| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987 |
- /*
- * Copyright (c) 2009-2010 jMonkeyEngine
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- *
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
- * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- package com.jme3.math;
- import java.util.Random;
- /**
- * <code>FastMath</code> provides 'fast' math approximations and float equivalents of Math
- * functions. These are all used as static values and functions.
- *
- * @author Various
- * @version $Id: FastMath.java,v 1.45 2007/08/26 08:44:20 irrisor Exp $
- */
- final public class FastMath {
- private FastMath() {
- }
- /** A "close to zero" double epsilon value for use*/
- public static final double DBL_EPSILON = 2.220446049250313E-16d;
- /** A "close to zero" float epsilon value for use*/
- public static final float FLT_EPSILON = 1.1920928955078125E-7f;
- /** A "close to zero" float epsilon value for use*/
- public static final float ZERO_TOLERANCE = 0.0001f;
- public static final float ONE_THIRD = 1f / 3f;
- /** The value PI as a float. (180 degrees) */
- public static final float PI = (float) Math.PI;
- /** The value 2PI as a float. (360 degrees) */
- public static final float TWO_PI = 2.0f * PI;
- /** The value PI/2 as a float. (90 degrees) */
- public static final float HALF_PI = 0.5f * PI;
- /** The value PI/4 as a float. (45 degrees) */
- public static final float QUARTER_PI = 0.25f * PI;
- /** The value 1/PI as a float. */
- public static final float INV_PI = 1.0f / PI;
- /** The value 1/(2PI) as a float. */
- public static final float INV_TWO_PI = 1.0f / TWO_PI;
- /** A value to multiply a degree value by, to convert it to radians. */
- public static final float DEG_TO_RAD = PI / 180.0f;
- /** A value to multiply a radian value by, to convert it to degrees. */
- public static final float RAD_TO_DEG = 180.0f / PI;
- /** A precreated random object for random numbers. */
- public static final Random rand = new Random(System.currentTimeMillis());
- /**
- * Returns true if the number is a power of 2 (2,4,8,16...)
- *
- * A good implementation found on the Java boards. note: a number is a power
- * of two if and only if it is the smallest number with that number of
- * significant bits. Therefore, if you subtract 1, you know that the new
- * number will have fewer bits, so ANDing the original number with anything
- * less than it will give 0.
- *
- * @param number
- * The number to test.
- * @return True if it is a power of two.
- */
- public static boolean isPowerOfTwo(int number) {
- return (number > 0) && (number & (number - 1)) == 0;
- }
- public static int nearestPowerOfTwo(int number) {
- return (int) Math.pow(2, Math.ceil(Math.log(number) / Math.log(2)));
- }
- /**
- * Linear interpolation from startValue to endValue by the given percent.
- * Basically: ((1 - percent) * startValue) + (percent * endValue)
- *
- * @param scale
- * scale value to use. if 1, use endValue, if 0, use startValue.
- * @param startValue
- * Begining value. 0% of f
- * @param endValue
- * ending value. 100% of f
- * @return The interpolated value between startValue and endValue.
- */
- public static float interpolateLinear(float scale, float startValue, float endValue) {
- if (startValue == endValue) {
- return startValue;
- }
- if (scale <= 0f) {
- return startValue;
- }
- if (scale >= 1f) {
- return endValue;
- }
- return ((1f - scale) * startValue) + (scale * endValue);
- }
- /**
- * Linear interpolation from startValue to endValue by the given percent.
- * Basically: ((1 - percent) * startValue) + (percent * endValue)
- *
- * @param scale
- * scale value to use. if 1, use endValue, if 0, use startValue.
- * @param startValue
- * Begining value. 0% of f
- * @param endValue
- * ending value. 100% of f
- * @param store a vector3f to store the result
- * @return The interpolated value between startValue and endValue.
- */
- public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue, Vector3f store) {
- if (store == null) {
- store = new Vector3f();
- }
- store.x = interpolateLinear(scale, startValue.x, endValue.x);
- store.y = interpolateLinear(scale, startValue.y, endValue.y);
- store.z = interpolateLinear(scale, startValue.z, endValue.z);
- return store;
- }
- /**
- * Linear interpolation from startValue to endValue by the given percent.
- * Basically: ((1 - percent) * startValue) + (percent * endValue)
- *
- * @param scale
- * scale value to use. if 1, use endValue, if 0, use startValue.
- * @param startValue
- * Begining value. 0% of f
- * @param endValue
- * ending value. 100% of f
- * @return The interpolated value between startValue and endValue.
- */
- public static Vector3f interpolateLinear(float scale, Vector3f startValue, Vector3f endValue) {
- return interpolateLinear(scale, startValue, endValue, null);
- }
- /**
- * Linear extrapolation from startValue to endValue by the given scale.
- * if scale is between 0 and 1 this method returns the same result as interpolateLinear
- * if the scale is over 1 the value is linearly extrapolated.
- * Note that the end value is the value for a scale of 1.
- * @param scale the scale for extrapolation
- * @param startValue the starting value (scale = 0)
- * @param endValue the end value (scale = 1)
- * @return an extrapolation for the given parameters
- */
- public static float extrapolateLinear(float scale, float startValue, float endValue) {
- // if (scale <= 0f) {
- // return startValue;
- // }
- return ((1f - scale) * startValue) + (scale * endValue);
- }
- /**
- * Linear extrapolation from startValue to endValue by the given scale.
- * if scale is between 0 and 1 this method returns the same result as interpolateLinear
- * if the scale is over 1 the value is linearly extrapolated.
- * Note that the end value is the value for a scale of 1.
- * @param scale the scale for extrapolation
- * @param startValue the starting value (scale = 0)
- * @param endValue the end value (scale = 1)
- * @param store an initialized vector to store the return value
- * @return an extrapolation for the given parameters
- */
- public static Vector3f extrapolateLinear(float scale, Vector3f startValue, Vector3f endValue, Vector3f store) {
- if (store == null) {
- store = new Vector3f();
- }
- // if (scale <= 1f) {
- // return interpolateLinear(scale, startValue, endValue, store);
- // }
- store.x = extrapolateLinear(scale, startValue.x, endValue.x);
- store.y = extrapolateLinear(scale, startValue.y, endValue.y);
- store.z = extrapolateLinear(scale, startValue.z, endValue.z);
- return store;
- }
- /**
- * Linear extrapolation from startValue to endValue by the given scale.
- * if scale is between 0 and 1 this method returns the same result as interpolateLinear
- * if the scale is over 1 the value is linearly extrapolated.
- * Note that the end value is the value for a scale of 1.
- * @param scale the scale for extrapolation
- * @param startValue the starting value (scale = 0)
- * @param endValue the end value (scale = 1)
- * @return an extrapolation for the given parameters
- */
- public static Vector3f extrapolateLinear(float scale, Vector3f startValue, Vector3f endValue) {
- return extrapolateLinear(scale, startValue, endValue, null);
- }
- /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
- * here is the interpolation matrix
- * m = [ 0.0 1.0 0.0 0.0 ]
- * [-T 0.0 T 0.0 ]
- * [ 2T T-3 3-2T -T ]
- * [-T 2-T T-2 T ]
- * where T is the curve tension
- * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
- * @param u value from 0 to 1
- * @param T The tension of the curve
- * @param p0 control point 0
- * @param p1 control point 1
- * @param p2 control point 2
- * @param p3 control point 3
- * @return catmull-Rom interpolation
- */
- public static float interpolateCatmullRom(float u, float T, float p0, float p1, float p2, float p3) {
- float c1, c2, c3, c4;
- c1 = p1;
- c2 = -1.0f * T * p0 + T * p2;
- c3 = 2 * T * p0 + (T - 3) * p1 + (3 - 2 * T) * p2 + -T * p3;
- c4 = -T * p0 + (2 - T) * p1 + (T - 2) * p2 + T * p3;
- return (float) (((c4 * u + c3) * u + c2) * u + c1);
- }
- /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
- * here is the interpolation matrix
- * m = [ 0.0 1.0 0.0 0.0 ]
- * [-T 0.0 T 0.0 ]
- * [ 2T T-3 3-2T -T ]
- * [-T 2-T T-2 T ]
- * where T is the tension of the curve
- * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
- * @param u value from 0 to 1
- * @param T The tension of the curve
- * @param p0 control point 0
- * @param p1 control point 1
- * @param p2 control point 2
- * @param p3 control point 3
- * @param store a Vector3f to store the result
- * @return catmull-Rom interpolation
- */
- public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
- if (store == null) {
- store = new Vector3f();
- }
- store.x = interpolateCatmullRom(u, T, p0.x, p1.x, p2.x, p3.x);
- store.y = interpolateCatmullRom(u, T, p0.y, p1.y, p2.y, p3.y);
- store.z = interpolateCatmullRom(u, T, p0.z, p1.z, p2.z, p3.z);
- return store;
- }
- /**Interpolate a spline between at least 4 control points following the Catmull-Rom equation.
- * here is the interpolation matrix
- * m = [ 0.0 1.0 0.0 0.0 ]
- * [-T 0.0 T 0.0 ]
- * [ 2T T-3 3-2T -T ]
- * [-T 2-T T-2 T ]
- * where T is the tension of the curve
- * the result is a value between p1 and p2, t=0 for p1, t=1 for p2
- * @param u value from 0 to 1
- * @param T The tension of the curve
- * @param p0 control point 0
- * @param p1 control point 1
- * @param p2 control point 2
- * @param p3 control point 3
- * @return catmull-Rom interpolation
- */
- public static Vector3f interpolateCatmullRom(float u, float T, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
- return interpolateCatmullRom(u, T, p0, p1, p2, p3, null);
- }
- /**Interpolate a spline between at least 4 control points following the Bezier equation.
- * here is the interpolation matrix
- * m = [ -1.0 3.0 -3.0 1.0 ]
- * [ 3.0 -6.0 3.0 0.0 ]
- * [ -3.0 3.0 0.0 0.0 ]
- * [ 1.0 0.0 0.0 0.0 ]
- * where T is the curve tension
- * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
- * @param u value from 0 to 1
- * @param p0 control point 0
- * @param p1 control point 1
- * @param p2 control point 2
- * @param p3 control point 3
- * @return Bezier interpolation
- */
- public static float interpolateBezier(float u, float p0, float p1, float p2, float p3) {
- float oneMinusU = 1.0f - u;
- float oneMinusU2 = oneMinusU * oneMinusU;
- float u2 = u * u;
- return p0 * oneMinusU2 * oneMinusU
- + 3.0f * p1 * u * oneMinusU2
- + 3.0f * p2 * u2 * oneMinusU
- + p3 * u2 * u;
- }
- /**Interpolate a spline between at least 4 control points following the Bezier equation.
- * here is the interpolation matrix
- * m = [ -1.0 3.0 -3.0 1.0 ]
- * [ 3.0 -6.0 3.0 0.0 ]
- * [ -3.0 3.0 0.0 0.0 ]
- * [ 1.0 0.0 0.0 0.0 ]
- * where T is the tension of the curve
- * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
- * @param u value from 0 to 1
- * @param p0 control point 0
- * @param p1 control point 1
- * @param p2 control point 2
- * @param p3 control point 3
- * @param store a Vector3f to store the result
- * @return Bezier interpolation
- */
- public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, Vector3f store) {
- if (store == null) {
- store = new Vector3f();
- }
- store.x = interpolateBezier(u, p0.x, p1.x, p2.x, p3.x);
- store.y = interpolateBezier(u, p0.y, p1.y, p2.y, p3.y);
- store.z = interpolateBezier(u, p0.z, p1.z, p2.z, p3.z);
- return store;
- }
- /**Interpolate a spline between at least 4 control points following the Bezier equation.
- * here is the interpolation matrix
- * m = [ -1.0 3.0 -3.0 1.0 ]
- * [ 3.0 -6.0 3.0 0.0 ]
- * [ -3.0 3.0 0.0 0.0 ]
- * [ 1.0 0.0 0.0 0.0 ]
- * where T is the tension of the curve
- * the result is a value between p1 and p3, t=0 for p1, t=1 for p3
- * @param u value from 0 to 1
- * @param p0 control point 0
- * @param p1 control point 1
- * @param p2 control point 2
- * @param p3 control point 3
- * @return Bezier interpolation
- */
- public static Vector3f interpolateBezier(float u, Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
- return interpolateBezier(u, p0, p1, p2, p3, null);
- }
- /**
- * Compute the lenght on a catmull rom spline between control point 1 and 2
- * @param p0 control point 0
- * @param p1 control point 1
- * @param p2 control point 2
- * @param p3 control point 3
- * @param startRange the starting range on the segment (use 0)
- * @param endRange the end range on the segment (use 1)
- * @param curveTension the curve tension
- * @return the length of the segment
- */
- public static float getCatmullRomP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3, float startRange, float endRange, float curveTension) {
- float epsilon = 0.001f;
- float middleValue = (startRange + endRange) * 0.5f;
- Vector3f start = p1.clone();
- if (startRange != 0) {
- FastMath.interpolateCatmullRom(startRange, curveTension, p0, p1, p2, p3, start);
- }
- Vector3f end = p2.clone();
- if (endRange != 1) {
- FastMath.interpolateCatmullRom(endRange, curveTension, p0, p1, p2, p3, end);
- }
- Vector3f middle = FastMath.interpolateCatmullRom(middleValue, curveTension, p0, p1, p2, p3);
- float l = end.subtract(start).length();
- float l1 = middle.subtract(start).length();
- float l2 = end.subtract(middle).length();
- float len = l1 + l2;
- if (l + epsilon < len) {
- l1 = getCatmullRomP1toP2Length(p0, p1, p2, p3, startRange, middleValue, curveTension);
- l2 = getCatmullRomP1toP2Length(p0, p1, p2, p3, middleValue, endRange, curveTension);
- }
- l = l1 + l2;
- return l;
- }
- /**
- * Compute the lenght on a bezier spline between control point 1 and 2
- * @param p0 control point 0
- * @param p1 control point 1
- * @param p2 control point 2
- * @param p3 control point 3
- * @return the length of the segment
- */
- public static float getBezierP1toP2Length(Vector3f p0, Vector3f p1, Vector3f p2, Vector3f p3) {
- float delta = 0.02f, t = 0.0f, result = 0.0f;
- Vector3f v1 = p0.clone(), v2 = new Vector3f();
- while (t <= 1.0f) {
- FastMath.interpolateBezier(t, p0, p1, p2, p3, v2);
- result += v1.subtractLocal(v2).length();
- v1.set(v2);
- t += delta;
- }
- return result;
- }
- /**
- * Returns the arc cosine of an angle given in radians.<br>
- * Special cases:
- * <ul><li>If fValue is smaller than -1, then the result is PI.
- * <li>If the argument is greater than 1, then the result is 0.</ul>
- * @param fValue The angle, in radians.
- * @return fValue's acos
- * @see java.lang.Math#acos(double)
- */
- public static float acos(float fValue) {
- if (-1.0f < fValue) {
- if (fValue < 1.0f) {
- return (float) Math.acos(fValue);
- }
- return 0.0f;
- }
- return PI;
- }
- /**
- * Returns the arc sine of an angle given in radians.<br>
- * Special cases:
- * <ul><li>If fValue is smaller than -1, then the result is -HALF_PI.
- * <li>If the argument is greater than 1, then the result is HALF_PI.</ul>
- * @param fValue The angle, in radians.
- * @return fValue's asin
- * @see java.lang.Math#asin(double)
- */
- public static float asin(float fValue) {
- if (-1.0f < fValue) {
- if (fValue < 1.0f) {
- return (float) Math.asin(fValue);
- }
- return HALF_PI;
- }
- return -HALF_PI;
- }
- /**
- * Returns the arc tangent of an angle given in radians.<br>
- * @param fValue The angle, in radians.
- * @return fValue's atan
- * @see java.lang.Math#atan(double)
- */
- public static float atan(float fValue) {
- return (float) Math.atan(fValue);
- }
- /**
- * A direct call to Math.atan2.
- * @param fY
- * @param fX
- * @return Math.atan2(fY,fX)
- * @see java.lang.Math#atan2(double, double)
- */
- public static float atan2(float fY, float fX) {
- return (float) Math.atan2(fY, fX);
- }
- /**
- * Rounds a fValue up. A call to Math.ceil
- * @param fValue The value.
- * @return The fValue rounded up
- * @see java.lang.Math#ceil(double)
- */
- public static float ceil(float fValue) {
- return (float) Math.ceil(fValue);
- }
- /**
- * Fast Trig functions for x86. This forces the trig functiosn to stay
- * within the safe area on the x86 processor (-45 degrees to +45 degrees)
- * The results may be very slightly off from what the Math and StrictMath
- * trig functions give due to rounding in the angle reduction but it will be
- * very very close.
- *
- * note: code from wiki posting on java.net by jeffpk
- */
- public static float reduceSinAngle(float radians) {
- radians %= TWO_PI; // put us in -2PI to +2PI space
- if (Math.abs(radians) > PI) { // put us in -PI to +PI space
- radians = radians - (TWO_PI);
- }
- if (Math.abs(radians) > HALF_PI) {// put us in -PI/2 to +PI/2 space
- radians = PI - radians;
- }
- return radians;
- }
- /**
- * Returns sine of a value.
- *
- * note: code from wiki posting on java.net by jeffpk
- *
- * @param fValue
- * The value to sine, in radians.
- * @return The sine of fValue.
- * @see java.lang.Math#sin(double)
- */
- public static float sin2(float fValue) {
- fValue = reduceSinAngle(fValue); // limits angle to between -PI/2 and +PI/2
- if (Math.abs(fValue) <= Math.PI / 4) {
- return (float) Math.sin(fValue);
- }
- return (float) Math.cos(Math.PI / 2 - fValue);
- }
- /**
- * Returns cos of a value.
- *
- * @param fValue
- * The value to cosine, in radians.
- * @return The cosine of fValue.
- * @see java.lang.Math#cos(double)
- */
- public static float cos2(float fValue) {
- return sin2(fValue + HALF_PI);
- }
- public static float cos(float v) {
- return (float) Math.cos(v);
- }
- public static float sin(float v) {
- return (float) Math.sin(v);
- }
- /**
- * Returns E^fValue
- * @param fValue Value to raise to a power.
- * @return The value E^fValue
- * @see java.lang.Math#exp(double)
- */
- public static float exp(float fValue) {
- return (float) Math.exp(fValue);
- }
- /**
- * Returns Absolute value of a float.
- * @param fValue The value to abs.
- * @return The abs of the value.
- * @see java.lang.Math#abs(float)
- */
- public static float abs(float fValue) {
- if (fValue < 0) {
- return -fValue;
- }
- return fValue;
- }
- /**
- * Returns a number rounded down.
- * @param fValue The value to round
- * @return The given number rounded down
- * @see java.lang.Math#floor(double)
- */
- public static float floor(float fValue) {
- return (float) Math.floor(fValue);
- }
- /**
- * Returns 1/sqrt(fValue)
- * @param fValue The value to process.
- * @return 1/sqrt(fValue)
- * @see java.lang.Math#sqrt(double)
- */
- public static float invSqrt(float fValue) {
- return (float) (1.0f / Math.sqrt(fValue));
- }
- public static float fastInvSqrt(float x) {
- float xhalf = 0.5f * x;
- int i = Float.floatToIntBits(x); // get bits for floating value
- i = 0x5f375a86 - (i >> 1); // gives initial guess y0
- x = Float.intBitsToFloat(i); // convert bits back to float
- x = x * (1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
- return x;
- }
- /**
- * Returns the log base E of a value.
- * @param fValue The value to log.
- * @return The log of fValue base E
- * @see java.lang.Math#log(double)
- */
- public static float log(float fValue) {
- return (float) Math.log(fValue);
- }
- /**
- * Returns the logarithm of value with given base, calculated as log(value)/log(base),
- * so that pow(base, return)==value (contributed by vear)
- * @param value The value to log.
- * @param base Base of logarithm.
- * @return The logarithm of value with given base
- */
- public static float log(float value, float base) {
- return (float) (Math.log(value) / Math.log(base));
- }
- /**
- * Returns a number raised to an exponent power. fBase^fExponent
- * @param fBase The base value (IE 2)
- * @param fExponent The exponent value (IE 3)
- * @return base raised to exponent (IE 8)
- * @see java.lang.Math#pow(double, double)
- */
- public static float pow(float fBase, float fExponent) {
- return (float) Math.pow(fBase, fExponent);
- }
- /**
- * Returns the value squared. fValue ^ 2
- * @param fValue The vaule to square.
- * @return The square of the given value.
- */
- public static float sqr(float fValue) {
- return fValue * fValue;
- }
- /**
- * Returns the square root of a given value.
- * @param fValue The value to sqrt.
- * @return The square root of the given value.
- * @see java.lang.Math#sqrt(double)
- */
- public static float sqrt(float fValue) {
- return (float) Math.sqrt(fValue);
- }
- /**
- * Returns the tangent of a value. If USE_FAST_TRIG is enabled, an approximate value
- * is returned. Otherwise, a direct value is used.
- * @param fValue The value to tangent, in radians.
- * @return The tangent of fValue.
- * @see java.lang.Math#tan(double)
- */
- public static float tan(float fValue) {
- return (float) Math.tan(fValue);
- }
- /**
- * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
- * @param iValue The integer to examine.
- * @return The integer's sign.
- */
- public static int sign(int iValue) {
- if (iValue > 0) {
- return 1;
- }
- if (iValue < 0) {
- return -1;
- }
- return 0;
- }
- /**
- * Returns 1 if the number is positive, -1 if the number is negative, and 0 otherwise
- * @param fValue The float to examine.
- * @return The float's sign.
- */
- public static float sign(float fValue) {
- return Math.signum(fValue);
- }
- /**
- * Given 3 points in a 2d plane, this function computes if the points going from A-B-C
- * are moving counter clock wise.
- * @param p0 Point 0.
- * @param p1 Point 1.
- * @param p2 Point 2.
- * @return 1 If they are CCW, -1 if they are not CCW, 0 if p2 is between p0 and p1.
- */
- public static int counterClockwise(Vector2f p0, Vector2f p1, Vector2f p2) {
- float dx1, dx2, dy1, dy2;
- dx1 = p1.x - p0.x;
- dy1 = p1.y - p0.y;
- dx2 = p2.x - p0.x;
- dy2 = p2.y - p0.y;
- if (dx1 * dy2 > dy1 * dx2) {
- return 1;
- }
- if (dx1 * dy2 < dy1 * dx2) {
- return -1;
- }
- if ((dx1 * dx2 < 0) || (dy1 * dy2 < 0)) {
- return -1;
- }
- if ((dx1 * dx1 + dy1 * dy1) < (dx2 * dx2 + dy2 * dy2)) {
- return 1;
- }
- return 0;
- }
- /**
- * Test if a point is inside a triangle. 1 if the point is on the ccw side,
- * -1 if the point is on the cw side, and 0 if it is on neither.
- * @param t0 First point of the triangle.
- * @param t1 Second point of the triangle.
- * @param t2 Third point of the triangle.
- * @param p The point to test.
- * @return Value 1 or -1 if inside triangle, 0 otherwise.
- */
- public static int pointInsideTriangle(Vector2f t0, Vector2f t1, Vector2f t2, Vector2f p) {
- int val1 = counterClockwise(t0, t1, p);
- if (val1 == 0) {
- return 1;
- }
- int val2 = counterClockwise(t1, t2, p);
- if (val2 == 0) {
- return 1;
- }
- if (val2 != val1) {
- return 0;
- }
- int val3 = counterClockwise(t2, t0, p);
- if (val3 == 0) {
- return 1;
- }
- if (val3 != val1) {
- return 0;
- }
- return val3;
- }
- /**
- * A method that computes normal for a triangle defined by three vertices.
- * @param v1 first vertex
- * @param v2 second vertex
- * @param v3 third vertex
- * @return a normal for the face
- */
- public static Vector3f computeNormal(Vector3f v1, Vector3f v2, Vector3f v3) {
- Vector3f a1 = v1.subtract(v2);
- Vector3f a2 = v3.subtract(v2);
- return a2.crossLocal(a1).normalizeLocal();
- }
- /**
- * Returns the determinant of a 4x4 matrix.
- */
- public static float determinant(double m00, double m01, double m02,
- double m03, double m10, double m11, double m12, double m13,
- double m20, double m21, double m22, double m23, double m30,
- double m31, double m32, double m33) {
- double det01 = m20 * m31 - m21 * m30;
- double det02 = m20 * m32 - m22 * m30;
- double det03 = m20 * m33 - m23 * m30;
- double det12 = m21 * m32 - m22 * m31;
- double det13 = m21 * m33 - m23 * m31;
- double det23 = m22 * m33 - m23 * m32;
- return (float) (m00 * (m11 * det23 - m12 * det13 + m13 * det12) - m01
- * (m10 * det23 - m12 * det03 + m13 * det02) + m02
- * (m10 * det13 - m11 * det03 + m13 * det01) - m03
- * (m10 * det12 - m11 * det02 + m12 * det01));
- }
- /**
- * Returns a random float between 0 and 1.
- *
- * @return A random float between <tt>0.0f</tt> (inclusive) to
- * <tt>1.0f</tt> (exclusive).
- */
- public static float nextRandomFloat() {
- return rand.nextFloat();
- }
- /**
- * Returns a random float between min and max.
- *
- * @return A random int between <tt>min</tt> (inclusive) to
- * <tt>max</tt> (inclusive).
- */
- public static int nextRandomInt(int min, int max) {
- return (int) (nextRandomFloat() * (max - min + 1)) + min;
- }
- public static int nextRandomInt() {
- return rand.nextInt();
- }
- /**
- * Converts a point from Spherical coordinates to Cartesian (using positive
- * Y as up) and stores the results in the store var.
- */
- public static Vector3f sphericalToCartesian(Vector3f sphereCoords,
- Vector3f store) {
- store.y = sphereCoords.x * FastMath.sin(sphereCoords.z);
- float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
- store.x = a * FastMath.cos(sphereCoords.y);
- store.z = a * FastMath.sin(sphereCoords.y);
- return store;
- }
- /**
- * Converts a point from Cartesian coordinates (using positive Y as up) to
- * Spherical and stores the results in the store var. (Radius, Azimuth,
- * Polar)
- */
- public static Vector3f cartesianToSpherical(Vector3f cartCoords,
- Vector3f store) {
- float x = cartCoords.x;
- if (x == 0) {
- x = FastMath.FLT_EPSILON;
- }
- store.x = FastMath.sqrt((x * x)
- + (cartCoords.y * cartCoords.y)
- + (cartCoords.z * cartCoords.z));
- store.y = FastMath.atan(cartCoords.z / x);
- if (x < 0) {
- store.y += FastMath.PI;
- }
- store.z = FastMath.asin(cartCoords.y / store.x);
- return store;
- }
- /**
- * Converts a point from Spherical coordinates to Cartesian (using positive
- * Z as up) and stores the results in the store var.
- */
- public static Vector3f sphericalToCartesianZ(Vector3f sphereCoords,
- Vector3f store) {
- store.z = sphereCoords.x * FastMath.sin(sphereCoords.z);
- float a = sphereCoords.x * FastMath.cos(sphereCoords.z);
- store.x = a * FastMath.cos(sphereCoords.y);
- store.y = a * FastMath.sin(sphereCoords.y);
- return store;
- }
- /**
- * Converts a point from Cartesian coordinates (using positive Z as up) to
- * Spherical and stores the results in the store var. (Radius, Azimuth,
- * Polar)
- */
- public static Vector3f cartesianZToSpherical(Vector3f cartCoords,
- Vector3f store) {
- float x = cartCoords.x;
- if (x == 0) {
- x = FastMath.FLT_EPSILON;
- }
- store.x = FastMath.sqrt((x * x)
- + (cartCoords.y * cartCoords.y)
- + (cartCoords.z * cartCoords.z));
- store.z = FastMath.atan(cartCoords.z / x);
- if (x < 0) {
- store.z += FastMath.PI;
- }
- store.y = FastMath.asin(cartCoords.y / store.x);
- return store;
- }
- /**
- * Takes an value and expresses it in terms of min to max.
- *
- * @param val -
- * the angle to normalize (in radians)
- * @return the normalized angle (also in radians)
- */
- public static float normalize(float val, float min, float max) {
- if (Float.isInfinite(val) || Float.isNaN(val)) {
- return 0f;
- }
- float range = max - min;
- while (val > max) {
- val -= range;
- }
- while (val < min) {
- val += range;
- }
- return val;
- }
- /**
- * @param x
- * the value whose sign is to be adjusted.
- * @param y
- * the value whose sign is to be used.
- * @return x with its sign changed to match the sign of y.
- */
- public static float copysign(float x, float y) {
- if (y >= 0 && x <= -0) {
- return -x;
- } else if (y < 0 && x >= 0) {
- return -x;
- } else {
- return x;
- }
- }
- /**
- * Take a float input and clamp it between min and max.
- *
- * @param input
- * @param min
- * @param max
- * @return clamped input
- */
- public static float clamp(float input, float min, float max) {
- return (input < min) ? min : (input > max) ? max : input;
- }
- /**
- * Clamps the given float to be between 0 and 1.
- *
- * @param input
- * @return input clamped between 0 and 1.
- */
- public static float saturate(float input) {
- return clamp(input, 0f, 1f);
- }
- /**
- * Converts a single precision (32 bit) floating point value
- * into half precision (16 bit).
- *
- * <p>Source: <a href="http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf">
- * http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf</a><br><strong>broken link</strong>
- *
- * @param half The half floating point value as a short.
- * @return floating point value of the half.
- */
- public static float convertHalfToFloat(short half) {
- switch ((int) half) {
- case 0x0000:
- return 0f;
- case 0x8000:
- return -0f;
- case 0x7c00:
- return Float.POSITIVE_INFINITY;
- case 0xfc00:
- return Float.NEGATIVE_INFINITY;
- // TODO: Support for NaN?
- default:
- return Float.intBitsToFloat(((half & 0x8000) << 16)
- | (((half & 0x7c00) + 0x1C000) << 13)
- | ((half & 0x03FF) << 13));
- }
- }
- public static short convertFloatToHalf(float flt) {
- if (Float.isNaN(flt)) {
- throw new UnsupportedOperationException("NaN to half conversion not supported!");
- } else if (flt == Float.POSITIVE_INFINITY) {
- return (short) 0x7c00;
- } else if (flt == Float.NEGATIVE_INFINITY) {
- return (short) 0xfc00;
- } else if (flt == 0f) {
- return (short) 0x0000;
- } else if (flt == -0f) {
- return (short) 0x8000;
- } else if (flt > 65504f) {
- // max value supported by half float
- return 0x7bff;
- } else if (flt < -65504f) {
- return (short) (0x7bff | 0x8000);
- } else if (flt > 0f && flt < 5.96046E-8f) {
- return 0x0001;
- } else if (flt < 0f && flt > -5.96046E-8f) {
- return (short) 0x8001;
- }
- int f = Float.floatToIntBits(flt);
- return (short) (((f >> 16) & 0x8000)
- | ((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00)
- | ((f >> 13) & 0x03ff));
- }
- }
|