Просмотр исходного кода

* Remove some useless files

git-svn-id: https://jmonkeyengine.googlecode.com/svn/trunk@9297 75d07b2b-3a1a-0410-a2c5-0572b91ccdca
Sha..rd 13 лет назад
Родитель
Сommit
cf9d5b5ebc

+ 0 - 359
engine/src/android/com/jme3/util/FastInteger.java

@@ -1,359 +0,0 @@
-package com.jme3.util;
-
-
-/**
- * The wrapper for the primitive type {@code int}.
- * <p>
- * As with the specification, this implementation relies on code laid out in <a
- * href="http://www.hackersdelight.org/">Henry S. Warren, Jr.'s Hacker's
- * Delight, (Addison Wesley, 2002)</a> as well as <a
- * href="http://aggregate.org/MAGIC/">The Aggregate's Magic Algorithms</a>.
- *
- * @see java.lang.Number
- * @since 1.1
- */
-public final class FastInteger {
-
-    /**
-     * Constant for the maximum {@code int} value, 2<sup>31</sup>-1.
-     */
-    public static final int MAX_VALUE = 0x7FFFFFFF;
-
-    /**
-     * Constant for the minimum {@code int} value, -2<sup>31</sup>.
-     */
-    public static final int MIN_VALUE = 0x80000000;
-
-    /**
-     * Constant for the number of bits needed to represent an {@code int} in
-     * two's complement form.
-     *
-     * @since 1.5
-     */
-    public static final int SIZE = 32;
-    
-    /*
-     * Progressively smaller decimal order of magnitude that can be represented
-     * by an instance of Integer. Used to help compute the String
-     * representation.
-     */
-    private static final int[] decimalScale = new int[] { 1000000000, 100000000,
-            10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 };
-    
-    /**
-     * Converts the specified integer into its decimal string representation.
-     * The returned string is a concatenation of a minus sign if the number is
-     * negative and characters from '0' to '9'.
-     * 
-     * @param value
-     *            the integer to convert.
-     * @return the decimal string representation of {@code value}.
-     */
-    public static boolean toCharArray(int value, char[] output) {
-        if (value == 0) 
-        {
-            output[0] = '0';
-            output[1] = 0;
-            return true;
-        }
-
-        // Faster algorithm for smaller Integers
-        if (value < 1000 && value > -1000) {
-
-            int positive_value = value < 0 ? -value : value;
-            int first_digit = 0;
-            if (value < 0) {
-                output[0] = '-';
-                first_digit++;
-            }
-            int last_digit = first_digit;
-            int quot = positive_value;
-            do {
-                int res = quot / 10;
-                int digit_value = quot - ((res << 3) + (res << 1));
-                digit_value += '0';
-                output[last_digit++] = (char) digit_value;
-                quot = res;
-            } while (quot != 0);
-
-            int count = last_digit--;
-            do {
-                char tmp = output[last_digit];
-                output[last_digit--] = output[first_digit];
-                output[first_digit++] = tmp;
-            } while (first_digit < last_digit);
-            output[count] = 0;
-            return true;
-        }
-        if (value == MIN_VALUE) {
-            System.arraycopy("-2147483648".toCharArray(), 0, output, 0, 12);
-            output[12] = 0;
-            return true;
-        }
-
-
-        int positive_value = value < 0 ? -value : value;
-        byte first_digit = 0;
-        if (value < 0) {
-            output[0] = '-';
-            first_digit++;
-        }
-        byte last_digit = first_digit;
-        byte count;
-        int number;
-        boolean start = false;
-        for (int i = 0; i < 9; i++) {
-            count = 0;
-            if (positive_value < (number = decimalScale[i])) {
-                if (start) {
-                    output[last_digit++] = '0';
-                }
-                continue;
-            }
-
-            if (i > 0) {
-                number = (decimalScale[i] << 3);
-                if (positive_value >= number) {
-                    positive_value -= number;
-                    count += 8;
-                }
-                number = (decimalScale[i] << 2);
-                if (positive_value >= number) {
-                    positive_value -= number;
-                    count += 4;
-                }
-            }
-            number = (decimalScale[i] << 1);
-            if (positive_value >= number) {
-                positive_value -= number;
-                count += 2;
-            }
-            if (positive_value >= decimalScale[i]) {
-                positive_value -= decimalScale[i];
-                count++;
-            }
-            if (count > 0 && !start) {
-                start = true;
-            }
-            if (start) {
-                output[last_digit++] = (char) (count + '0');
-            }
-        }
-
-        output[last_digit++] = (char) (positive_value + '0');
-        output[last_digit] = 0;
-        count = last_digit--;
-        return true;
-    }
-
-
-    /**
-     * Determines the highest (leftmost) bit of the specified integer that is 1
-     * and returns the bit mask value for that bit. This is also referred to as
-     * the Most Significant 1 Bit. Returns zero if the specified integer is
-     * zero.
-     * 
-     * @param i
-     *            the integer to examine.
-     * @return the bit mask indicating the highest 1 bit in {@code i}.
-     * @since 1.5
-     */
-    public static int highestOneBit(int i) {
-        i |= (i >> 1);
-        i |= (i >> 2);
-        i |= (i >> 4);
-        i |= (i >> 8);
-        i |= (i >> 16);
-        return (i & ~(i >>> 1));
-    }
-
-    /**
-     * Determines the lowest (rightmost) bit of the specified integer that is 1
-     * and returns the bit mask value for that bit. This is also referred
-     * to as the Least Significant 1 Bit. Returns zero if the specified integer
-     * is zero.
-     * 
-     * @param i
-     *            the integer to examine.
-     * @return the bit mask indicating the lowest 1 bit in {@code i}.
-     * @since 1.5
-     */
-    public static int lowestOneBit(int i) {
-        return (i & (-i));
-    }
-
-    /**
-     * Determines the number of leading zeros in the specified integer prior to
-     * the {@link #highestOneBit(int) highest one bit}.
-     *
-     * @param i
-     *            the integer to examine.
-     * @return the number of leading zeros in {@code i}.
-     * @since 1.5
-     */
-    public static int numberOfLeadingZeros(int i) {
-        i |= i >> 1;
-        i |= i >> 2;
-        i |= i >> 4;
-        i |= i >> 8;
-        i |= i >> 16;
-        return bitCount(~i);
-    }
-
-    /**
-     * Determines the number of trailing zeros in the specified integer after
-     * the {@link #lowestOneBit(int) lowest one bit}.
-     *
-     * @param i
-     *            the integer to examine.
-     * @return the number of trailing zeros in {@code i}.
-     * @since 1.5
-     */
-    public static int numberOfTrailingZeros(int i) {
-        return bitCount((i & -i) - 1);
-    }
-
-    /**
-     * Counts the number of 1 bits in the specified integer; this is also
-     * referred to as population count.
-     *
-     * @param i
-     *            the integer to examine.
-     * @return the number of 1 bits in {@code i}.
-     * @since 1.5
-     */
-    public static int bitCount(int i) {
-        i -= ((i >> 1) & 0x55555555);
-        i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
-        i = (((i >> 4) + i) & 0x0F0F0F0F);
-        i += (i >> 8);
-        i += (i >> 16);
-        return (i & 0x0000003F);
-    }
-
-    /**
-     * Rotates the bits of the specified integer to the left by the specified
-     * number of bits.
-     *
-     * @param i
-     *            the integer value to rotate left.
-     * @param distance
-     *            the number of bits to rotate.
-     * @return the rotated value.
-     * @since 1.5
-     */
-    public static int rotateLeft(int i, int distance) {
-        if (distance == 0) {
-            return i;
-        }
-        /*
-         * According to JLS3, 15.19, the right operand of a shift is always
-         * implicitly masked with 0x1F, which the negation of 'distance' is
-         * taking advantage of.
-         */
-        return ((i << distance) | (i >>> (-distance)));
-    }
-
-    /**
-     * Rotates the bits of the specified integer to the right by the specified
-     * number of bits.
-     *
-     * @param i
-     *            the integer value to rotate right.
-     * @param distance
-     *            the number of bits to rotate.
-     * @return the rotated value.
-     * @since 1.5
-     */
-    public static int rotateRight(int i, int distance) {
-        if (distance == 0) {
-            return i;
-        }
-        /*
-         * According to JLS3, 15.19, the right operand of a shift is always
-         * implicitly masked with 0x1F, which the negation of 'distance' is
-         * taking advantage of.
-         */
-        return ((i >>> distance) | (i << (-distance)));
-    }
-
-    /**
-     * Reverses the order of the bytes of the specified integer.
-     * 
-     * @param i
-     *            the integer value for which to reverse the byte order.
-     * @return the reversed value.
-     * @since 1.5
-     */
-    public static int reverseBytes(int i) {
-        int b3 = i >>> 24;
-        int b2 = (i >>> 8) & 0xFF00;
-        int b1 = (i & 0xFF00) << 8;
-        int b0 = i << 24;
-        return (b0 | b1 | b2 | b3);
-    }
-
-    /**
-     * Reverses the order of the bits of the specified integer.
-     * 
-     * @param i
-     *            the integer value for which to reverse the bit order.
-     * @return the reversed value.
-     * @since 1.5
-     */
-    public static int reverse(int i) {
-        // From Hacker's Delight, 7-1, Figure 7-1
-        i = (i & 0x55555555) << 1 | (i >> 1) & 0x55555555;
-        i = (i & 0x33333333) << 2 | (i >> 2) & 0x33333333;
-        i = (i & 0x0F0F0F0F) << 4 | (i >> 4) & 0x0F0F0F0F;
-        return reverseBytes(i);
-    }
-
-    /**
-     * Returns the value of the {@code signum} function for the specified
-     * integer.
-     * 
-     * @param i
-     *            the integer value to check.
-     * @return -1 if {@code i} is negative, 1 if {@code i} is positive, 0 if
-     *         {@code i} is zero.
-     * @since 1.5
-     */
-    public static int signum(int i) {
-        return (i == 0 ? 0 : (i < 0 ? -1 : 1));
-    }
-
-    /**
-     * Returns a {@code Integer} instance for the specified integer value.
-     * <p>
-     * If it is not necessary to get a new {@code Integer} instance, it is
-     * recommended to use this method instead of the constructor, since it
-     * maintains a cache of instances which may result in better performance.
-     *
-     * @param i
-     *            the integer value to store in the instance.
-     * @return a {@code Integer} instance containing {@code i}.
-     * @since 1.5
-     */
-    public static Integer valueOf(int i) {
-        if (i < -128 || i > 127) {
-            return new Integer(i);
-        }
-        return valueOfCache.CACHE [i+128];
-
-    }
-
-   static class valueOfCache {
-        /**
-         * <p>
-         * A cache of instances used by {@link Integer#valueOf(int)} and auto-boxing.
-         */
-        static final Integer[] CACHE = new Integer[256];
-
-        static {
-            for(int i=-128; i<=127; i++) {
-                CACHE[i+128] = new Integer(i);
-            }
-        }
-    }
-}

+ 0 - 431
engine/src/android/jme3tools/android/Fixed.java

@@ -1,431 +0,0 @@
-package jme3tools.android;
-
-import java.util.Random;
-
-/**
- *	Fixed point maths class. This can be tailored for specific needs by
- *	changing the bits allocated to the 'fraction' part (see <code>FIXED_POINT
- *	</code>, which would also require <code>SIN_PRECALC</code> and <code>
- *	COS_PRECALC</code> updating).
- *
- *  <p><a href="http://blog.numfum.com/2007/09/java-fixed-point-maths.html">
- *  http://blog.numfum.com/2007/09/java-fixed-point-maths.html</a></p>
- *
- *	@version 1.0
- *	@author CW
- * 
- * @deprecated Most devices with OpenGL ES 2.0 have an FPU. Please use
- * floats instead of this class for decimal math.
- */
-@Deprecated
-public final class Fixed {
-
-    /**
-     *	Number of bits used for 'fraction'.
-     */
-    public static final int FIXED_POINT = 16;
-    /**
-     *	Decimal one as represented by the Fixed class.
-     */
-    public static final int ONE = 1 << FIXED_POINT;
-    /**
-     *	Half in fixed point.
-     */
-    public static final int HALF = ONE >> 1;
-    /**
-     *	Quarter circle resolution for trig functions (should be a power of
-     *	two). This is the number of discrete steps in 90 degrees.
-     */
-    public static final int QUARTER_CIRCLE = 64;
-    /**
-     *	Mask used to limit angles to one revolution. If a quarter circle is 64
-     * (i.e. 90 degrees is broken into 64 steps) then the mask is 255.
-     */
-    public static final int FULL_CIRCLE_MASK = QUARTER_CIRCLE * 4 - 1;
-    /**
-     *	The trig table is generated at a higher precision than the typical
-     *	16.16 format used for the rest of the fixed point maths. The table
-     *	values are then shifted to match the actual fixed point used.
-     */
-    private static final int TABLE_SHIFT = 30;
-    /**
-     *	Equivalent to: sin((2 * PI) / (QUARTER_CIRCLE * 4))
-     *	<p>
-     *	Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
-     *	will need recalculating (put the above formular into a calculator set
-     *	radians, then shift the result by <code>TABLE_SHIFT</code>).
-     */
-    private static final int SIN_PRECALC = 26350943;
-    /**
-     *	Equivalent to: cos((2 * PI) / (QUARTER_CIRCLE * 4)) * 2
-     *
-     *	Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
-     *	will need recalculating ((put the above formular into a calculator set
-     *	radians, then shift the result by <code>TABLE_SHIFT</code>).
-     */
-    private static final int COS_PRECALC = 2146836866;
-    /**
-     *	One quarter sine wave as fixed point values.
-     */
-    private static final int[] SINE_TABLE = new int[QUARTER_CIRCLE + 1];
-    /**
-     *	Scale value for indexing ATAN_TABLE[].
-     */
-    private static final int ATAN_SHIFT;
-    /**
-     *	Reverse atan lookup table.
-     */
-    private static final byte[] ATAN_TABLE;
-    /**
-     *	ATAN_TABLE.length
-     */
-    private static final int ATAN_TABLE_LEN;
-
-    /*
-     *	Generates the tables and fills in any remaining static ints.
-     */
-    static {
-        // Generate the sine table using recursive synthesis.
-        SINE_TABLE[0] = 0;
-        SINE_TABLE[1] = SIN_PRECALC;
-        for (int n = 2; n < QUARTER_CIRCLE + 1; n++) {
-            SINE_TABLE[n] = (int) (((long) SINE_TABLE[n - 1] * COS_PRECALC) >> TABLE_SHIFT) - SINE_TABLE[n - 2];
-        }
-        // Scale the values to the fixed point format used.
-        for (int n = 0; n < QUARTER_CIRCLE + 1; n++) {
-            SINE_TABLE[n] = SINE_TABLE[n] + (1 << (TABLE_SHIFT - FIXED_POINT - 1)) >> TABLE_SHIFT - FIXED_POINT;
-        }
-
-        // Calculate a shift used to scale atan lookups
-        int rotl = 0;
-        int tan0 = tan(0);
-        int tan1 = tan(1);
-        while (rotl < 32) {
-            if ((tan1 >>= 1) > (tan0 >>= 1)) {
-                rotl++;
-            } else {
-                break;
-            }
-        }
-        ATAN_SHIFT = rotl;
-        // Create the a table of tan values
-        int[] lut = new int[QUARTER_CIRCLE];
-        for (int n = 0; n < QUARTER_CIRCLE; n++) {
-            lut[n] = tan(n) >> rotl;
-        }
-        ATAN_TABLE_LEN = lut[QUARTER_CIRCLE - 1];
-        // Then from the tan values create a reverse lookup
-        ATAN_TABLE = new byte[ATAN_TABLE_LEN];
-        for (byte n = 0; n < QUARTER_CIRCLE - 1; n++) {
-            int min = lut[n];
-            int max = lut[n + 1];
-            for (int i = min; i < max; i++) {
-                ATAN_TABLE[i] = n;
-            }
-        }
-    }
-    /**
-     *	How many decimal places to use when converting a fixed point value to
-     *	a decimal string.
-     *
-     *	@see #toString
-     */
-    private static final int STRING_DECIMAL_PLACES = 2;
-    /**
-     *	Value to add in order to round down a fixed point number when
-     *	converting to a string.
-     */
-    private static final int STRING_DECIMAL_PLACES_ROUND;
-
-    static {
-        int i = 10;
-        for (int n = 1; n < STRING_DECIMAL_PLACES; n++) {
-            i *= i;
-        }
-        if (STRING_DECIMAL_PLACES == 0) {
-            STRING_DECIMAL_PLACES_ROUND = ONE / 2;
-        } else {
-            STRING_DECIMAL_PLACES_ROUND = ONE / (2 * i);
-        }
-    }
-    /**
-     *	Random number generator. The standard <code>java.utll.Random</code> is
-     *	used since it is available to both J2ME and J2SE. If a guaranteed
-     *	sequence is required this would not be adequate.
-     */
-    private static Random rng = null;
-
-    /**
-     *	Fixed can't be instantiated.
-     */
-    private Fixed() {
-    }
-
-    /**
-     * Returns an integer as a fixed point value.
-     */
-    public static int intToFixed(int n) {
-        return n << FIXED_POINT;
-    }
-
-    /**
-     * Returns a fixed point value as a float.
-     */
-    public static float fixedToFloat(int i) {
-        float fp = i;
-        fp = fp / ((float) ONE);
-        return fp;
-    }
-
-    /**
-     * Returns a float as a fixed point value.
-     */
-    public static int floatToFixed(float fp) {
-        return (int) (fp * ((float) ONE));
-    }
-
-    /**
-     *	Converts a fixed point value into a decimal string.
-     */
-    public static String toString(int n) {
-        StringBuffer sb = new StringBuffer(16);
-        sb.append((n += STRING_DECIMAL_PLACES_ROUND) >> FIXED_POINT);
-        sb.append('.');
-        n &= ONE - 1;
-        for (int i = 0; i < STRING_DECIMAL_PLACES; i++) {
-            n *= 10;
-            sb.append((n / ONE) % 10);
-        }
-        return sb.toString();
-    }
-
-    /**
-     *	Multiplies two fixed point values and returns the result.
-     */
-    public static int mul(int a, int b) {
-        return (int) ((long) a * (long) b >> FIXED_POINT);
-    }
-
-    /**
-     *	Divides two fixed point values and returns the result.
-     */
-    public static int div(int a, int b) {
-        return (int) (((long) a << FIXED_POINT * 2) / (long) b >> FIXED_POINT);
-    }
-
-    /**
-     *	Sine of an angle.
-     *
-     *	@see #QUARTER_CIRCLE
-     */
-    public static int sin(int n) {
-        n &= FULL_CIRCLE_MASK;
-        if (n < QUARTER_CIRCLE * 2) {
-            if (n < QUARTER_CIRCLE) {
-                return SINE_TABLE[n];
-            } else {
-                return SINE_TABLE[QUARTER_CIRCLE * 2 - n];
-            }
-        } else {
-            if (n < QUARTER_CIRCLE * 3) {
-                return -SINE_TABLE[n - QUARTER_CIRCLE * 2];
-            } else {
-                return -SINE_TABLE[QUARTER_CIRCLE * 4 - n];
-            }
-        }
-    }
-
-    /**
-     *	Cosine of an angle.
-     *
-     *	@see #QUARTER_CIRCLE
-     */
-    public static int cos(int n) {
-        n &= FULL_CIRCLE_MASK;
-        if (n < QUARTER_CIRCLE * 2) {
-            if (n < QUARTER_CIRCLE) {
-                return SINE_TABLE[QUARTER_CIRCLE - n];
-            } else {
-                return -SINE_TABLE[n - QUARTER_CIRCLE];
-            }
-        } else {
-            if (n < QUARTER_CIRCLE * 3) {
-                return -SINE_TABLE[QUARTER_CIRCLE * 3 - n];
-            } else {
-                return SINE_TABLE[n - QUARTER_CIRCLE * 3];
-            }
-        }
-    }
-
-    /**
-     *	Tangent of an angle.
-     *
-     *	@see #QUARTER_CIRCLE
-     */
-    public static int tan(int n) {
-        return div(sin(n), cos(n));
-    }
-
-    /**
-     *	Returns the arc tangent of an angle.
-     */
-    public static int atan(int n) {
-        n = n + (1 << (ATAN_SHIFT - 1)) >> ATAN_SHIFT;
-        if (n < 0) {
-            if (n <= -ATAN_TABLE_LEN) {
-                return -(QUARTER_CIRCLE - 1);
-            }
-            return -ATAN_TABLE[-n];
-        } else {
-            if (n >= ATAN_TABLE_LEN) {
-                return QUARTER_CIRCLE - 1;
-            }
-            return ATAN_TABLE[n];
-        }
-    }
-
-    /**
-     *	Returns the polar angle of a rectangular coordinate.
-     */
-    public static int atan(int x, int y) {
-        int n = atan(div(x, abs(y) + 1)); // kludge to prevent ArithmeticException
-        if (y > 0) {
-            return n;
-        }
-        if (y < 0) {
-            if (x < 0) {
-                return -QUARTER_CIRCLE * 2 - n;
-            }
-            if (x > 0) {
-                return QUARTER_CIRCLE * 2 - n;
-            }
-            return QUARTER_CIRCLE * 2;
-        }
-        if (x > 0) {
-            return QUARTER_CIRCLE;
-        }
-        return -QUARTER_CIRCLE;
-    }
-
-    /**
-     *	Rough calculation of the hypotenuse. Whilst not accurate it is very fast.
-     *	<p>
-     *	Derived from a piece in Graphics Gems.
-     */
-    public static int hyp(int x1, int y1, int x2, int y2) {
-        if ((x2 -= x1) < 0) {
-            x2 = -x2;
-        }
-        if ((y2 -= y1) < 0) {
-            y2 = -y2;
-        }
-        return x2 + y2 - (((x2 > y2) ? y2 : x2) >> 1);
-    }
-
-    /**
-     *	Fixed point square root.
-     *	<p>
-     *	Derived from a 1993 Usenet algorithm posted by Christophe Meessen.
-     */
-    public static int sqrt(int n) {
-        if (n <= 0) {
-            return 0;
-        }
-        long sum = 0;
-        int bit = 0x40000000;
-        while (bit >= 0x100) { // lower values give more accurate results
-            long tmp = sum | bit;
-            if (n >= tmp) {
-                n -= tmp;
-                sum = tmp + bit;
-            }
-            bit >>= 1;
-            n <<= 1;
-        }
-        return (int) (sum >> 16 - (FIXED_POINT / 2));
-    }
-
-    /**
-     *	Returns the absolute value.
-     */
-    public static int abs(int n) {
-        return (n < 0) ? -n : n;
-    }
-
-    /**
-     *	Returns the sign of a value, -1 for negative numbers, otherwise 1.
-     */
-    public static int sgn(int n) {
-        return (n < 0) ? -1 : 1;
-    }
-
-    /**
-     *	Returns the minimum of two values.
-     */
-    public static int min(int a, int b) {
-        return (a < b) ? a : b;
-    }
-
-    /**
-     *	Returns the maximum of two values.
-     */
-    public static int max(int a, int b) {
-        return (a > b) ? a : b;
-    }
-
-    /**
-     *	Clamps the value n between min and max.
-     */
-    public static int clamp(int n, int min, int max) {
-        return (n < min) ? min : (n > max) ? max : n;
-    }
-
-    /**
-     *	Wraps the value n between 0 and the required limit.
-     */
-    public static int wrap(int n, int limit) {
-        return ((n %= limit) < 0) ? limit + n : n;
-    }
-
-    /**
-     *	Returns the nearest int to a fixed point value. Equivalent to <code>
-     *	Math.round()</code> in the standard library.
-     */
-    public static int round(int n) {
-        return n + HALF >> FIXED_POINT;
-    }
-
-    /**
-     *	Returns the nearest int rounded down from a fixed point value.
-     *	Equivalent to <code>Math.floor()</code> in the standard library.
-     */
-    public static int floor(int n) {
-        return n >> FIXED_POINT;
-    }
-
-    /**
-     *	Returns the nearest int rounded up from a fixed point value.
-     *	Equivalent to <code>Math.ceil()</code> in the standard library.
-     */
-    public static int ceil(int n) {
-        return n + (ONE - 1) >> FIXED_POINT;
-    }
-
-    /**
-     *	Returns a fixed point value greater than or equal to decimal 0.0 and
-     *	less than 1.0 (in 16.16 format this would be 0 to 65535 inclusive).
-     */
-    public static int rand() {
-        if (rng == null) {
-            rng = new Random();
-        }
-        return rng.nextInt() >>> (32 - FIXED_POINT);
-    }
-
-    /**
-     *	Returns a random number between 0 and <code>n</code> (exclusive).
-     */
-    public static int rand(int n) {
-        return (rand() * n) >> FIXED_POINT;
-    }
-}