|
@@ -0,0 +1,314 @@
|
|
|
+package jme3test.android;
|
|
|
+
|
|
|
+import com.jme3.app.SimpleApplication;
|
|
|
+import com.jme3.input.Joystick;
|
|
|
+import com.jme3.input.JoystickAxis;
|
|
|
+import com.jme3.input.MouseInput;
|
|
|
+import com.jme3.input.SensorJoystickAxis;
|
|
|
+import com.jme3.input.controls.ActionListener;
|
|
|
+import com.jme3.input.controls.AnalogListener;
|
|
|
+import com.jme3.input.controls.MouseButtonTrigger;
|
|
|
+import com.jme3.material.Material;
|
|
|
+import com.jme3.math.ColorRGBA;
|
|
|
+import com.jme3.math.FastMath;
|
|
|
+import com.jme3.math.Quaternion;
|
|
|
+import com.jme3.math.Vector3f;
|
|
|
+import com.jme3.scene.Geometry;
|
|
|
+import com.jme3.scene.Mesh;
|
|
|
+import com.jme3.scene.shape.Box;
|
|
|
+import com.jme3.scene.shape.Line;
|
|
|
+import com.jme3.texture.Texture;
|
|
|
+import com.jme3.util.IntMap;
|
|
|
+
|
|
|
+import java.util.List;
|
|
|
+import java.util.logging.Level;
|
|
|
+import java.util.logging.Logger;
|
|
|
+
|
|
|
+/**
|
|
|
+ * Example Test Case to test using Android sensors as Joystick axes. Make sure to enable Joystick Events from
|
|
|
+ * the test chooser menus. Rotating the device will cause the block to rotate. Tapping the screen will cause the
|
|
|
+ * sensors to be calibrated (reset to zero) at the current orientation. Continuously tapping the screen causes
|
|
|
+ * the "rumble" to intensify until it reaches the maximum amount and then it shuts off.
|
|
|
+ *
|
|
|
+ * @author iwgeric
|
|
|
+ */
|
|
|
+public class TestAndroidSensors extends SimpleApplication implements ActionListener, AnalogListener {
|
|
|
+
|
|
|
+ private static final Logger logger = Logger.getLogger(TestAndroidSensors.class.getName());
|
|
|
+
|
|
|
+ private Geometry geomZero = null;
|
|
|
+ // Map of joysticks saved with the joyId as the key
|
|
|
+ private IntMap<Joystick> joystickMap = new IntMap<Joystick>();
|
|
|
+ // flag to allow for the joystick axis to be calibrated on startup
|
|
|
+ private boolean initialCalibrationComplete = false;
|
|
|
+ // mappings used for onAnalog
|
|
|
+ private final String ORIENTATION_X_PLUS = "Orientation_X_Plus";
|
|
|
+ private final String ORIENTATION_X_MINUS = "Orientation_X_Minus";
|
|
|
+ private final String ORIENTATION_Y_PLUS = "Orientation_Y_Plus";
|
|
|
+ private final String ORIENTATION_Y_MINUS = "Orientation_Y_Minus";
|
|
|
+ private final String ORIENTATION_Z_PLUS = "Orientation_Z_Plus";
|
|
|
+ private final String ORIENTATION_Z_MINUS = "Orientation_Z_Minus";
|
|
|
+
|
|
|
+
|
|
|
+ // variables to save the current rotation
|
|
|
+ // Used when controlling the geometry with device orientation
|
|
|
+ private float[] anglesCurrent = new float[]{0f, 0f, 0f};
|
|
|
+ private Quaternion rotationQuat = new Quaternion();
|
|
|
+
|
|
|
+ // switch to apply an absolute rotation (geometry.setLocalRotation) or
|
|
|
+ // an incremental constant rotation (geometry.rotate)
|
|
|
+ // Used when controlling the geometry with device orientation
|
|
|
+ private boolean useAbsolute = false;
|
|
|
+
|
|
|
+ // rotation speed to use when apply constant incremental rotation
|
|
|
+ // Used when controlling the geometry with device orientation
|
|
|
+ private float rotationSpeedX = 1f;
|
|
|
+ private float rotationSpeedY = 1f;
|
|
|
+
|
|
|
+ // current intensity of the rumble
|
|
|
+ float rumbleAmount = 0f;
|
|
|
+
|
|
|
+ // toggle to enable rumble
|
|
|
+ boolean enableRumble = true;
|
|
|
+
|
|
|
+ // toggle to enable device orientation in FlyByCamera
|
|
|
+ boolean enableFlyByCameraRotation = false;
|
|
|
+
|
|
|
+ // toggle to enable controlling geometry rotation
|
|
|
+ boolean enableGeometryRotation = true;
|
|
|
+
|
|
|
+ // Make sure to set joystickEventsEnabled = true in MainActivity for Android
|
|
|
+
|
|
|
+ private float toDegrees(float rad) {
|
|
|
+ return rad * FastMath.RAD_TO_DEG;
|
|
|
+ }
|
|
|
+
|
|
|
+ @Override
|
|
|
+ public void simpleInitApp() {
|
|
|
+
|
|
|
+ // useAbsolute = true;
|
|
|
+ // enableRumble = true;
|
|
|
+
|
|
|
+ if (enableFlyByCameraRotation) {
|
|
|
+ flyCam.setEnabled(true);
|
|
|
+ } else {
|
|
|
+ flyCam.setEnabled(false);
|
|
|
+ }
|
|
|
+
|
|
|
+ Mesh lineX = new Line(Vector3f.ZERO, Vector3f.ZERO.add(Vector3f.UNIT_X.mult(3)));
|
|
|
+ Mesh lineY = new Line(Vector3f.ZERO, Vector3f.ZERO.add(Vector3f.UNIT_Y.mult(3)));
|
|
|
+ Mesh lineZ = new Line(Vector3f.ZERO, Vector3f.ZERO.add(Vector3f.UNIT_Z.mult(3)));
|
|
|
+
|
|
|
+ Geometry geoX = new Geometry("X", lineX);
|
|
|
+ Material matX = new Material(assetManager, "Common/MatDefs/Misc/Unshaded.j3md");
|
|
|
+ matX.setColor("Color", ColorRGBA.Red);
|
|
|
+ matX.getAdditionalRenderState().setLineWidth(30);
|
|
|
+ geoX.setMaterial(matX);
|
|
|
+ rootNode.attachChild(geoX);
|
|
|
+
|
|
|
+ Geometry geoY = new Geometry("Y", lineY);
|
|
|
+ Material matY = new Material(assetManager, "Common/MatDefs/Misc/Unshaded.j3md");
|
|
|
+ matY.setColor("Color", ColorRGBA.Green);
|
|
|
+ matY.getAdditionalRenderState().setLineWidth(30);
|
|
|
+ geoY.setMaterial(matY);
|
|
|
+ rootNode.attachChild(geoY);
|
|
|
+
|
|
|
+ Geometry geoZ = new Geometry("Z", lineZ);
|
|
|
+ Material matZ = new Material(assetManager, "Common/MatDefs/Misc/Unshaded.j3md");
|
|
|
+ matZ.setColor("Color", ColorRGBA.Blue);
|
|
|
+ matZ.getAdditionalRenderState().setLineWidth(30);
|
|
|
+ geoZ.setMaterial(matZ);
|
|
|
+ rootNode.attachChild(geoZ);
|
|
|
+
|
|
|
+ Box b = new Box(1, 1, 1);
|
|
|
+ geomZero = new Geometry("Box", b);
|
|
|
+ Material mat = new Material(assetManager, "Common/MatDefs/Misc/Unshaded.j3md");
|
|
|
+ mat.setColor("Color", ColorRGBA.Yellow);
|
|
|
+ Texture tex_ml = assetManager.loadTexture("Interface/Logo/Monkey.jpg");
|
|
|
+ mat.setTexture("ColorMap", tex_ml);
|
|
|
+ geomZero.setMaterial(mat);
|
|
|
+ geomZero.setLocalTranslation(Vector3f.ZERO);
|
|
|
+ geomZero.setLocalRotation(Quaternion.IDENTITY);
|
|
|
+ rootNode.attachChild(geomZero);
|
|
|
+
|
|
|
+
|
|
|
+ // Touch (aka MouseInput.BUTTON_LEFT) is used to record the starting
|
|
|
+ // orientation when using absolute rotations
|
|
|
+ inputManager.addMapping("MouseClick", new MouseButtonTrigger(MouseInput.BUTTON_LEFT));
|
|
|
+ inputManager.addListener(this, "MouseClick");
|
|
|
+
|
|
|
+ Joystick[] joysticks = inputManager.getJoysticks();
|
|
|
+ if (joysticks == null || joysticks.length < 1) {
|
|
|
+ logger.log(Level.INFO, "Cannot find any joysticks!");
|
|
|
+ } else {
|
|
|
+
|
|
|
+ // Joysticks return a value of 0 to 1 based on how far the stick is
|
|
|
+ // push on the axis. This value is then scaled based on how long
|
|
|
+ // during the frame the joystick axis has been in that position.
|
|
|
+ // If the joystick is push all the way for the whole frame,
|
|
|
+ // then the value in onAnalog is equal to tpf.
|
|
|
+ // If the joystick is push 1/2 way for the entire frame, then the
|
|
|
+ // onAnalog value is 1/2 tpf.
|
|
|
+ // Similarly, if the joystick is pushed to the maximum during a frame
|
|
|
+ // the value in onAnalog will also be scaled.
|
|
|
+ // For Android sensors, rotating the device 90deg is the same as
|
|
|
+ // pushing an actual joystick axis to the maximum.
|
|
|
+
|
|
|
+ logger.log(Level.INFO, "Number of joysticks: {0}", joysticks.length);
|
|
|
+ JoystickAxis axis;
|
|
|
+
|
|
|
+ for (Joystick joystick : joysticks) {
|
|
|
+ // Get and display all axes in joystick.
|
|
|
+ List<JoystickAxis> axes = joystick.getAxes();
|
|
|
+ for (JoystickAxis joystickAxis : axes) {
|
|
|
+ logger.log(Level.INFO, "{0} axis scan Name: {1}, LogicalId: {2}, AxisId: {3}",
|
|
|
+ new Object[]{joystick.getName(), joystickAxis.getName(), joystickAxis.getLogicalId(), joystickAxis.getAxisId()});
|
|
|
+ }
|
|
|
+
|
|
|
+ // Get specific axis based on LogicalId of the JoystickAxis
|
|
|
+ // If found, map axis
|
|
|
+ axis = joystick.getAxis(SensorJoystickAxis.ORIENTATION_X);
|
|
|
+ if (axis != null) {
|
|
|
+ axis.assignAxis(ORIENTATION_X_PLUS, ORIENTATION_X_MINUS);
|
|
|
+ inputManager.addListener(this, ORIENTATION_X_PLUS, ORIENTATION_X_MINUS);
|
|
|
+ logger.log(Level.INFO, "Found {0} Joystick, assigning mapping for X axis: {1}, with max value: {2}",
|
|
|
+ new Object[]{joystick.toString(), axis.toString(), ((SensorJoystickAxis) axis).getMaxRawValue()});
|
|
|
+ }
|
|
|
+
|
|
|
+ axis = joystick.getAxis(SensorJoystickAxis.ORIENTATION_Y);
|
|
|
+ if (axis != null) {
|
|
|
+ axis.assignAxis(ORIENTATION_Y_PLUS, ORIENTATION_Y_MINUS);
|
|
|
+ inputManager.addListener(this, ORIENTATION_Y_PLUS, ORIENTATION_Y_MINUS);
|
|
|
+ logger.log(Level.INFO, "Found {0} Joystick, assigning mapping for Y axis: {1}, with max value: {2}",
|
|
|
+ new Object[]{joystick.toString(), axis.toString(), ((SensorJoystickAxis) axis).getMaxRawValue()});
|
|
|
+ }
|
|
|
+
|
|
|
+ axis = joystick.getAxis(SensorJoystickAxis.ORIENTATION_Z);
|
|
|
+ if (axis != null) {
|
|
|
+ axis.assignAxis(ORIENTATION_Z_PLUS, ORIENTATION_Z_MINUS);
|
|
|
+ inputManager.addListener(this, ORIENTATION_Z_PLUS, ORIENTATION_Z_MINUS);
|
|
|
+ logger.log(Level.INFO, "Found {0} Joystick, assigning mapping for Z axis: {1}, with max value: {2}",
|
|
|
+ new Object[]{joystick.toString(), axis.toString(), ((SensorJoystickAxis) axis).getMaxRawValue()});
|
|
|
+ }
|
|
|
+
|
|
|
+ joystickMap.put(joystick.getJoyId(), joystick);
|
|
|
+
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ @Override
|
|
|
+ public void simpleUpdate(float tpf) {
|
|
|
+ if (!initialCalibrationComplete) {
|
|
|
+ // Calibrate the axis (set new zero position) if the axis
|
|
|
+ // is a sensor joystick axis
|
|
|
+ for (IntMap.Entry<Joystick> entry : joystickMap) {
|
|
|
+ for (JoystickAxis axis : entry.getValue().getAxes()) {
|
|
|
+ if (axis instanceof SensorJoystickAxis) {
|
|
|
+ logger.log(Level.INFO, "Calibrating Axis: {0}", axis.toString());
|
|
|
+ ((SensorJoystickAxis) axis).calibrateCenter();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ initialCalibrationComplete = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (enableGeometryRotation) {
|
|
|
+ rotationQuat.fromAngles(anglesCurrent);
|
|
|
+ rotationQuat.normalizeLocal();
|
|
|
+
|
|
|
+ if (useAbsolute) {
|
|
|
+ geomZero.setLocalRotation(rotationQuat);
|
|
|
+ } else {
|
|
|
+ geomZero.rotate(rotationQuat);
|
|
|
+ }
|
|
|
+
|
|
|
+ anglesCurrent[0] = anglesCurrent[1] = anglesCurrent[2] = 0f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ public void onAction(String string, boolean pressed, float tpf) {
|
|
|
+ if (string.equalsIgnoreCase("MouseClick") && pressed) {
|
|
|
+ // Calibrate the axis (set new zero position) if the axis
|
|
|
+ // is a sensor joystick axis
|
|
|
+ for (IntMap.Entry<Joystick> entry : joystickMap) {
|
|
|
+ for (JoystickAxis axis : entry.getValue().getAxes()) {
|
|
|
+ if (axis instanceof SensorJoystickAxis) {
|
|
|
+ logger.log(Level.INFO, "Calibrating Axis: {0}", axis.toString());
|
|
|
+ ((SensorJoystickAxis) axis).calibrateCenter();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (enableRumble) {
|
|
|
+ // manipulate joystick rumble
|
|
|
+ for (IntMap.Entry<Joystick> entry : joystickMap) {
|
|
|
+ rumbleAmount += 0.1f;
|
|
|
+ if (rumbleAmount > 1f + FastMath.ZERO_TOLERANCE) {
|
|
|
+ rumbleAmount = 0f;
|
|
|
+ }
|
|
|
+ logger.log(Level.INFO, "rumbling with amount: {0}", rumbleAmount);
|
|
|
+ entry.getValue().rumble(rumbleAmount);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ public void onAnalog(String string, float value, float tpf) {
|
|
|
+ logger.log(Level.INFO, "onAnalog for {0}, value: {1}, tpf: {2}",
|
|
|
+ new Object[]{string, value, tpf});
|
|
|
+ float scaledValue = value;
|
|
|
+
|
|
|
+ if (string.equalsIgnoreCase(ORIENTATION_X_PLUS)) {
|
|
|
+ if (useAbsolute) {
|
|
|
+ // set rotation amount
|
|
|
+ // divide by tpf to get back to actual axis value (0 to 1)
|
|
|
+ // multiply by 90deg so that 90deg = full axis (value = tpf)
|
|
|
+ anglesCurrent[0] = (scaledValue / tpf * FastMath.HALF_PI);
|
|
|
+ } else {
|
|
|
+ // apply an incremental rotation amount based on rotationSpeed
|
|
|
+ anglesCurrent[0] += scaledValue * rotationSpeedX;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (string.equalsIgnoreCase(ORIENTATION_X_MINUS)) {
|
|
|
+ if (useAbsolute) {
|
|
|
+ // set rotation amount
|
|
|
+ // divide by tpf to get back to actual axis value (0 to 1)
|
|
|
+ // multiply by 90deg so that 90deg = full axis (value = tpf)
|
|
|
+ anglesCurrent[0] = (-scaledValue / tpf * FastMath.HALF_PI);
|
|
|
+ } else {
|
|
|
+ // apply an incremental rotation amount based on rotationSpeed
|
|
|
+ anglesCurrent[0] -= scaledValue * rotationSpeedX;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (string.equalsIgnoreCase(ORIENTATION_Y_PLUS)) {
|
|
|
+ if (useAbsolute) {
|
|
|
+ // set rotation amount
|
|
|
+ // divide by tpf to get back to actual axis value (0 to 1)
|
|
|
+ // multiply by 90deg so that 90deg = full axis (value = tpf)
|
|
|
+ anglesCurrent[1] = (scaledValue / tpf * FastMath.HALF_PI);
|
|
|
+ } else {
|
|
|
+ // apply an incremental rotation amount based on rotationSpeed
|
|
|
+ anglesCurrent[1] += scaledValue * rotationSpeedY;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (string.equalsIgnoreCase(ORIENTATION_Y_MINUS)) {
|
|
|
+ if (useAbsolute) {
|
|
|
+ // set rotation amount
|
|
|
+ // divide by tpf to get back to actual axis value (0 to 1)
|
|
|
+ // multiply by 90deg so that 90deg = full axis (value = tpf)
|
|
|
+ anglesCurrent[1] = (-scaledValue / tpf * FastMath.HALF_PI);
|
|
|
+ } else {
|
|
|
+ // apply an incremental rotation amount based on rotationSpeed
|
|
|
+ anglesCurrent[1] -= scaledValue * rotationSpeedY;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+}
|