
+ * storage order is column major. However, the get() and set() functions on float
+ * arrays default to row major order!
+ *
+ * @author Mark Powell
+ * @author Joshua Slack
+ */
+public final class Matrix4f implements Savable, Cloneable, java.io.Serializable {
+
+    static final long serialVersionUID = 1;
+
+    private static final Logger logger = Logger.getLogger(Matrix4f.class.getName());
+    public float m00, m01, m02, m03;
+    public float m10, m11, m12, m13;
+    public float m20, m21, m22, m23;
+    public float m30, m31, m32, m33;
+    public static final Matrix4f ZERO = new Matrix4f(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
+    public static final Matrix4f IDENTITY = new Matrix4f();
+
+    /**
+     * Constructor instantiates a new <code>Matrix</code> that is set to the
+     * identity matrix.
+     *  
+     */
+    public Matrix4f() {
+        loadIdentity();
+    }
+
+    /**
+     * constructs a matrix with the given values.
+     */
+    public Matrix4f(float m00, float m01, float m02, float m03,
+            float m10, float m11, float m12, float m13,
+            float m20, float m21, float m22, float m23,
+            float m30, float m31, float m32, float m33) {
+
+        this.m00 = m00;
+        this.m01 = m01;
+        this.m02 = m02;
+        this.m03 = m03;
+        this.m10 = m10;
+        this.m11 = m11;
+        this.m12 = m12;
+        this.m13 = m13;
+        this.m20 = m20;
+        this.m21 = m21;
+        this.m22 = m22;
+        this.m23 = m23;
+        this.m30 = m30;
+        this.m31 = m31;
+        this.m32 = m32;
+        this.m33 = m33;
+    }
+
+    /**
+     * Create a new Matrix4f, given data in column-major format.
+     *
+     * @param array
+     *		An array of 16 floats in column-major format (translation in elements 12, 13 and 14).
+     */
+    public Matrix4f(float[] array) {
+        set(array, false);
+    }
+
+    /**
+     * Constructor instantiates a new <code>Matrix</code> that is set to the
+     * provided matrix. This constructor copies a given Matrix. If the provided
+     * matrix is null, the constructor sets the matrix to the identity.
+     * 
+     * @param mat
+     *            the matrix to copy.
+     */
+    public Matrix4f(Matrix4f mat) {
+        copy(mat);
+    }
+
+    /**
+     * <code>copy</code> transfers the contents of a given matrix to this
+     * matrix. If a null matrix is supplied, this matrix is set to the identity
+     * matrix.
+     * 
+     * @param matrix
+     *            the matrix to copy.
+     */
+    public void copy(Matrix4f matrix) {
+        if (null == matrix) {
+            loadIdentity();
+        } else {
+            m00 = matrix.m00;
+            m01 = matrix.m01;
+            m02 = matrix.m02;
+            m03 = matrix.m03;
+            m10 = matrix.m10;
+            m11 = matrix.m11;
+            m12 = matrix.m12;
+            m13 = matrix.m13;
+            m20 = matrix.m20;
+            m21 = matrix.m21;
+            m22 = matrix.m22;
+            m23 = matrix.m23;
+            m30 = matrix.m30;
+            m31 = matrix.m31;
+            m32 = matrix.m32;
+            m33 = matrix.m33;
+        }
+    }
+
+    public void fromFrame(Vector3f location, Vector3f direction, Vector3f up, Vector3f left) {
+        loadIdentity();
+
+        TempVars vars = TempVars.get();
+
+        Vector3f f = vars.vect1.set(direction);
+        Vector3f s = vars.vect2.set(f).crossLocal(up);
+        Vector3f u = vars.vect3.set(s).crossLocal(f);
+//        s.normalizeLocal();
+//        u.normalizeLocal();
+
+        m00 = s.x;
+        m01 = s.y;
+        m02 = s.z;
+
+        m10 = u.x;
+        m11 = u.y;
+        m12 = u.z;
+
+        m20 = -f.x;
+        m21 = -f.y;
+        m22 = -f.z;
+
+//        m00 = -left.x;
+//        m10 = -left.y;
+//        m20 = -left.z;
+//
+//        m01 = up.x;
+//        m11 = up.y;
+//        m21 = up.z;
+//
+//        m02 = -direction.x;
+//        m12 = -direction.y;
+//        m22 = -direction.z;
+//
+
+        Matrix4f transMatrix = vars.tempMat4;
+        transMatrix.loadIdentity();
+        transMatrix.m03 = -location.x;
+        transMatrix.m13 = -location.y;
+        transMatrix.m23 = -location.z;
+        this.multLocal(transMatrix);
+
+        vars.release();
+
+//        transMatrix.multLocal(this);
+
+//        set(transMatrix);
+    }
+
+    /**
+     * <code>get</code> retrieves the values of this object into
+     * a float array in row-major order.
+     * 
+     * @param matrix
+     *            the matrix to set the values into.
+     */
+    public void get(float[] matrix) {
+        get(matrix, true);
+    }
+
+    /**
+     * <code>set</code> retrieves the values of this object into
+     * a float array.
+     * 
+     * @param matrix
+     *            the matrix to set the values into.
+     * @param rowMajor
+     *            whether the outgoing data is in row or column major order.
+     */
+    public void get(float[] matrix, boolean rowMajor) {
+        if (matrix.length != 16) {
+            throw new IllegalArgumentException(
+                    "Array must be of size 16.");
+        }
+
+        if (rowMajor) {
+            matrix[0] = m00;
+            matrix[1] = m01;
+            matrix[2] = m02;
+            matrix[3] = m03;
+            matrix[4] = m10;
+            matrix[5] = m11;
+            matrix[6] = m12;
+            matrix[7] = m13;
+            matrix[8] = m20;
+            matrix[9] = m21;
+            matrix[10] = m22;
+            matrix[11] = m23;
+            matrix[12] = m30;
+            matrix[13] = m31;
+            matrix[14] = m32;
+            matrix[15] = m33;
+        } else {
+            matrix[0] = m00;
+            matrix[4] = m01;
+            matrix[8] = m02;
+            matrix[12] = m03;
+            matrix[1] = m10;
+            matrix[5] = m11;
+            matrix[9] = m12;
+            matrix[13] = m13;
+            matrix[2] = m20;
+            matrix[6] = m21;
+            matrix[10] = m22;
+            matrix[14] = m23;
+            matrix[3] = m30;
+            matrix[7] = m31;
+            matrix[11] = m32;
+            matrix[15] = m33;
+        }
+    }
+
+    /**
+     * <code>get</code> retrieves a value from the matrix at the given
+     * position. If the position is invalid a <code>JmeException</code> is
+     * thrown.
+     * 
+     * @param i
+     *            the row index.
+     * @param j
+     *            the colum index.
+     * @return the value at (i, j).
+     */
+    @SuppressWarnings("fallthrough")
+    public float get(int i, int j) {
+        switch (i) {
+            case 0:
+                switch (j) {
+                    case 0:
+                        return m00;
+                    case 1:
+                        return m01;
+                    case 2:
+                        return m02;
+                    case 3:
+                        return m03;
+                }
+            case 1:
+                switch (j) {
+                    case 0:
+                        return m10;
+                    case 1:
+                        return m11;
+                    case 2:
+                        return m12;
+                    case 3:
+                        return m13;
+                }
+            case 2:
+                switch (j) {
+                    case 0:
+                        return m20;
+                    case 1:
+                        return m21;
+                    case 2:
+                        return m22;
+                    case 3:
+                        return m23;
+                }
+            case 3:
+                switch (j) {
+                    case 0:
+                        return m30;
+                    case 1:
+                        return m31;
+                    case 2:
+                        return m32;
+                    case 3:
+                        return m33;
+                }
+        }
+
+        logger.warning("Invalid matrix index.");
+        throw new IllegalArgumentException("Invalid indices into matrix.");
+    }
+
+    /**
+     * <code>getColumn</code> returns one of three columns specified by the
+     * parameter. This column is returned as a float array of length 4.
+     * 
+     * @param i
+     *            the column to retrieve. Must be between 0 and 3.
+     * @return the column specified by the index.
+     */
+    public float[] getColumn(int i) {
+        return getColumn(i, null);
+    }
+
+    /**
+     * <code>getColumn</code> returns one of three columns specified by the
+     * parameter. This column is returned as a float[4].
+     * 
+     * @param i
+     *            the column to retrieve. Must be between 0 and 3.
+     * @param store
+     *            the float array to store the result in. if null, a new one
+     *            is created.
+     * @return the column specified by the index.
+     */
+    public float[] getColumn(int i, float[] store) {
+        if (store == null) {
+            store = new float[4];
+        }
+        switch (i) {
+            case 0:
+                store[0] = m00;
+                store[1] = m10;
+                store[2] = m20;
+                store[3] = m30;
+                break;
+            case 1:
+                store[0] = m01;
+                store[1] = m11;
+                store[2] = m21;
+                store[3] = m31;
+                break;
+            case 2:
+                store[0] = m02;
+                store[1] = m12;
+                store[2] = m22;
+                store[3] = m32;
+                break;
+            case 3:
+                store[0] = m03;
+                store[1] = m13;
+                store[2] = m23;
+                store[3] = m33;
+                break;
+            default:
+                logger.warning("Invalid column index.");
+                throw new IllegalArgumentException("Invalid column index. " + i);
+        }
+        return store;
+    }
+
+    /**
+     * 
+     * <code>setColumn</code> sets a particular column of this matrix to that
+     * represented by the provided vector.
+     * 
+     * @param i
+     *            the column to set.
+     * @param column
+     *            the data to set.
+     */
+    public void setColumn(int i, float[] column) {
+
+        if (column == null) {
+            logger.warning("Column is null. Ignoring.");
+            return;
+        }
+        switch (i) {
+            case 0:
+                m00 = column[0];
+                m10 = column[1];
+                m20 = column[2];
+                m30 = column[3];
+                break;
+            case 1:
+                m01 = column[0];
+                m11 = column[1];
+                m21 = column[2];
+                m31 = column[3];
+                break;
+            case 2:
+                m02 = column[0];
+                m12 = column[1];
+                m22 = column[2];
+                m32 = column[3];
+                break;
+            case 3:
+                m03 = column[0];
+                m13 = column[1];
+                m23 = column[2];
+                m33 = column[3];
+                break;
+            default:
+                logger.warning("Invalid column index.");
+                throw new IllegalArgumentException("Invalid column index. " + i);
+        }
+    }
+
+    /**
+     * <code>set</code> places a given value into the matrix at the given
+     * position. If the position is invalid a <code>JmeException</code> is
+     * thrown.
+     * 
+     * @param i
+     *            the row index.
+     * @param j
+     *            the colum index.
+     * @param value
+     *            the value for (i, j).
+     */
+    @SuppressWarnings("fallthrough")
+    public void set(int i, int j, float value) {
+        switch (i) {
+            case 0:
+                switch (j) {
+                    case 0:
+                        m00 = value;
+                        return;
+                    case 1:
+                        m01 = value;
+                        return;
+                    case 2:
+                        m02 = value;
+                        return;
+                    case 3:
+                        m03 = value;
+                        return;
+                }
+            case 1:
+                switch (j) {
+                    case 0:
+                        m10 = value;
+                        return;
+                    case 1:
+                        m11 = value;
+                        return;
+                    case 2:
+                        m12 = value;
+                        return;
+                    case 3:
+                        m13 = value;
+                        return;
+                }
+            case 2:
+                switch (j) {
+                    case 0:
+                        m20 = value;
+                        return;
+                    case 1:
+                        m21 = value;
+                        return;
+                    case 2:
+                        m22 = value;
+                        return;
+                    case 3:
+                        m23 = value;
+                        return;
+                }
+            case 3:
+                switch (j) {
+                    case 0:
+                        m30 = value;
+                        return;
+                    case 1:
+                        m31 = value;
+                        return;
+                    case 2:
+                        m32 = value;
+                        return;
+                    case 3:
+                        m33 = value;
+                        return;
+                }
+        }
+
+        logger.warning("Invalid matrix index.");
+        throw new IllegalArgumentException("Invalid indices into matrix.");
+    }
+
+    /**
+     * <code>set</code> sets the values of this matrix from an array of
+     * values.
+     * 
+     * @param matrix
+     *            the matrix to set the value to.
+     * @throws JmeException
+     *             if the array is not of size 16.
+     */
+    public void set(float[][] matrix) {
+        if (matrix.length != 4 || matrix[0].length != 4) {
+            throw new IllegalArgumentException(
+                    "Array must be of size 16.");
+        }
+
+        m00 = matrix[0][0];
+        m01 = matrix[0][1];
+        m02 = matrix[0][2];
+        m03 = matrix[0][3];
+        m10 = matrix[1][0];
+        m11 = matrix[1][1];
+        m12 = matrix[1][2];
+        m13 = matrix[1][3];
+        m20 = matrix[2][0];
+        m21 = matrix[2][1];
+        m22 = matrix[2][2];
+        m23 = matrix[2][3];
+        m30 = matrix[3][0];
+        m31 = matrix[3][1];
+        m32 = matrix[3][2];
+        m33 = matrix[3][3];
+    }
+    
+    
+    /**
+     * Sets the values of this matrix
+     */
+    public void set(float m00, float m01, float m02, float m03,
+            float m10, float m11, float m12, float m13,
+            float m20, float m21, float m22, float m23,
+            float m30, float m31, float m32, float m33) {
+
+        this.m00 = m00;
+        this.m01 = m01;
+        this.m02 = m02;
+        this.m03 = m03;
+        this.m10 = m10;
+        this.m11 = m11;
+        this.m12 = m12;
+        this.m13 = m13;
+        this.m20 = m20;
+        this.m21 = m21;
+        this.m22 = m22;
+        this.m23 = m23;
+        this.m30 = m30;
+        this.m31 = m31;
+        this.m32 = m32;
+        this.m33 = m33;
+    }
+
+    /**
+     * <code>set</code> sets the values of this matrix from another matrix.
+     *
+     * @param matrix
+     *            the matrix to read the value from.
+     */
+    public Matrix4f set(Matrix4f matrix) {
+        m00 = matrix.m00;
+        m01 = matrix.m01;
+        m02 = matrix.m02;
+        m03 = matrix.m03;
+        m10 = matrix.m10;
+        m11 = matrix.m11;
+        m12 = matrix.m12;
+        m13 = matrix.m13;
+        m20 = matrix.m20;
+        m21 = matrix.m21;
+        m22 = matrix.m22;
+        m23 = matrix.m23;
+        m30 = matrix.m30;
+        m31 = matrix.m31;
+        m32 = matrix.m32;
+        m33 = matrix.m33;
+        return this;
+    }
+
+    /**
+     * <code>set</code> sets the values of this matrix from an array of
+     * values assuming that the data is rowMajor order;
+     * 
+     * @param matrix
+     *            the matrix to set the value to.
+     */
+    public void set(float[] matrix) {
+        set(matrix, true);
+    }
+
+    /**
+     * <code>set</code> sets the values of this matrix from an array of
+     * values;
+     * 
+     * @param matrix
+     *            the matrix to set the value to.
+     * @param rowMajor
+     *            whether the incoming data is in row or column major order.
+     */
+    public void set(float[] matrix, boolean rowMajor) {
+        if (matrix.length != 16) {
+            throw new IllegalArgumentException(
+                    "Array must be of size 16.");
+        }
+
+        if (rowMajor) {
+            m00 = matrix[0];
+            m01 = matrix[1];
+            m02 = matrix[2];
+            m03 = matrix[3];
+            m10 = matrix[4];
+            m11 = matrix[5];
+            m12 = matrix[6];
+            m13 = matrix[7];
+            m20 = matrix[8];
+            m21 = matrix[9];
+            m22 = matrix[10];
+            m23 = matrix[11];
+            m30 = matrix[12];
+            m31 = matrix[13];
+            m32 = matrix[14];
+            m33 = matrix[15];
+        } else {
+            m00 = matrix[0];
+            m01 = matrix[4];
+            m02 = matrix[8];
+            m03 = matrix[12];
+            m10 = matrix[1];
+            m11 = matrix[5];
+            m12 = matrix[9];
+            m13 = matrix[13];
+            m20 = matrix[2];
+            m21 = matrix[6];
+            m22 = matrix[10];
+            m23 = matrix[14];
+            m30 = matrix[3];
+            m31 = matrix[7];
+            m32 = matrix[11];
+            m33 = matrix[15];
+        }
+    }
+
+    public Matrix4f transpose() {
+        float[] tmp = new float[16];
+        get(tmp, true);
+        Matrix4f mat = new Matrix4f(tmp);
+        return mat;
+    }
+
+    /**
+     * <code>transpose</code> locally transposes this Matrix.
+     * 
+     * @return this object for chaining.
+     */
+    public Matrix4f transposeLocal() {
+        float tmp = m01;
+        m01 = m10;
+        m10 = tmp;
+
+        tmp = m02;
+        m02 = m20;
+        m20 = tmp;
+
+        tmp = m03;
+        m03 = m30;
+        m30 = tmp;
+
+        tmp = m12;
+        m12 = m21;
+        m21 = tmp;
+
+        tmp = m13;
+        m13 = m31;
+        m31 = tmp;
+
+        tmp = m23;
+        m23 = m32;
+        m32 = tmp;
+
+        return this;
+    }
+
+    /**
+     * <code>toFloatBuffer</code> returns a FloatBuffer object that contains
+     * the matrix data.
+     * 
+     * @return matrix data as a FloatBuffer.
+     */
+    public FloatBuffer toFloatBuffer() {
+        return toFloatBuffer(false);
+    }
+
+    /**
+     * <code>toFloatBuffer</code> returns a FloatBuffer object that contains the
+     * matrix data.
+     * 
+     * @param columnMajor
+     *            if true, this buffer should be filled with column major data,
+     *            otherwise it will be filled row major.
+     * @return matrix data as a FloatBuffer. The position is set to 0 for
+     *         convenience.
+     */
+    public FloatBuffer toFloatBuffer(boolean columnMajor) {
+        FloatBuffer fb = BufferUtils.createFloatBuffer(16);
+        fillFloatBuffer(fb, columnMajor);
+        fb.rewind();
+        return fb;
+    }
+
+    /**
+     * <code>fillFloatBuffer</code> fills a FloatBuffer object with
+     * the matrix data.
+     * @param fb the buffer to fill, must be correct size
+     * @return matrix data as a FloatBuffer.
+     */
+    public FloatBuffer fillFloatBuffer(FloatBuffer fb) {
+        return fillFloatBuffer(fb, false);
+    }
+
+    /**
+     * <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix
+     * data.
+     * 
+     * @param fb
+     *            the buffer to fill, starting at current position. Must have
+     *            room for 16 more floats.
+     * @param columnMajor
+     *            if true, this buffer should be filled with column major data,
+     *            otherwise it will be filled row major.
+     * @return matrix data as a FloatBuffer. (position is advanced by 16 and any
+     *         limit set is not changed).
+     */
+    public FloatBuffer fillFloatBuffer(FloatBuffer fb, boolean columnMajor) {
+//        if (columnMajor) {
+//            fb.put(m00).put(m10).put(m20).put(m30);
+//            fb.put(m01).put(m11).put(m21).put(m31);
+//            fb.put(m02).put(m12).put(m22).put(m32);
+//            fb.put(m03).put(m13).put(m23).put(m33);
+//        } else {
+//            fb.put(m00).put(m01).put(m02).put(m03);
+//            fb.put(m10).put(m11).put(m12).put(m13);
+//            fb.put(m20).put(m21).put(m22).put(m23);
+//            fb.put(m30).put(m31).put(m32).put(m33);
+//        }
+
+        TempVars vars = TempVars.get();
+
+
+        fillFloatArray(vars.matrixWrite, columnMajor);
+        fb.put(vars.matrixWrite, 0, 16);
+
+        vars.release();
+
+        return fb;
+    }
+
+    public void fillFloatArray(float[] f, boolean columnMajor) {
+        if (columnMajor) {
+            f[ 0] = m00;
+            f[ 1] = m10;
+            f[ 2] = m20;
+            f[ 3] = m30;
+            f[ 4] = m01;
+            f[ 5] = m11;
+            f[ 6] = m21;
+            f[ 7] = m31;
+            f[ 8] = m02;
+            f[ 9] = m12;
+            f[10] = m22;
+            f[11] = m32;
+            f[12] = m03;
+            f[13] = m13;
+            f[14] = m23;
+            f[15] = m33;
+        } else {
+            f[ 0] = m00;
+            f[ 1] = m01;
+            f[ 2] = m02;
+            f[ 3] = m03;
+            f[ 4] = m10;
+            f[ 5] = m11;
+            f[ 6] = m12;
+            f[ 7] = m13;
+            f[ 8] = m20;
+            f[ 9] = m21;
+            f[10] = m22;
+            f[11] = m23;
+            f[12] = m30;
+            f[13] = m31;
+            f[14] = m32;
+            f[15] = m33;
+        }
+    }
+
+    /**
+     * <code>readFloatBuffer</code> reads value for this matrix from a FloatBuffer.
+     * @param fb the buffer to read from, must be correct size
+     * @return this data as a FloatBuffer.
+     */
+    public Matrix4f readFloatBuffer(FloatBuffer fb) {
+        return readFloatBuffer(fb, false);
+    }
+
+    /**
+     * <code>readFloatBuffer</code> reads value for this matrix from a FloatBuffer.
+     * @param fb the buffer to read from, must be correct size
+     * @param columnMajor if true, this buffer should be filled with column
+     * 		major data, otherwise it will be filled row major.
+     * @return this data as a FloatBuffer.
+     */
+    public Matrix4f readFloatBuffer(FloatBuffer fb, boolean columnMajor) {
+
+        if (columnMajor) {
+            m00 = fb.get();
+            m10 = fb.get();
+            m20 = fb.get();
+            m30 = fb.get();
+            m01 = fb.get();
+            m11 = fb.get();
+            m21 = fb.get();
+            m31 = fb.get();
+            m02 = fb.get();
+            m12 = fb.get();
+            m22 = fb.get();
+            m32 = fb.get();
+            m03 = fb.get();
+            m13 = fb.get();
+            m23 = fb.get();
+            m33 = fb.get();
+        } else {
+            m00 = fb.get();
+            m01 = fb.get();
+            m02 = fb.get();
+            m03 = fb.get();
+            m10 = fb.get();
+            m11 = fb.get();
+            m12 = fb.get();
+            m13 = fb.get();
+            m20 = fb.get();
+            m21 = fb.get();
+            m22 = fb.get();
+            m23 = fb.get();
+            m30 = fb.get();
+            m31 = fb.get();
+            m32 = fb.get();
+            m33 = fb.get();
+        }
+        return this;
+    }
+
+    /**
+     * <code>loadIdentity</code> sets this matrix to the identity matrix,
+     * namely all zeros with ones along the diagonal.
+     *  
+     */
+    public void loadIdentity() {
+        m01 = m02 = m03 = 0.0f;
+        m10 = m12 = m13 = 0.0f;
+        m20 = m21 = m23 = 0.0f;
+        m30 = m31 = m32 = 0.0f;
+        m00 = m11 = m22 = m33 = 1.0f;
+    }
+
+    public void fromFrustum(float near, float far, float left, float right, float top, float bottom, boolean parallel) {
+        loadIdentity();
+        if (parallel) {
+            // scale
+            m00 = 2.0f / (right - left);
+            //m11 = 2.0f / (bottom - top);
+            m11 = 2.0f / (top - bottom);
+            m22 = -2.0f / (far - near);
+            m33 = 1f;
+
+            // translation
+            m03 = -(right + left) / (right - left);
+            //m31 = -(bottom + top) / (bottom - top);
+            m13 = -(top + bottom) / (top - bottom);
+            m23 = -(far + near) / (far - near);
+        } else {
+            m00 = (2.0f * near) / (right - left);
+            m11 = (2.0f * near) / (top - bottom);
+            m32 = -1.0f;
+            m33 = -0.0f;
+
+            // A
+            m02 = (right + left) / (right - left);
+
+            // B 
+            m12 = (top + bottom) / (top - bottom);
+
+            // C
+            m22 = -(far + near) / (far - near);
+
+            // D
+            m23 = -(2.0f * far * near) / (far - near);
+        }
+    }
+
+    /**
+     * <code>fromAngleAxis</code> sets this matrix4f to the values specified
+     * by an angle and an axis of rotation.  This method creates an object, so
+     * use fromAngleNormalAxis if your axis is already normalized.
+     * 
+     * @param angle
+     *            the angle to rotate (in radians).
+     * @param axis
+     *            the axis of rotation.
+     */
+    public void fromAngleAxis(float angle, Vector3f axis) {
+        Vector3f normAxis = axis.normalize();
+        fromAngleNormalAxis(angle, normAxis);
+    }
+
+    /**
+     * <code>fromAngleNormalAxis</code> sets this matrix4f to the values
+     * specified by an angle and a normalized axis of rotation.
+     * 
+     * @param angle
+     *            the angle to rotate (in radians).
+     * @param axis
+     *            the axis of rotation (already normalized).
+     */
+    public void fromAngleNormalAxis(float angle, Vector3f axis) {
+        zero();
+        m33 = 1;
+
+        float fCos = FastMath.cos(angle);
+        float fSin = FastMath.sin(angle);
+        float fOneMinusCos = ((float) 1.0) - fCos;
+        float fX2 = axis.x * axis.x;
+        float fY2 = axis.y * axis.y;
+        float fZ2 = axis.z * axis.z;
+        float fXYM = axis.x * axis.y * fOneMinusCos;
+        float fXZM = axis.x * axis.z * fOneMinusCos;
+        float fYZM = axis.y * axis.z * fOneMinusCos;
+        float fXSin = axis.x * fSin;
+        float fYSin = axis.y * fSin;
+        float fZSin = axis.z * fSin;
+
+        m00 = fX2 * fOneMinusCos + fCos;
+        m01 = fXYM - fZSin;
+        m02 = fXZM + fYSin;
+        m10 = fXYM + fZSin;
+        m11 = fY2 * fOneMinusCos + fCos;
+        m12 = fYZM - fXSin;
+        m20 = fXZM - fYSin;
+        m21 = fYZM + fXSin;
+        m22 = fZ2 * fOneMinusCos + fCos;
+    }
+
+    /**
+     * <code>mult</code> multiplies this matrix by a scalar.
+     * 
+     * @param scalar
+     *            the scalar to multiply this matrix by.
+     */
+    public void multLocal(float scalar) {
+        m00 *= scalar;
+        m01 *= scalar;
+        m02 *= scalar;
+        m03 *= scalar;
+        m10 *= scalar;
+        m11 *= scalar;
+        m12 *= scalar;
+        m13 *= scalar;
+        m20 *= scalar;
+        m21 *= scalar;
+        m22 *= scalar;
+        m23 *= scalar;
+        m30 *= scalar;
+        m31 *= scalar;
+        m32 *= scalar;
+        m33 *= scalar;
+    }
+
+    public Matrix4f mult(float scalar) {
+        Matrix4f out = new Matrix4f();
+        out.set(this);
+        out.multLocal(scalar);
+        return out;
+    }
+
+    public Matrix4f mult(float scalar, Matrix4f store) {
+        store.set(this);
+        store.multLocal(scalar);
+        return store;
+    }
+
+    /**
+     * <code>mult</code> multiplies this matrix with another matrix. The
+     * result matrix will then be returned. This matrix will be on the left hand
+     * side, while the parameter matrix will be on the right.
+     * 
+     * @param in2
+     *            the matrix to multiply this matrix by.
+     * @return the resultant matrix
+     */
+    public Matrix4f mult(Matrix4f in2) {
+        return mult(in2, null);
+    }
+
+    /**
+     * <code>mult</code> multiplies this matrix with another matrix. The
+     * result matrix will then be returned. This matrix will be on the left hand
+     * side, while the parameter matrix will be on the right.
+     * 
+     * @param in2
+     *            the matrix to multiply this matrix by.
+     * @param store
+     *            where to store the result. It is safe for in2 and store to be
+     *            the same object.
+     * @return the resultant matrix
+     */
+    public Matrix4f mult(Matrix4f in2, Matrix4f store) {
+        if (store == null) {
+            store = new Matrix4f();
+        }
+
+        float temp00, temp01, temp02, temp03;
+        float temp10, temp11, temp12, temp13;
+        float temp20, temp21, temp22, temp23;
+        float temp30, temp31, temp32, temp33;
+
+        temp00 = m00 * in2.m00
+                + m01 * in2.m10
+                + m02 * in2.m20
+                + m03 * in2.m30;
+        temp01 = m00 * in2.m01
+                + m01 * in2.m11
+                + m02 * in2.m21
+                + m03 * in2.m31;
+        temp02 = m00 * in2.m02
+                + m01 * in2.m12
+                + m02 * in2.m22
+                + m03 * in2.m32;
+        temp03 = m00 * in2.m03
+                + m01 * in2.m13
+                + m02 * in2.m23
+                + m03 * in2.m33;
+
+        temp10 = m10 * in2.m00
+                + m11 * in2.m10
+                + m12 * in2.m20
+                + m13 * in2.m30;
+        temp11 = m10 * in2.m01
+                + m11 * in2.m11
+                + m12 * in2.m21
+                + m13 * in2.m31;
+        temp12 = m10 * in2.m02
+                + m11 * in2.m12
+                + m12 * in2.m22
+                + m13 * in2.m32;
+        temp13 = m10 * in2.m03
+                + m11 * in2.m13
+                + m12 * in2.m23
+                + m13 * in2.m33;
+
+        temp20 = m20 * in2.m00
+                + m21 * in2.m10
+                + m22 * in2.m20
+                + m23 * in2.m30;
+        temp21 = m20 * in2.m01
+                + m21 * in2.m11
+                + m22 * in2.m21
+                + m23 * in2.m31;
+        temp22 = m20 * in2.m02
+                + m21 * in2.m12
+                + m22 * in2.m22
+                + m23 * in2.m32;
+        temp23 = m20 * in2.m03
+                + m21 * in2.m13
+                + m22 * in2.m23
+                + m23 * in2.m33;
+
+        temp30 = m30 * in2.m00
+                + m31 * in2.m10
+                + m32 * in2.m20
+                + m33 * in2.m30;
+        temp31 = m30 * in2.m01
+                + m31 * in2.m11
+                + m32 * in2.m21
+                + m33 * in2.m31;
+        temp32 = m30 * in2.m02
+                + m31 * in2.m12
+                + m32 * in2.m22
+                + m33 * in2.m32;
+        temp33 = m30 * in2.m03
+                + m31 * in2.m13
+                + m32 * in2.m23
+                + m33 * in2.m33;
+
+        store.m00 = temp00;
+        store.m01 = temp01;
+        store.m02 = temp02;
+        store.m03 = temp03;
+        store.m10 = temp10;
+        store.m11 = temp11;
+        store.m12 = temp12;
+        store.m13 = temp13;
+        store.m20 = temp20;
+        store.m21 = temp21;
+        store.m22 = temp22;
+        store.m23 = temp23;
+        store.m30 = temp30;
+        store.m31 = temp31;
+        store.m32 = temp32;
+        store.m33 = temp33;
+
+        return store;
+    }
+
+    /**
+     * <code>mult</code> multiplies this matrix with another matrix. The
+     * results are stored internally and a handle to this matrix will 
+     * then be returned. This matrix will be on the left hand
+     * side, while the parameter matrix will be on the right.
+     * 
+     * @param in2
+     *            the matrix to multiply this matrix by.
+     * @return the resultant matrix
+     */
+    public Matrix4f multLocal(Matrix4f in2) {
+        return mult(in2, this);
+    }
+
+    /**
+     * <code>mult</code> multiplies a vector about a rotation matrix. The
+     * resulting vector is returned as a new Vector3f.
+     * 
+     * @param vec
+     *            vec to multiply against.
+     * @return the rotated vector.
+     */
+    public Vector3f mult(Vector3f vec) {
+        return mult(vec, null);
+    }
+
+    /**
+     * <code>mult</code> multiplies a vector about a rotation matrix and adds
+     * translation. The resulting vector is returned.
+     * 
+     * @param vec
+     *            vec to multiply against.
+     * @param store
+     *            a vector to store the result in. Created if null is passed.
+     * @return the rotated vector.
+     */
+    public Vector3f mult(Vector3f vec, Vector3f store) {
+        if (store == null) {
+            store = new Vector3f();
+        }
+
+        float vx = vec.x, vy = vec.y, vz = vec.z;
+        store.x = m00 * vx + m01 * vy + m02 * vz + m03;
+        store.y = m10 * vx + m11 * vy + m12 * vz + m13;
+        store.z = m20 * vx + m21 * vy + m22 * vz + m23;
+
+        return store;
+    }
+
+    /**
+     * <code>mult</code> multiplies a <code>Vector4f</code> about a rotation
+     * matrix. The resulting vector is returned as a new <code>Vector4f</code>.
+     *
+     * @param vec
+     *            vec to multiply against.
+     * @return the rotated vector.
+     */
+    public Vector4f mult(Vector4f vec) {
+        return mult(vec, null);
+    }
+
+    /**
+     * <code>mult</code> multiplies a <code>Vector4f</code> about a rotation
+     * matrix. The resulting vector is returned.
+     *
+     * @param vec
+     *            vec to multiply against.
+     * @param store
+     *            a vector to store the result in. Created if null is passed.
+     * @return the rotated vector.
+     */
+    public Vector4f mult(Vector4f vec, Vector4f store) {
+        if (null == vec) {
+            logger.warning("Source vector is null, null result returned.");
+            return null;
+        }
+        if (store == null) {
+            store = new Vector4f();
+        }
+
+        float vx = vec.x, vy = vec.y, vz = vec.z, vw = vec.w;
+        store.x = m00 * vx + m01 * vy + m02 * vz + m03 * vw;
+        store.y = m10 * vx + m11 * vy + m12 * vz + m13 * vw;
+        store.z = m20 * vx + m21 * vy + m22 * vz + m23 * vw;
+        store.w = m30 * vx + m31 * vy + m32 * vz + m33 * vw;
+
+        return store;
+    }
+
+    /**
+     * <code>mult</code> multiplies a vector about a rotation matrix. The
+     * resulting vector is returned.
+     *
+     * @param vec
+     *            vec to multiply against.
+     * 
+     * @return the rotated vector.
+     */
+    public Vector4f multAcross(Vector4f vec) {
+        return multAcross(vec, null);
+    }
+
+    /**
+     * <code>mult</code> multiplies a vector about a rotation matrix. The
+     * resulting vector is returned.
+     *
+     * @param vec
+     *            vec to multiply against.
+     * @param store
+     *            a vector to store the result in.  created if null is passed.
+     * @return the rotated vector.
+     */
+    public Vector4f multAcross(Vector4f vec, Vector4f store) {
+        if (null == vec) {
+            logger.warning("Source vector is null, null result returned.");
+            return null;
+        }
+        if (store == null) {
+            store = new Vector4f();
+        }
+
+        float vx = vec.x, vy = vec.y, vz = vec.z, vw = vec.w;
+        store.x = m00 * vx + m10 * vy + m20 * vz + m30 * vw;
+        store.y = m01 * vx + m11 * vy + m21 * vz + m31 * vw;
+        store.z = m02 * vx + m12 * vy + m22 * vz + m32 * vw;
+        store.w = m03 * vx + m13 * vy + m23 * vz + m33 * vw;
+
+        return store;
+    }
+
+    /**
+     * <code>multNormal</code> multiplies a vector about a rotation matrix, but
+     * does not add translation. The resulting vector is returned.
+     *
+     * @param vec
+     *            vec to multiply against.
+     * @param store
+     *            a vector to store the result in. Created if null is passed.
+     * @return the rotated vector.
+     */
+    public Vector3f multNormal(Vector3f vec, Vector3f store) {
+        if (store == null) {
+            store = new Vector3f();
+        }
+
+        float vx = vec.x, vy = vec.y, vz = vec.z;
+        store.x = m00 * vx + m01 * vy + m02 * vz;
+        store.y = m10 * vx + m11 * vy + m12 * vz;
+        store.z = m20 * vx + m21 * vy + m22 * vz;
+
+        return store;
+    }
+
+    /**
+     * <code>multNormal</code> multiplies a vector about a rotation matrix, but
+     * does not add translation. The resulting vector is returned.
+     *
+     * @param vec
+     *            vec to multiply against.
+     * @param store
+     *            a vector to store the result in. Created if null is passed.
+     * @return the rotated vector.
+     */
+    public Vector3f multNormalAcross(Vector3f vec, Vector3f store) {
+        if (store == null) {
+            store = new Vector3f();
+        }
+
+        float vx = vec.x, vy = vec.y, vz = vec.z;
+        store.x = m00 * vx + m10 * vy + m20 * vz;
+        store.y = m01 * vx + m11 * vy + m21 * vz;
+        store.z = m02 * vx + m12 * vy + m22 * vz;
+
+        return store;
+    }
+
+    /**
+     * <code>mult</code> multiplies a vector about a rotation matrix and adds
+     * translation. The w value is returned as a result of
+     * multiplying the last column of the matrix by 1.0
+     * 
+     * @param vec
+     *            vec to multiply against.
+     * @param store
+     *            a vector to store the result in. 
+     * @return the W value
+     */
+    public float multProj(Vector3f vec, Vector3f store) {
+        float vx = vec.x, vy = vec.y, vz = vec.z;
+        store.x = m00 * vx + m01 * vy + m02 * vz + m03;
+        store.y = m10 * vx + m11 * vy + m12 * vz + m13;
+        store.z = m20 * vx + m21 * vy + m22 * vz + m23;
+        return m30 * vx + m31 * vy + m32 * vz + m33;
+    }
+
+    /**
+     * <code>mult</code> multiplies a vector about a rotation matrix. The
+     * resulting vector is returned.
+     * 
+     * @param vec
+     *            vec to multiply against.
+     * @param store
+     *            a vector to store the result in.  created if null is passed.
+     * @return the rotated vector.
+     */
+    public Vector3f multAcross(Vector3f vec, Vector3f store) {
+        if (null == vec) {
+            logger.warning("Source vector is null, null result returned.");
+            return null;
+        }
+        if (store == null) {
+            store = new Vector3f();
+        }
+
+        float vx = vec.x, vy = vec.y, vz = vec.z;
+        store.x = m00 * vx + m10 * vy + m20 * vz + m30 * 1;
+        store.y = m01 * vx + m11 * vy + m21 * vz + m31 * 1;
+        store.z = m02 * vx + m12 * vy + m22 * vz + m32 * 1;
+
+        return store;
+    }
+
+    /**
+     * <code>mult</code> multiplies a quaternion about a matrix. The
+     * resulting vector is returned.
+     *
+     * @param vec
+     *            vec to multiply against.
+     * @param store
+     *            a quaternion to store the result in.  created if null is passed.
+     * @return store = this * vec
+     */
+    public Quaternion mult(Quaternion vec, Quaternion store) {
+
+        if (null == vec) {
+            logger.warning("Source vector is null, null result returned.");
+            return null;
+        }
+        if (store == null) {
+            store = new Quaternion();
+        }
+
+        float x = m00 * vec.x + m10 * vec.y + m20 * vec.z + m30 * vec.w;
+        float y = m01 * vec.x + m11 * vec.y + m21 * vec.z + m31 * vec.w;
+        float z = m02 * vec.x + m12 * vec.y + m22 * vec.z + m32 * vec.w;
+        float w = m03 * vec.x + m13 * vec.y + m23 * vec.z + m33 * vec.w;
+        store.x = x;
+        store.y = y;
+        store.z = z;
+        store.w = w;
+
+        return store;
+    }
+
+    /**
+     * <code>mult</code> multiplies an array of 4 floats against this rotation 
+     * matrix. The results are stored directly in the array. (vec4f x mat4f)
+     * 
+     * @param vec4f
+     *            float array (size 4) to multiply against the matrix.
+     * @return the vec4f for chaining.
+     */
+    public float[] mult(float[] vec4f) {
+        if (null == vec4f || vec4f.length != 4) {
+            logger.warning("invalid array given, must be nonnull and length 4");
+            return null;
+        }
+
+        float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
+
+        vec4f[0] = m00 * x + m01 * y + m02 * z + m03 * w;
+        vec4f[1] = m10 * x + m11 * y + m12 * z + m13 * w;
+        vec4f[2] = m20 * x + m21 * y + m22 * z + m23 * w;
+        vec4f[3] = m30 * x + m31 * y + m32 * z + m33 * w;
+
+        return vec4f;
+    }
+
+    /**
+     * <code>mult</code> multiplies an array of 4 floats against this rotation 
+     * matrix. The results are stored directly in the array. (vec4f x mat4f)
+     * 
+     * @param vec4f
+     *            float array (size 4) to multiply against the matrix.
+     * @return the vec4f for chaining.
+     */
+    public float[] multAcross(float[] vec4f) {
+        if (null == vec4f || vec4f.length != 4) {
+            logger.warning("invalid array given, must be nonnull and length 4");
+            return null;
+        }
+
+        float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
+
+        vec4f[0] = m00 * x + m10 * y + m20 * z + m30 * w;
+        vec4f[1] = m01 * x + m11 * y + m21 * z + m31 * w;
+        vec4f[2] = m02 * x + m12 * y + m22 * z + m32 * w;
+        vec4f[3] = m03 * x + m13 * y + m23 * z + m33 * w;
+
+        return vec4f;
+    }
+
+    /**
+     * Inverts this matrix as a new Matrix4f.
+     * 
+     * @return The new inverse matrix
+     */
+    public Matrix4f invert() {
+        return invert(null);
+    }
+
+    /**
+     * Inverts this matrix and stores it in the given store.
+     * 
+     * @return The store
+     */
+    public Matrix4f invert(Matrix4f store) {
+        if (store == null) {
+            store = new Matrix4f();
+        }
+
+        float fA0 = m00 * m11 - m01 * m10;
+        float fA1 = m00 * m12 - m02 * m10;
+        float fA2 = m00 * m13 - m03 * m10;
+        float fA3 = m01 * m12 - m02 * m11;
+        float fA4 = m01 * m13 - m03 * m11;
+        float fA5 = m02 * m13 - m03 * m12;
+        float fB0 = m20 * m31 - m21 * m30;
+        float fB1 = m20 * m32 - m22 * m30;
+        float fB2 = m20 * m33 - m23 * m30;
+        float fB3 = m21 * m32 - m22 * m31;
+        float fB4 = m21 * m33 - m23 * m31;
+        float fB5 = m22 * m33 - m23 * m32;
+        float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
+
+        if (FastMath.abs(fDet) <= 0f) {
+            throw new ArithmeticException("This matrix cannot be inverted");
+        }
+
+        store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
+        store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
+        store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
+        store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
+        store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
+        store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
+        store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
+        store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
+        store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
+        store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
+        store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
+        store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
+        store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
+        store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
+        store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
+        store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
+
+        float fInvDet = 1.0f / fDet;
+        store.multLocal(fInvDet);
+
+        return store;
+    }
+
+    /**
+     * Inverts this matrix locally.
+     * 
+     * @return this
+     */
+    public Matrix4f invertLocal() {
+
+        float fA0 = m00 * m11 - m01 * m10;
+        float fA1 = m00 * m12 - m02 * m10;
+        float fA2 = m00 * m13 - m03 * m10;
+        float fA3 = m01 * m12 - m02 * m11;
+        float fA4 = m01 * m13 - m03 * m11;
+        float fA5 = m02 * m13 - m03 * m12;
+        float fB0 = m20 * m31 - m21 * m30;
+        float fB1 = m20 * m32 - m22 * m30;
+        float fB2 = m20 * m33 - m23 * m30;
+        float fB3 = m21 * m32 - m22 * m31;
+        float fB4 = m21 * m33 - m23 * m31;
+        float fB5 = m22 * m33 - m23 * m32;
+        float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
+
+        if (FastMath.abs(fDet) <= 0f) {
+            return zero();
+        }
+
+        float f00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
+        float f10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
+        float f20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
+        float f30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
+        float f01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
+        float f11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
+        float f21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
+        float f31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
+        float f02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
+        float f12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
+        float f22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
+        float f32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
+        float f03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
+        float f13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
+        float f23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
+        float f33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
+
+        m00 = f00;
+        m01 = f01;
+        m02 = f02;
+        m03 = f03;
+        m10 = f10;
+        m11 = f11;
+        m12 = f12;
+        m13 = f13;
+        m20 = f20;
+        m21 = f21;
+        m22 = f22;
+        m23 = f23;
+        m30 = f30;
+        m31 = f31;
+        m32 = f32;
+        m33 = f33;
+
+        float fInvDet = 1.0f / fDet;
+        multLocal(fInvDet);
+
+        return this;
+    }
+
+    /**
+     * Returns a new matrix representing the adjoint of this matrix.
+     * 
+     * @return The adjoint matrix
+     */
+    public Matrix4f adjoint() {
+        return adjoint(null);
+    }
+
+    public void setTransform(Vector3f position, Vector3f scale, Matrix3f rotMat) {
+        // Ordering:
+        //    1. Scale
+        //    2. Rotate
+        //    3. Translate
+
+        // Set up final matrix with scale, rotation and translation
+        m00 = scale.x * rotMat.m00;
+        m01 = scale.y * rotMat.m01;
+        m02 = scale.z * rotMat.m02;
+        m03 = position.x;
+        m10 = scale.x * rotMat.m10;
+        m11 = scale.y * rotMat.m11;
+        m12 = scale.z * rotMat.m12;
+        m13 = position.y;
+        m20 = scale.x * rotMat.m20;
+        m21 = scale.y * rotMat.m21;
+        m22 = scale.z * rotMat.m22;
+        m23 = position.z;
+
+        // No projection term
+        m30 = 0;
+        m31 = 0;
+        m32 = 0;
+        m33 = 1;
+    }
+
+    /**
+     * Places the adjoint of this matrix in store (creates store if null.)
+     * 
+     * @param store
+     *            The matrix to store the result in.  If null, a new matrix is created.
+     * @return store
+     */
+    public Matrix4f adjoint(Matrix4f store) {
+        if (store == null) {
+            store = new Matrix4f();
+        }
+
+        float fA0 = m00 * m11 - m01 * m10;
+        float fA1 = m00 * m12 - m02 * m10;
+        float fA2 = m00 * m13 - m03 * m10;
+        float fA3 = m01 * m12 - m02 * m11;
+        float fA4 = m01 * m13 - m03 * m11;
+        float fA5 = m02 * m13 - m03 * m12;
+        float fB0 = m20 * m31 - m21 * m30;
+        float fB1 = m20 * m32 - m22 * m30;
+        float fB2 = m20 * m33 - m23 * m30;
+        float fB3 = m21 * m32 - m22 * m31;
+        float fB4 = m21 * m33 - m23 * m31;
+        float fB5 = m22 * m33 - m23 * m32;
+
+        store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
+        store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
+        store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
+        store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
+        store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
+        store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
+        store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
+        store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
+        store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
+        store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
+        store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
+        store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
+        store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
+        store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
+        store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
+        store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
+
+        return store;
+    }
+
+    /**
+     * <code>determinant</code> generates the determinate of this matrix.
+     * 
+     * @return the determinate
+     */
+    public float determinant() {
+        float fA0 = m00 * m11 - m01 * m10;
+        float fA1 = m00 * m12 - m02 * m10;
+        float fA2 = m00 * m13 - m03 * m10;
+        float fA3 = m01 * m12 - m02 * m11;
+        float fA4 = m01 * m13 - m03 * m11;
+        float fA5 = m02 * m13 - m03 * m12;
+        float fB0 = m20 * m31 - m21 * m30;
+        float fB1 = m20 * m32 - m22 * m30;
+        float fB2 = m20 * m33 - m23 * m30;
+        float fB3 = m21 * m32 - m22 * m31;
+        float fB4 = m21 * m33 - m23 * m31;
+        float fB5 = m22 * m33 - m23 * m32;
+        float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
+        return fDet;
+    }
+
+    /**
+     * Sets all of the values in this matrix to zero.
+     * 
+     * @return this matrix
+     */
+    public Matrix4f zero() {
+        m00 = m01 = m02 = m03 = 0.0f;
+        m10 = m11 = m12 = m13 = 0.0f;
+        m20 = m21 = m22 = m23 = 0.0f;
+        m30 = m31 = m32 = m33 = 0.0f;
+        return this;
+    }
+
+    public Matrix4f add(Matrix4f mat) {
+        Matrix4f result = new Matrix4f();
+        result.m00 = this.m00 + mat.m00;
+        result.m01 = this.m01 + mat.m01;
+        result.m02 = this.m02 + mat.m02;
+        result.m03 = this.m03 + mat.m03;
+        result.m10 = this.m10 + mat.m10;
+        result.m11 = this.m11 + mat.m11;
+        result.m12 = this.m12 + mat.m12;
+        result.m13 = this.m13 + mat.m13;
+        result.m20 = this.m20 + mat.m20;
+        result.m21 = this.m21 + mat.m21;
+        result.m22 = this.m22 + mat.m22;
+        result.m23 = this.m23 + mat.m23;
+        result.m30 = this.m30 + mat.m30;
+        result.m31 = this.m31 + mat.m31;
+        result.m32 = this.m32 + mat.m32;
+        result.m33 = this.m33 + mat.m33;
+        return result;
+    }
+
+    /**
+     * <code>add</code> adds the values of a parameter matrix to this matrix.
+     * 
+     * @param mat
+     *            the matrix to add to this.
+     */
+    public void addLocal(Matrix4f mat) {
+        m00 += mat.m00;
+        m01 += mat.m01;
+        m02 += mat.m02;
+        m03 += mat.m03;
+        m10 += mat.m10;
+        m11 += mat.m11;
+        m12 += mat.m12;
+        m13 += mat.m13;
+        m20 += mat.m20;
+        m21 += mat.m21;
+        m22 += mat.m22;
+        m23 += mat.m23;
+        m30 += mat.m30;
+        m31 += mat.m31;
+        m32 += mat.m32;
+        m33 += mat.m33;
+    }
+
+    public Vector3f toTranslationVector() {
+        return new Vector3f(m03, m13, m23);
+    }
+
+    public void toTranslationVector(Vector3f vector) {
+        vector.set(m03, m13, m23);
+    }
+
+    public Quaternion toRotationQuat() {
+        Quaternion quat = new Quaternion();
+        quat.fromRotationMatrix(toRotationMatrix());
+        return quat;
+    }
+
+    public void toRotationQuat(Quaternion q) {
+        q.fromRotationMatrix(toRotationMatrix());
+    }
+
+    public Matrix3f toRotationMatrix() {
+        return new Matrix3f(m00, m01, m02, m10, m11, m12, m20, m21, m22);
+    }
+
+    public void toRotationMatrix(Matrix3f mat) {
+        mat.m00 = m00;
+        mat.m01 = m01;
+        mat.m02 = m02;
+        mat.m10 = m10;
+        mat.m11 = m11;
+        mat.m12 = m12;
+        mat.m20 = m20;
+        mat.m21 = m21;
+        mat.m22 = m22;
+	}
+
+	/**
+	 * Retreives the scale vector from the matrix.
+	 * 
+	 * @return the scale vector
+	 */
+	public Vector3f toScaleVector() {
+		Vector3f result = new Vector3f();
+		this.toScaleVector(result);
+		return result;
+	}
+
+	/**
+	 * Retreives the scale vector from the matrix and stores it into a given
+	 * vector.
+	 * 
+	 * @param the
+	 *            vector where the scale will be stored
+	 */
+	public void toScaleVector(Vector3f vector) {
+		float scaleX = (float) Math.sqrt(m00 * m00 + m10 * m10 + m20 * m20);
+		float scaleY = (float) Math.sqrt(m01 * m01 + m11 * m11 + m21 * m21);
+		float scaleZ = (float) Math.sqrt(m02 * m02 + m12 * m12 + m22 * m22);
+		vector.set(scaleX, scaleY, scaleZ);
+	}
+
+    public void setScale(float x, float y, float z) {
+        m00 *= x;
+        m11 *= y;
+        m22 *= z;
+    }
+
+    public void setScale(Vector3f scale) {
+        m00 *= scale.x;
+        m11 *= scale.y;
+        m22 *= scale.z;
+    }
+
+    /**
+     * <code>setTranslation</code> will set the matrix's translation values.
+     * 
+     * @param translation
+     *            the new values for the translation.
+     * @throws JmeException
+     *             if translation is not size 3.
+     */
+    public void setTranslation(float[] translation) {
+        if (translation.length != 3) {
+            throw new IllegalArgumentException(
+                    "Translation size must be 3.");
+        }
+        m03 = translation[0];
+        m13 = translation[1];
+        m23 = translation[2];
+    }
+
+    /**
+     * <code>setTranslation</code> will set the matrix's translation values.
+     * 
+     * @param x
+     *            value of the translation on the x axis
+     * @param y
+     *            value of the translation on the y axis
+     * @param z
+     *            value of the translation on the z axis
+     */
+    public void setTranslation(float x, float y, float z) {
+        m03 = x;
+        m13 = y;
+        m23 = z;
+    }
+
+    /**
+     * <code>setTranslation</code> will set the matrix's translation values.
+     *
+     * @param translation
+     *            the new values for the translation.
+     */
+    public void setTranslation(Vector3f translation) {
+        m03 = translation.x;
+        m13 = translation.y;
+        m23 = translation.z;
+    }
+
+    /**
+     * <code>setInverseTranslation</code> will set the matrix's inverse
+     * translation values.
+     * 
+     * @param translation
+     *            the new values for the inverse translation.
+     * @throws JmeException
+     *             if translation is not size 3.
+     */
+    public void setInverseTranslation(float[] translation) {
+        if (translation.length != 3) {
+            throw new IllegalArgumentException(
+                    "Translation size must be 3.");
+        }
+        m03 = -translation[0];
+        m13 = -translation[1];
+        m23 = -translation[2];
+    }
+
+    /**
+     * <code>angleRotation</code> sets this matrix to that of a rotation about
+     * three axes (x, y, z). Where each axis has a specified rotation in
+     * degrees. These rotations are expressed in a single <code>Vector3f</code>
+     * object.
+     * 
+     * @param angles
+     *            the angles to rotate.
+     */
+    public void angleRotation(Vector3f angles) {
+        float angle;
+        float sr, sp, sy, cr, cp, cy;
+
+        angle = (angles.z * FastMath.DEG_TO_RAD);
+        sy = FastMath.sin(angle);
+        cy = FastMath.cos(angle);
+        angle = (angles.y * FastMath.DEG_TO_RAD);
+        sp = FastMath.sin(angle);
+        cp = FastMath.cos(angle);
+        angle = (angles.x * FastMath.DEG_TO_RAD);
+        sr = FastMath.sin(angle);
+        cr = FastMath.cos(angle);
+
+        // matrix = (Z * Y) * X
+        m00 = cp * cy;
+        m10 = cp * sy;
+        m20 = -sp;
+        m01 = sr * sp * cy + cr * -sy;
+        m11 = sr * sp * sy + cr * cy;
+        m21 = sr * cp;
+        m02 = (cr * sp * cy + -sr * -sy);
+        m12 = (cr * sp * sy + -sr * cy);
+        m22 = cr * cp;
+        m03 = 0.0f;
+        m13 = 0.0f;
+        m23 = 0.0f;
+    }
+
+    /**
+     * <code>setRotationQuaternion</code> builds a rotation from a
+     * <code>Quaternion</code>.
+     * 
+     * @param quat
+     *            the quaternion to build the rotation from.
+     * @throws NullPointerException
+     *             if quat is null.
+     */
+    public void setRotationQuaternion(Quaternion quat) {
+        quat.toRotationMatrix(this);
+    }
+
+    /**
+     * <code>setInverseRotationRadians</code> builds an inverted rotation from
+     * Euler angles that are in radians.
+     * 
+     * @param angles
+     *            the Euler angles in radians.
+     * @throws JmeException
+     *             if angles is not size 3.
+     */
+    public void setInverseRotationRadians(float[] angles) {
+        if (angles.length != 3) {
+            throw new IllegalArgumentException(
+                    "Angles must be of size 3.");
+        }
+        double cr = FastMath.cos(angles[0]);
+        double sr = FastMath.sin(angles[0]);
+        double cp = FastMath.cos(angles[1]);
+        double sp = FastMath.sin(angles[1]);
+        double cy = FastMath.cos(angles[2]);
+        double sy = FastMath.sin(angles[2]);
+
+        m00 = (float) (cp * cy);
+        m10 = (float) (cp * sy);
+        m20 = (float) (-sp);
+
+        double srsp = sr * sp;
+        double crsp = cr * sp;
+
+        m01 = (float) (srsp * cy - cr * sy);
+        m11 = (float) (srsp * sy + cr * cy);
+        m21 = (float) (sr * cp);
+
+        m02 = (float) (crsp * cy + sr * sy);
+        m12 = (float) (crsp * sy - sr * cy);
+        m22 = (float) (cr * cp);
+    }
+
+    /**
+     * <code>setInverseRotationDegrees</code> builds an inverted rotation from
+     * Euler angles that are in degrees.
+     * 
+     * @param angles
+     *            the Euler angles in degrees.
+     * @throws JmeException
+     *             if angles is not size 3.
+     */
+    public void setInverseRotationDegrees(float[] angles) {
+        if (angles.length != 3) {
+            throw new IllegalArgumentException(
+                    "Angles must be of size 3.");
+        }
+        float vec[] = new float[3];
+        vec[0] = (angles[0] * FastMath.RAD_TO_DEG);
+        vec[1] = (angles[1] * FastMath.RAD_TO_DEG);
+        vec[2] = (angles[2] * FastMath.RAD_TO_DEG);
+        setInverseRotationRadians(vec);
+    }
+
+    /**
+     * 
+     * <code>inverseTranslateVect</code> translates a given Vector3f by the
+     * translation part of this matrix.
+     * 
+     * @param vec
+     *            the Vector3f data to be translated.
+     * @throws JmeException
+     *             if the size of the Vector3f is not 3.
+     */
+    public void inverseTranslateVect(float[] vec) {
+        if (vec.length != 3) {
+            throw new IllegalArgumentException(
+                    "vec must be of size 3.");
+        }
+
+        vec[0] = vec[0] - m03;
+        vec[1] = vec[1] - m13;
+        vec[2] = vec[2] - m23;
+    }
+
+    /**
+     * 
+     * <code>inverseTranslateVect</code> translates a given Vector3f by the
+     * translation part of this matrix.
+     * 
+     * @param data
+     *            the Vector3f to be translated.
+     * @throws JmeException
+     *             if the size of the Vector3f is not 3.
+     */
+    public void inverseTranslateVect(Vector3f data) {
+        data.x -= m03;
+        data.y -= m13;
+        data.z -= m23;
+    }
+
+    /**
+     * 
+     * <code>inverseTranslateVect</code> translates a given Vector3f by the
+     * translation part of this matrix.
+     * 
+     * @param data
+     *            the Vector3f to be translated.
+     * @throws JmeException
+     *             if the size of the Vector3f is not 3.
+     */
+    public void translateVect(Vector3f data) {
+        data.x += m03;
+        data.y += m13;
+        data.z += m23;
+    }
+
+    /**
+     * 
+     * <code>inverseRotateVect</code> rotates a given Vector3f by the rotation
+     * part of this matrix.
+     * 
+     * @param vec
+     *            the Vector3f to be rotated.
+     */
+    public void inverseRotateVect(Vector3f vec) {
+        float vx = vec.x, vy = vec.y, vz = vec.z;
+
+        vec.x = vx * m00 + vy * m10 + vz * m20;
+        vec.y = vx * m01 + vy * m11 + vz * m21;
+        vec.z = vx * m02 + vy * m12 + vz * m22;
+    }
+
+    public void rotateVect(Vector3f vec) {
+        float vx = vec.x, vy = vec.y, vz = vec.z;
+
+        vec.x = vx * m00 + vy * m01 + vz * m02;
+        vec.y = vx * m10 + vy * m11 + vz * m12;
+        vec.z = vx * m20 + vy * m21 + vz * m22;
+    }
+
+    /**
+     * <code>toString</code> returns the string representation of this object.
+     * It is in a format of a 4x4 matrix. For example, an identity matrix would
+     * be represented by the following string. com.jme.math.Matrix3f <br>[<br>
+     * 1.0  0.0  0.0  0.0 <br>
+     * 0.0  1.0  0.0  0.0 <br>
+     * 0.0  0.0  1.0  0.0 <br>
+     * 0.0  0.0  0.0  1.0 <br>]<br>
+     * 
+     * @return the string representation of this object.
+     */
+    @Override
+    public String toString() {
+        StringBuilder result = new StringBuilder("Matrix4f\n[\n");
+        result.append(" ");
+        result.append(m00);
+        result.append("  ");
+        result.append(m01);
+        result.append("  ");
+        result.append(m02);
+        result.append("  ");
+        result.append(m03);
+        result.append(" \n");
+        result.append(" ");
+        result.append(m10);
+        result.append("  ");
+        result.append(m11);
+        result.append("  ");
+        result.append(m12);
+        result.append("  ");
+        result.append(m13);
+        result.append(" \n");
+        result.append(" ");
+        result.append(m20);
+        result.append("  ");
+        result.append(m21);
+        result.append("  ");
+        result.append(m22);
+        result.append("  ");
+        result.append(m23);
+        result.append(" \n");
+        result.append(" ");
+        result.append(m30);
+        result.append("  ");
+        result.append(m31);
+        result.append("  ");
+        result.append(m32);
+        result.append("  ");
+        result.append(m33);
+        result.append(" \n]");
+        return result.toString();
+    }
+
+    /**
+     * 
+     * <code>hashCode</code> returns the hash code value as an integer and is
+     * supported for the benefit of hashing based collection classes such as
+     * Hashtable, HashMap, HashSet etc.
+     * 
+     * @return the hashcode for this instance of Matrix4f.
+     * @see java.lang.Object#hashCode()
+     */
+    @Override
+    public int hashCode() {
+        int hash = 37;
+        hash = 37 * hash + Float.floatToIntBits(m00);
+        hash = 37 * hash + Float.floatToIntBits(m01);
+        hash = 37 * hash + Float.floatToIntBits(m02);
+        hash = 37 * hash + Float.floatToIntBits(m03);
+
+        hash = 37 * hash + Float.floatToIntBits(m10);
+        hash = 37 * hash + Float.floatToIntBits(m11);
+        hash = 37 * hash + Float.floatToIntBits(m12);
+        hash = 37 * hash + Float.floatToIntBits(m13);
+
+        hash = 37 * hash + Float.floatToIntBits(m20);
+        hash = 37 * hash + Float.floatToIntBits(m21);
+        hash = 37 * hash + Float.floatToIntBits(m22);
+        hash = 37 * hash + Float.floatToIntBits(m23);
+
+        hash = 37 * hash + Float.floatToIntBits(m30);
+        hash = 37 * hash + Float.floatToIntBits(m31);
+        hash = 37 * hash + Float.floatToIntBits(m32);
+        hash = 37 * hash + Float.floatToIntBits(m33);
+
+        return hash;
+    }
+
+    /**
+     * are these two matrices the same? they are is they both have the same mXX values.
+     *
+     * @param o
+     *            the object to compare for equality
+     * @return true if they are equal
+     */
+    @Override
+    public boolean equals(Object o) {
+        if (!(o instanceof Matrix4f) || o == null) {
+            return false;
+        }
+
+        if (this == o) {
+            return true;
+        }
+
+        Matrix4f comp = (Matrix4f) o;
+        if (Float.compare(m00, comp.m00) != 0) {
+            return false;
+        }
+        if (Float.compare(m01, comp.m01) != 0) {
+            return false;
+        }
+        if (Float.compare(m02, comp.m02) != 0) {
+            return false;
+        }
+        if (Float.compare(m03, comp.m03) != 0) {
+            return false;
+        }
+
+        if (Float.compare(m10, comp.m10) != 0) {
+            return false;
+        }
+        if (Float.compare(m11, comp.m11) != 0) {
+            return false;
+        }
+        if (Float.compare(m12, comp.m12) != 0) {
+            return false;
+        }
+        if (Float.compare(m13, comp.m13) != 0) {
+            return false;
+        }
+
+        if (Float.compare(m20, comp.m20) != 0) {
+            return false;
+        }
+        if (Float.compare(m21, comp.m21) != 0) {
+            return false;
+        }
+        if (Float.compare(m22, comp.m22) != 0) {
+            return false;
+        }
+        if (Float.compare(m23, comp.m23) != 0) {
+            return false;
+        }
+
+        if (Float.compare(m30, comp.m30) != 0) {
+            return false;
+        }
+        if (Float.compare(m31, comp.m31) != 0) {
+            return false;
+        }
+        if (Float.compare(m32, comp.m32) != 0) {
+            return false;
+        }
+        if (Float.compare(m33, comp.m33) != 0) {
+            return false;
+        }
+
+        return true;
+    }
+
+    public void write(JmeExporter e) throws IOException {
+        OutputCapsule cap = e.getCapsule(this);
+        cap.write(m00, "m00", 1);
+        cap.write(m01, "m01", 0);
+        cap.write(m02, "m02", 0);
+        cap.write(m03, "m03", 0);
+        cap.write(m10, "m10", 0);
+        cap.write(m11, "m11", 1);
+        cap.write(m12, "m12", 0);
+        cap.write(m13, "m13", 0);
+        cap.write(m20, "m20", 0);
+        cap.write(m21, "m21", 0);
+        cap.write(m22, "m22", 1);
+        cap.write(m23, "m23", 0);
+        cap.write(m30, "m30", 0);
+        cap.write(m31, "m31", 0);
+        cap.write(m32, "m32", 0);
+        cap.write(m33, "m33", 1);
+    }
+
+    public void read(JmeImporter e) throws IOException {
+        InputCapsule cap = e.getCapsule(this);
+        m00 = cap.readFloat("m00", 1);
+        m01 = cap.readFloat("m01", 0);
+        m02 = cap.readFloat("m02", 0);
+        m03 = cap.readFloat("m03", 0);
+        m10 = cap.readFloat("m10", 0);
+        m11 = cap.readFloat("m11", 1);
+        m12 = cap.readFloat("m12", 0);
+        m13 = cap.readFloat("m13", 0);
+        m20 = cap.readFloat("m20", 0);
+        m21 = cap.readFloat("m21", 0);
+        m22 = cap.readFloat("m22", 1);
+        m23 = cap.readFloat("m23", 0);
+        m30 = cap.readFloat("m30", 0);
+        m31 = cap.readFloat("m31", 0);
+        m32 = cap.readFloat("m32", 0);
+        m33 = cap.readFloat("m33", 1);
+    }
+
+    /**
+     * @return true if this matrix is identity
+     */
+    public boolean isIdentity() {
+        return (m00 == 1 && m01 == 0 && m02 == 0 && m03 == 0)
+                && (m10 == 0 && m11 == 1 && m12 == 0 && m13 == 0)
+                && (m20 == 0 && m21 == 0 && m22 == 1 && m23 == 0)
+                && (m30 == 0 && m31 == 0 && m32 == 0 && m33 == 1);
+    }
+
+    /**
+     * Apply a scale to this matrix.
+     * 
+     * @param scale
+     *            the scale to apply
+     */
+    public void scale(Vector3f scale) {
+        m00 *= scale.getX();
+        m10 *= scale.getX();
+        m20 *= scale.getX();
+        m30 *= scale.getX();
+        m01 *= scale.getY();
+        m11 *= scale.getY();
+        m21 *= scale.getY();
+        m31 *= scale.getY();
+        m02 *= scale.getZ();
+        m12 *= scale.getZ();
+        m22 *= scale.getZ();
+        m32 *= scale.getZ();
+    }
+
+    static boolean equalIdentity(Matrix4f mat) {
+        if (Math.abs(mat.m00 - 1) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m11 - 1) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m22 - 1) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m33 - 1) > 1e-4) {
+            return false;
+        }
+
+        if (Math.abs(mat.m01) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m02) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m03) > 1e-4) {
+            return false;
+        }
+
+        if (Math.abs(mat.m10) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m12) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m13) > 1e-4) {
+            return false;
+        }
+
+        if (Math.abs(mat.m20) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m21) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m23) > 1e-4) {
+            return false;
+        }
+
+        if (Math.abs(mat.m30) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m31) > 1e-4) {
+            return false;
+        }
+        if (Math.abs(mat.m32) > 1e-4) {
+            return false;
+        }
+
+        return true;
+    }
+
+    // XXX: This tests more solid than converting the q to a matrix and multiplying... why?
+    public void multLocal(Quaternion rotation) {
+        Vector3f axis = new Vector3f();
+        float angle = rotation.toAngleAxis(axis);
+        Matrix4f matrix4f = new Matrix4f();
+        matrix4f.fromAngleAxis(angle, axis);
+        multLocal(matrix4f);
+    }
+
+    @Override
+    public Matrix4f clone() {
+        try {
+            return (Matrix4f) super.clone();
+        } catch (CloneNotSupportedException e) {
+            throw new AssertionError(); // can not happen
+        }
+    }
+}