|
@@ -40,14 +40,11 @@ import com.jme3.math.FastMath;
|
|
|
import com.jme3.math.Vector3f;
|
|
|
import com.jme3.scene.Mesh;
|
|
|
import com.jme3.scene.VertexBuffer.Type;
|
|
|
-import com.jme3.scene.mesh.IndexBuffer;
|
|
|
import com.jme3.util.BufferUtils;
|
|
|
-import static com.jme3.util.BufferUtils.*;
|
|
|
import java.io.IOException;
|
|
|
-import java.nio.FloatBuffer;
|
|
|
|
|
|
/**
|
|
|
- * A simple cylinder, defined by it's height and radius.
|
|
|
+ * A simple cylinder, defined by its height and radius.
|
|
|
* (Ported to jME3)
|
|
|
*
|
|
|
* @author Mark Powell
|
|
@@ -127,10 +124,10 @@ public class Cylinder extends Mesh {
|
|
|
* mapped to texture coordinates (0.5, 1), bottom to (0.5, 0). Thus you need
|
|
|
* a suited distorted texture.
|
|
|
*
|
|
|
- * @param axisSamples
|
|
|
- * Number of triangle samples along the axis.
|
|
|
- * @param radialSamples
|
|
|
- * Number of triangle samples along the radial.
|
|
|
+ * @param axisSamples The number of vertices samples along the axis. It is equal to the number of segments + 1; so
|
|
|
+ * that, for instance, 4 samples mean the cylinder will be made of 3 segments.
|
|
|
+ * @param radialSamples The number of triangle samples along the radius. For instance, 4 means that the sides of the
|
|
|
+ * cylinder are made of 4 rectangles, and the top and bottom are made of 4 triangles.
|
|
|
* @param radius
|
|
|
* The radius of the cylinder.
|
|
|
* @param height
|
|
@@ -201,194 +198,240 @@ public class Cylinder extends Mesh {
|
|
|
/**
|
|
|
* Rebuilds the cylinder based on a new set of parameters.
|
|
|
*
|
|
|
- * @param axisSamples the number of samples along the axis.
|
|
|
- * @param radialSamples the number of samples around the radial.
|
|
|
- * @param radius the radius of the bottom of the cylinder.
|
|
|
- * @param radius2 the radius of the top of the cylinder.
|
|
|
+ * @param axisSamples The number of vertices samples along the axis. It is equal to the number of segments + 1; so
|
|
|
+ * that, for instance, 4 samples mean the cylinder will be made of 3 segments.
|
|
|
+ * @param radialSamples The number of triangle samples along the radius. For instance, 4 means that the sides of the
|
|
|
+ * cylinder are made of 4 rectangles, and the top and bottom are made of 4 triangles.
|
|
|
+ * @param topRadius the radius of the top of the cylinder.
|
|
|
+ * @param bottomRadius the radius of the bottom of the cylinder.
|
|
|
* @param height the cylinder's height.
|
|
|
* @param closed should the cylinder have top and bottom surfaces.
|
|
|
* @param inverted is the cylinder is meant to be viewed from the inside.
|
|
|
*/
|
|
|
public void updateGeometry(int axisSamples, int radialSamples,
|
|
|
- float radius, float radius2, float height, boolean closed, boolean inverted) {
|
|
|
- this.axisSamples = axisSamples;
|
|
|
+ float topRadius, float bottomRadius, float height, boolean closed, boolean inverted)
|
|
|
+ {
|
|
|
+ // Ensure there's at least two axis samples and 3 radial samples, and positive geometries.
|
|
|
+ if( axisSamples < 2
|
|
|
+ || radialSamples < 3
|
|
|
+ || topRadius <= 0
|
|
|
+ || bottomRadius <= 0
|
|
|
+ || height <= 0 )
|
|
|
+ return;
|
|
|
+
|
|
|
+ this.axisSamples = axisSamples;
|
|
|
this.radialSamples = radialSamples;
|
|
|
- this.radius = radius;
|
|
|
- this.radius2 = radius2;
|
|
|
+ this.radius = bottomRadius;
|
|
|
+ this.radius2 = topRadius;
|
|
|
this.height = height;
|
|
|
this.closed = closed;
|
|
|
this.inverted = inverted;
|
|
|
|
|
|
-// VertexBuffer pvb = getBuffer(Type.Position);
|
|
|
-// VertexBuffer nvb = getBuffer(Type.Normal);
|
|
|
-// VertexBuffer tvb = getBuffer(Type.TexCoord);
|
|
|
- axisSamples += (closed ? 2 : 0);
|
|
|
-
|
|
|
- // Vertices
|
|
|
- int vertCount = axisSamples * (radialSamples + 1) + (closed ? 2 : 0);
|
|
|
-
|
|
|
- setBuffer(Type.Position, 3, createVector3Buffer(getFloatBuffer(Type.Position), vertCount));
|
|
|
-
|
|
|
- // Normals
|
|
|
- setBuffer(Type.Normal, 3, createVector3Buffer(getFloatBuffer(Type.Normal), vertCount));
|
|
|
-
|
|
|
- // Texture co-ordinates
|
|
|
- setBuffer(Type.TexCoord, 2, createVector2Buffer(vertCount));
|
|
|
-
|
|
|
- int triCount = ((closed ? 2 : 0) + 2 * (axisSamples - 1)) * radialSamples;
|
|
|
-
|
|
|
- setBuffer(Type.Index, 3, createShortBuffer(getShortBuffer(Type.Index), 3 * triCount));
|
|
|
-
|
|
|
- // generate geometry
|
|
|
- float inverseRadial = 1.0f / radialSamples;
|
|
|
- float inverseAxisLess = 1.0f / (closed ? axisSamples - 3 : axisSamples - 1);
|
|
|
- float inverseAxisLessTexture = 1.0f / (axisSamples - 1);
|
|
|
- float halfHeight = 0.5f * height;
|
|
|
-
|
|
|
- // Generate points on the unit circle to be used in computing the mesh
|
|
|
- // points on a cylinder slice.
|
|
|
- float[] sin = new float[radialSamples + 1];
|
|
|
- float[] cos = new float[radialSamples + 1];
|
|
|
-
|
|
|
- for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
|
|
|
- float angle = FastMath.TWO_PI * inverseRadial * radialCount;
|
|
|
- cos[radialCount] = FastMath.cos(angle);
|
|
|
- sin[radialCount] = FastMath.sin(angle);
|
|
|
+ // Vertices : One per radial sample plus one duplicate for texture closing around the sides.
|
|
|
+ int verticesCount = axisSamples * (radialSamples +1);
|
|
|
+ // Triangles: Two per side rectangle, which is the product of numbers of samples.
|
|
|
+ int trianglesCount = axisSamples * radialSamples * 2 ;
|
|
|
+ if( closed )
|
|
|
+ {
|
|
|
+ // If there are caps, add two additional rims and two summits.
|
|
|
+ verticesCount += 2 + 2 * (radialSamples +1);
|
|
|
+ // Add one triangle per radial sample, twice, to form the caps.
|
|
|
+ trianglesCount += 2 * radialSamples ;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Compute the points along a unit circle:
|
|
|
+ float[][] circlePoints = new float[radialSamples+1][2];
|
|
|
+ for (int circlePoint = 0; circlePoint < radialSamples; circlePoint++)
|
|
|
+ {
|
|
|
+ float angle = FastMath.TWO_PI / radialSamples * circlePoint;
|
|
|
+ circlePoints[circlePoint][0] = FastMath.cos(angle);
|
|
|
+ circlePoints[circlePoint][1] = FastMath.sin(angle);
|
|
|
}
|
|
|
- sin[radialSamples] = sin[0];
|
|
|
- cos[radialSamples] = cos[0];
|
|
|
-
|
|
|
- // calculate normals
|
|
|
- Vector3f[] vNormals = null;
|
|
|
- Vector3f vNormal = Vector3f.UNIT_Z;
|
|
|
-
|
|
|
- if ((height != 0.0f) && (radius != radius2)) {
|
|
|
- vNormals = new Vector3f[radialSamples];
|
|
|
- Vector3f vHeight = Vector3f.UNIT_Z.mult(height);
|
|
|
- Vector3f vRadial = new Vector3f();
|
|
|
-
|
|
|
- for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
|
|
|
- vRadial.set(cos[radialCount], sin[radialCount], 0.0f);
|
|
|
- Vector3f vRadius = vRadial.mult(radius);
|
|
|
- Vector3f vRadius2 = vRadial.mult(radius2);
|
|
|
- Vector3f vMantle = vHeight.subtract(vRadius2.subtract(vRadius));
|
|
|
- Vector3f vTangent = vRadial.cross(Vector3f.UNIT_Z);
|
|
|
- vNormals[radialCount] = vMantle.cross(vTangent).normalize();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- FloatBuffer nb = getFloatBuffer(Type.Normal);
|
|
|
- FloatBuffer pb = getFloatBuffer(Type.Position);
|
|
|
- FloatBuffer tb = getFloatBuffer(Type.TexCoord);
|
|
|
-
|
|
|
- // generate the cylinder itself
|
|
|
- Vector3f tempNormal = new Vector3f();
|
|
|
- for (int axisCount = 0, i = 0; axisCount < axisSamples; axisCount++, i++) {
|
|
|
- float axisFraction;
|
|
|
- float axisFractionTexture;
|
|
|
- int topBottom = 0;
|
|
|
- if (!closed) {
|
|
|
- axisFraction = axisCount * inverseAxisLess; // in [0,1]
|
|
|
- axisFractionTexture = axisFraction;
|
|
|
- } else {
|
|
|
- if (axisCount == 0) {
|
|
|
- topBottom = -1; // bottom
|
|
|
- axisFraction = 0;
|
|
|
- axisFractionTexture = inverseAxisLessTexture;
|
|
|
- } else if (axisCount == axisSamples - 1) {
|
|
|
- topBottom = 1; // top
|
|
|
- axisFraction = 1;
|
|
|
- axisFractionTexture = 1 - inverseAxisLessTexture;
|
|
|
- } else {
|
|
|
- axisFraction = (axisCount - 1) * inverseAxisLess;
|
|
|
- axisFractionTexture = axisCount * inverseAxisLessTexture;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // compute center of slice
|
|
|
- float z = -halfHeight + height * axisFraction;
|
|
|
- Vector3f sliceCenter = new Vector3f(0, 0, z);
|
|
|
-
|
|
|
- // compute slice vertices with duplication at end point
|
|
|
- int save = i;
|
|
|
- for (int radialCount = 0; radialCount < radialSamples; radialCount++, i++) {
|
|
|
- float radialFraction = radialCount * inverseRadial; // in [0,1)
|
|
|
- tempNormal.set(cos[radialCount], sin[radialCount], 0.0f);
|
|
|
-
|
|
|
- if (vNormals != null) {
|
|
|
- vNormal = vNormals[radialCount];
|
|
|
- } else if (radius == radius2) {
|
|
|
- vNormal = tempNormal;
|
|
|
- }
|
|
|
-
|
|
|
- if (topBottom == 0) {
|
|
|
- if (!inverted)
|
|
|
- nb.put(vNormal.x).put(vNormal.y).put(vNormal.z);
|
|
|
- else
|
|
|
- nb.put(-vNormal.x).put(-vNormal.y).put(-vNormal.z);
|
|
|
- } else {
|
|
|
- nb.put(0).put(0).put(topBottom * (inverted ? -1 : 1));
|
|
|
- }
|
|
|
-
|
|
|
- tempNormal.multLocal((radius - radius2) * axisFraction + radius2)
|
|
|
- .addLocal(sliceCenter);
|
|
|
- pb.put(tempNormal.x).put(tempNormal.y).put(tempNormal.z);
|
|
|
-
|
|
|
- tb.put((inverted ? 1 - radialFraction : radialFraction))
|
|
|
- .put(axisFractionTexture);
|
|
|
- }
|
|
|
-
|
|
|
- BufferUtils.copyInternalVector3(pb, save, i);
|
|
|
- BufferUtils.copyInternalVector3(nb, save, i);
|
|
|
-
|
|
|
- tb.put((inverted ? 0.0f : 1.0f))
|
|
|
- .put(axisFractionTexture);
|
|
|
+ // Add an additional point for closing the texture around the side of the cylinder.
|
|
|
+ circlePoints[radialSamples][0] = circlePoints[0][0];
|
|
|
+ circlePoints[radialSamples][1] = circlePoints[0][1];
|
|
|
+
|
|
|
+ // Calculate normals.
|
|
|
+ //
|
|
|
+ // A---------B
|
|
|
+ // \ |
|
|
|
+ // \ |
|
|
|
+ // \ |
|
|
|
+ // D-----C
|
|
|
+ //
|
|
|
+ // Let be B and C the top and bottom points of the axis, and A and D the top and bottom edges.
|
|
|
+ // The normal in A and D is simply orthogonal to AD, which means we can get it once per sample.
|
|
|
+ //
|
|
|
+ Vector3f[] circleNormals = new Vector3f[radialSamples+1];
|
|
|
+ for (int circlePoint = 0; circlePoint < radialSamples+1; circlePoint++)
|
|
|
+ {
|
|
|
+ // The normal is the orthogonal to the side, which can be got without trigonometry.
|
|
|
+ // The edge direction is oriented so that it goes up by Height, and out by the radius difference; let's use
|
|
|
+ // those values in reverse order.
|
|
|
+ Vector3f normal = new Vector3f(height * circlePoints[circlePoint][0], height * circlePoints[circlePoint][1], bottomRadius - topRadius );
|
|
|
+ circleNormals[circlePoint] = normal.normalizeLocal();
|
|
|
}
|
|
|
|
|
|
- if (closed) {
|
|
|
- pb.put(0).put(0).put(-halfHeight); // bottom center
|
|
|
- nb.put(0).put(0).put(-1 * (inverted ? -1 : 1));
|
|
|
- tb.put(0.5f).put(0);
|
|
|
- pb.put(0).put(0).put(halfHeight); // top center
|
|
|
- nb.put(0).put(0).put(1 * (inverted ? -1 : 1));
|
|
|
- tb.put(0.5f).put(1);
|
|
|
- }
|
|
|
-
|
|
|
- IndexBuffer ib = getIndexBuffer();
|
|
|
- int index = 0;
|
|
|
- // Connectivity
|
|
|
- for (int axisCount = 0, axisStart = 0; axisCount < axisSamples - 1; axisCount++) {
|
|
|
- int i0 = axisStart;
|
|
|
- int i1 = i0 + 1;
|
|
|
- axisStart += radialSamples + 1;
|
|
|
- int i2 = axisStart;
|
|
|
- int i3 = i2 + 1;
|
|
|
- for (int i = 0; i < radialSamples; i++) {
|
|
|
- if (closed && axisCount == 0) {
|
|
|
- if (!inverted) {
|
|
|
- ib.put(index++, i0++);
|
|
|
- ib.put(index++, vertCount - 2);
|
|
|
- ib.put(index++, i1++);
|
|
|
- } else {
|
|
|
- ib.put(index++, i0++);
|
|
|
- ib.put(index++, i1++);
|
|
|
- ib.put(index++, vertCount - 2);
|
|
|
- }
|
|
|
- } else if (closed && axisCount == axisSamples - 2) {
|
|
|
- ib.put(index++, i2++);
|
|
|
- ib.put(index++, inverted ? vertCount - 1 : i3++);
|
|
|
- ib.put(index++, inverted ? i3++ : vertCount - 1);
|
|
|
- } else {
|
|
|
- ib.put(index++, i0++);
|
|
|
- ib.put(index++, inverted ? i2 : i1);
|
|
|
- ib.put(index++, inverted ? i1 : i2);
|
|
|
- ib.put(index++, i1++);
|
|
|
- ib.put(index++, inverted ? i2++ : i3++);
|
|
|
- ib.put(index++, inverted ? i3++ : i2++);
|
|
|
- }
|
|
|
- }
|
|
|
+ float[] vertices = new float[verticesCount * 3];
|
|
|
+ float[] normals = new float[verticesCount * 3];
|
|
|
+ float[] textureCoords = new float[verticesCount * 2];
|
|
|
+ int currentIndex = 0;
|
|
|
+
|
|
|
+ // Add a circle of points for each axis sample.
|
|
|
+ for(int axisSample = 0; axisSample < axisSamples; axisSample++ )
|
|
|
+ {
|
|
|
+ float currentHeight = -height / 2 + height * axisSample / (axisSamples-1);
|
|
|
+ float currentRadius = bottomRadius + (topRadius - bottomRadius) * axisSample / (axisSamples-1);
|
|
|
+
|
|
|
+ for (int circlePoint = 0; circlePoint < radialSamples + 1; circlePoint++)
|
|
|
+ {
|
|
|
+ // Position, by multipliying the position on a unit circle with the current radius.
|
|
|
+ vertices[currentIndex*3] = circlePoints[circlePoint][0] * currentRadius;
|
|
|
+ vertices[currentIndex*3 +1] = circlePoints[circlePoint][1] * currentRadius;
|
|
|
+ vertices[currentIndex*3 +2] = currentHeight;
|
|
|
+
|
|
|
+ // Normal
|
|
|
+ Vector3f currentNormal = circleNormals[circlePoint];
|
|
|
+ normals[currentIndex*3] = currentNormal.x;
|
|
|
+ normals[currentIndex*3+1] = currentNormal.y;
|
|
|
+ normals[currentIndex*3+2] = currentNormal.z;
|
|
|
+
|
|
|
+ // Texture
|
|
|
+ // The X is the angular position of the point.
|
|
|
+ textureCoords[currentIndex *2] = (float) circlePoint / radialSamples;
|
|
|
+ // Depending on whether there is a cap, the Y is either the height scaled to [0,1], or the radii of
|
|
|
+ // the cap count as well.
|
|
|
+ if (closed)
|
|
|
+ textureCoords[currentIndex *2 +1] = (bottomRadius + height / 2 + currentHeight) / (bottomRadius + height + topRadius);
|
|
|
+ else
|
|
|
+ textureCoords[currentIndex *2 +1] = height / 2 + currentHeight;
|
|
|
+
|
|
|
+ currentIndex++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // If closed, add duplicate rims on top and bottom, with normals facing up and down.
|
|
|
+ if (closed)
|
|
|
+ {
|
|
|
+ // Bottom
|
|
|
+ for (int circlePoint = 0; circlePoint < radialSamples + 1; circlePoint++)
|
|
|
+ {
|
|
|
+ vertices[currentIndex*3] = circlePoints[circlePoint][0] * bottomRadius;
|
|
|
+ vertices[currentIndex*3 +1] = circlePoints[circlePoint][1] * bottomRadius;
|
|
|
+ vertices[currentIndex*3 +2] = -height/2;
|
|
|
+
|
|
|
+ normals[currentIndex*3] = 0;
|
|
|
+ normals[currentIndex*3+1] = 0;
|
|
|
+ normals[currentIndex*3+2] = -1;
|
|
|
+
|
|
|
+ textureCoords[currentIndex *2] = (float) circlePoint / radialSamples;
|
|
|
+ textureCoords[currentIndex *2 +1] = bottomRadius / (bottomRadius + height + topRadius);
|
|
|
+
|
|
|
+ currentIndex++;
|
|
|
+ }
|
|
|
+ // Top
|
|
|
+ for (int circlePoint = 0; circlePoint < radialSamples + 1; circlePoint++)
|
|
|
+ {
|
|
|
+ vertices[currentIndex*3] = circlePoints[circlePoint][0] * topRadius;
|
|
|
+ vertices[currentIndex*3 +1] = circlePoints[circlePoint][1] * topRadius;
|
|
|
+ vertices[currentIndex*3 +2] = height/2;
|
|
|
+
|
|
|
+ normals[currentIndex*3] = 0;
|
|
|
+ normals[currentIndex*3+1] = 0;
|
|
|
+ normals[currentIndex*3+2] = 1;
|
|
|
+
|
|
|
+ textureCoords[currentIndex *2] = (float) circlePoint / radialSamples;
|
|
|
+ textureCoords[currentIndex *2 +1] = (bottomRadius + height) / (bottomRadius + height + topRadius);
|
|
|
+
|
|
|
+ currentIndex++;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Add the centers of the caps.
|
|
|
+ vertices[currentIndex*3] = 0;
|
|
|
+ vertices[currentIndex*3 +1] = 0;
|
|
|
+ vertices[currentIndex*3 +2] = -height/2;
|
|
|
+
|
|
|
+ normals[currentIndex*3] = 0;
|
|
|
+ normals[currentIndex*3+1] = 0;
|
|
|
+ normals[currentIndex*3+2] = -1;
|
|
|
+
|
|
|
+ textureCoords[currentIndex *2] = 0.5f;
|
|
|
+ textureCoords[currentIndex *2+1] = 0f;
|
|
|
+
|
|
|
+ currentIndex++;
|
|
|
+
|
|
|
+ vertices[currentIndex*3] = 0;
|
|
|
+ vertices[currentIndex*3 +1] = 0;
|
|
|
+ vertices[currentIndex*3 +2] = height/2;
|
|
|
+
|
|
|
+ normals[currentIndex*3] = 0;
|
|
|
+ normals[currentIndex*3+1] = 0;
|
|
|
+ normals[currentIndex*3+2] = 1;
|
|
|
+
|
|
|
+ textureCoords[currentIndex *2] = 0.5f;
|
|
|
+ textureCoords[currentIndex *2+1] = 1f;
|
|
|
}
|
|
|
|
|
|
+ // Add the triangles indexes.
|
|
|
+ short[] indices = new short[trianglesCount * 3];
|
|
|
+ currentIndex = 0;
|
|
|
+ for (short axisSample = 0; axisSample < axisSamples - 1; axisSample++)
|
|
|
+ {
|
|
|
+ for (int circlePoint = 0; circlePoint < radialSamples; circlePoint++)
|
|
|
+ {
|
|
|
+ indices[currentIndex++] = (short) (axisSample * (radialSamples + 1) + circlePoint);
|
|
|
+ indices[currentIndex++] = (short) (axisSample * (radialSamples + 1) + circlePoint + 1);
|
|
|
+ indices[currentIndex++] = (short) ((axisSample + 1) * (radialSamples + 1) + circlePoint);
|
|
|
+
|
|
|
+ indices[currentIndex++] = (short) ((axisSample + 1) * (radialSamples + 1) + circlePoint);
|
|
|
+ indices[currentIndex++] = (short) (axisSample * (radialSamples + 1) + circlePoint + 1);
|
|
|
+ indices[currentIndex++] = (short) ((axisSample + 1) * (radialSamples + 1) + circlePoint + 1);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Add caps if needed.
|
|
|
+ if(closed)
|
|
|
+ {
|
|
|
+ short bottomCapIndex = (short) (verticesCount - 2);
|
|
|
+ short topCapIndex = (short) (verticesCount - 1);
|
|
|
+
|
|
|
+ int bottomRowOffset = (axisSamples) * (radialSamples +1 );
|
|
|
+ int topRowOffset = (axisSamples+1) * (radialSamples +1 );
|
|
|
+
|
|
|
+ for (int circlePoint = 0; circlePoint < radialSamples; circlePoint++)
|
|
|
+ {
|
|
|
+ indices[currentIndex++] = (short) (bottomRowOffset + circlePoint +1);
|
|
|
+ indices[currentIndex++] = (short) (bottomRowOffset + circlePoint);
|
|
|
+ indices[currentIndex++] = bottomCapIndex;
|
|
|
+
|
|
|
+
|
|
|
+ indices[currentIndex++] = (short) (topRowOffset + circlePoint);
|
|
|
+ indices[currentIndex++] = (short) (topRowOffset + circlePoint +1);
|
|
|
+ indices[currentIndex++] = topCapIndex;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // If inverted, the triangles and normals are all reverted.
|
|
|
+ if (inverted)
|
|
|
+ {
|
|
|
+ for (int i = 0; i < indices.length / 2; i++)
|
|
|
+ {
|
|
|
+ short temp = indices[i];
|
|
|
+ indices[i] = indices[indices.length - 1 - i];
|
|
|
+ indices[indices.length - 1 - i] = temp;
|
|
|
+ }
|
|
|
+
|
|
|
+ for(int i = 0; i< normals.length; i++)
|
|
|
+ {
|
|
|
+ normals[i] = -normals[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Fill in the buffers.
|
|
|
+ setBuffer(Type.Position, 3, BufferUtils.createFloatBuffer(vertices));
|
|
|
+ setBuffer(Type.Normal, 3, BufferUtils.createFloatBuffer(normals));
|
|
|
+ setBuffer(Type.TexCoord, 2, BufferUtils.createFloatBuffer(textureCoords));
|
|
|
+ setBuffer(Type.Index, 3, BufferUtils.createShortBuffer(indices));
|
|
|
+
|
|
|
updateBound();
|
|
|
setStatic();
|
|
|
}
|
|
@@ -418,6 +461,4 @@ public class Cylinder extends Mesh {
|
|
|
capsule.write(closed, "closed", false);
|
|
|
capsule.write(inverted, "inverted", false);
|
|
|
}
|
|
|
-
|
|
|
-
|
|
|
-}
|
|
|
+}
|